MEnvSci Environmental Science with Professional Experience UCAS code: F755 For students entering Part 1 in 2014/5

Awarding Institution: University of Reading Teaching Institution: University of Reading Relevant QAA subject Benchmarking group(s): Earth Sciences, Environmental Sciences and **Environmental Studies** Science Faculty Faculty: Programme length: 5 years Date of specification: 10/Sep/2014 Dr Hazel McGoff Programme Director: Programme Advisor: Dr Hazel McGoff Board of Studies: Geography and Environmental Science Accreditation: Not applicable

Summary of programme aims

The programme aims to provide students with a sound scientific understanding of the processes operating in the Earth system, and to apply this science to the understanding of current and future environmental issues. It also aims to provide students with the scientific and transferable skills that are relevant to the application of environmental science in research, industry and other areas such as government policy.

Part 1 is designed to provide a sound foundation in Environmental Science, and supporting knowledge of relevant Chemistry, Physics and Mathematics. A wide range of subject options are available and shape the particular pathway chosen.

Part 2 has a core of compulsory modules to develop further technical skills with particular emphasis on understanding key environmental processes and their interactions. Options are designed to give depth to knowledge and methodology in selected subject areas.

The professional training year is designed to provide professional, practical experience in a company or organisation, giving the student an opportunity to gain relevant skills and experience whilst working alongside practicing environmental scientists.

Part 3 is integrative whilst providing scope for specialisation through the selection of options.

Part 4 aims to provide students with the intellectual skills required by professionals in environmental consultancy, contaminated land management and land remediation. The research project provides the student with the opportunity to demonstrate their ability to conduct and report on a detailed research investigation, drawing on their understanding of the fundamental concepts in Environmental Science. Graduates from the course will have an in-depth knowledge of the chemical, physical and biological principles of Soil Science, experience of the major types of soil contamination, familiarity with regulatory and commercial aspects of contaminated land management and problem solving skills in relation to soil management and remediation.

Transferable skills

During the course of their studies at Reading, all students will be expected to enhance their academic and personal transferable skills. In following this programme, students will have had the opportunity to develop such skills, in particular relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working, field work and use of information technology and will have been encouraged to further develop and enhance the full set of skills through a variety of opportunities available outside their curriculum.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using spreadsheet and graphical applications programs, scientific programming, internet), scientific writing, oral presentation, experimental methods (laboratory and field), team-working, use of library resources, career planning and management. They will have developed skills in team-working and leadership, and be confident and self-reliant, particularly as a result of experience during field courses, independent project work and their Professional Experience. They will also have a sound knowledge of fieldwork safety procedures.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the optional modules). Students must choose such additional modules, in consultation with their programme adviser, to make 120 credits in each Part. The number of module credits for each module is listed.

Part 1 (three terms)

Compulsory modules

Code	Module title	Credits	Level
GV1A3	Chemistry of the Earth and Environment	10	4
GV1A4	Introduction to Physics of the Environment	10	4
GV1B1	Introduction to Environmental Science	10	4
GV1B2	Environmental Science Fieldclass	10	4
GV1D1	Earth Structure and Processes	10	4
GV1E1	Soils in the Environment	10	4

Optional modules (60 credits)

Students select a minimum of three contributory subjects to Environmental Science, including: Earth Sciences, Meteorology, Geography, Chemistry, Biology, Rural Environmental Science. They may also chose a language as part of the Institute-wide Language Programme. Choice is subject to timetable constraints and students having appropriate pre-requisites.

Recommended	<i>l</i> :		
GV1TGE	Techniques in Geography & Environmental Science	20	4
GV1D2	Earth Materials	10	4
GV1BGE	Biogeography & Ecology	10	4
Others includ	ing:		
Biology			
BI1BA1	The Living Cell	10	4
BI1ED2	Mammals: Diversity, Behaviour and Conservation	10	4
BI1EF2	Ecology: Species and their Interactions	10	4
BI2EF3	Practical Field Ecology	10	4
BI1EG1	Plant Diversity, Structure & Utilisation	10	4
Archaeology			
AR1TS2	Bones, Bodies and Burials: the Archaeology of Death	20	4
AR1TS3	Practising Archaeology: methods & approaches	20	4
	and Agriculture		
AP1AE20	Humans & the Environment	10	4
AP1A02	Introduction to Agriculture and Food Systems	10	4
AP1ED2	International Development: Global & Local Issues	10	4
AP1EE3	Economics 1	10	4
Chemistry			
CH1FC1	Fundamental Chemistry 1	10	4
CH1PH2	Physical Processes for Biologists	10	4
Casaranku			
<i>Geography</i> GV1C	Climatology	10	4
GV1C GV1D	Hydrology	10	4
GV1GS	Geomorphology	10	4
0105	Geomorphology	10	4
Meteorology			
MT11C	Introduction to Meteorology	20	4
MT11D	Weather and Climate Fundamentals	20	4
Languages			
LA1XX1	Institution Wide Language Programme	20	4
Plus up to 20	other credits subject to approval by the Programme Adviser		

Part 2 (three terms)

Compulsory modules

Code	Module title	Credits	Level
GV2B4	Predicting Natural and Contaminated Environments	10	5
GV2F4	Soil Ecology and Functions	10	5
GV2I4	Skills for Environmental Scientists	20	5
GV2H4	Transport Processes in the Environment	10	5
And one field	class from:		
GV2Z6	Environmental Science Field Class	10	5
AP2A58	Environmental Science and Management field Course	10	5
AI 2A30	Environmental Science and Management field Course	10	5
	ules (60 credits)		
Students deve	elop depth in a minimum of two contributory subjects to Environment	al Science, ii	ncluding: Earth
Science, Mete	orology, Geography, Chemistry, Biosciences, Rural Environmental S	cience, Arch	aeology. They
	se a language as part of the Institute-wide Language Programme		
Recommended	<i>l:</i>		
Environmenta	l Sciences		
GV2C5	Crime Scene Analysis	10 :	5
GV2D5	Sustainable Resource Management	10 5	5
GV2M5	Quaternary Global Climate Change	10 :	5
Others Includ	ing (subject to timetable constraints and students having appropriate	pre-requisite	es):
Archaeology			
AR2S1	Archaeological Science	20 .	5
Rural Science	and Agriculture		
AP2A26	Forestry and Woodlands	10 .	5
AP2A56	Grasslands Management and Ecology	10 .	5
AP257	Methods in Ecology and Environmental Management	20	5
AP2A59	Nature Conservation	10 .	5
AP2A64	Ecology & Management of Plant Disease	10 :	5
Bioscience			_
BI2BN4	Vertebrate Zoology - Structure, Form and Function		5
BI2EE4	Evolutionary Biology		5
BI2EI4	Invertebrate Zoology		5
BI2EN5	Animal Behaviour		5
BI2EY5	Birds: Diversity, Behaviour and Conservation	10 5	5
Meteorology			_
MT24A	Atmosphere & Ocean Dynamics	20	5
MT2BB	Atmospheric Physics	20	5
Physical Geog		4.0	_
GV2ER	Energy Resources		5
GV2P1	Geomorphological Hazards		5
GV2P3	Human Activity and Environmental Change		5
GV2HY	Hydrological Processes		5
GV2BC	Biogeography and Conservation		5
GV2SDA	Spatial Data in the Digital Age	10 :	5
Others		• •	_
LA1XX1	Institute Wide Language Programme	20	5
MM270	Practice of Entrepreneurship	20	5
Plus up to 20	other credits subject to approval by the Programme Adviser		

Year abroad/Year away/Additional year (three terms)

Compulsory modules

Code	Module title	Credits	Level
GV2PE	Professional Experience	120	5

Part 3 (three terms)

Compulsory modules

Code	Module title	Credits	Level
GV3F8	Applied and Environmental Soil Microbiology	10	6
GV3G8	Contaminated Land Management	10	6
GV3I7	Carbon and Global Change	10	6
GV3LP	Environmental Science Literature Project	10	6
GV3Z8	Earth Systems Field Class	10	6

Optional Modules (70 credits of which at least 30 must be at level 6): Archaeology

AR3S15	Plants, People and Environmental Change	20	6	
AR2S16	Holocene Climates	20	6	
Rural Science	e and Agriculture			
AP3A89	Water, Agriculture and Irrigation	10	6	
AP3A90	Climate Change & Food Systems	10	6	
AP3A99	Plants, Greenspace and Urban Sustainability	10	6	
AP3AE70	Environmental Management in Practice	10	6	
AP3AE75	Wildlife & Farming	10	6	
Biological Sciences				

Biological Sciences				
BI3EA7	Insect Ecology & its Applications	10	6	
BI3EB7	Forensic Zoology	10	6	
BI3EE7	Urban Biodiversity	10	6	
BI3EJ8	Conservation Biology	10	6	
BI3EM7	Plants, Animals and Climate Change	10	6	
BI3EN7	Conservation and Biodiversity: Global and Local Scales	10	6	
Physical Geography				
GV334	Glacial & Periglacial Geomorphology	20	6	
GV362	Water Resources	20	6	
GVAP	Air Pollution: Effects & Controls	20	6	
GV3CC	Climate Change	20	6	
GV3MME	Modelling of Marine Ecosystems	20	6	
Others				
LA1XX1	Institute Wide Language Programme	20	6	
Plus up to 20 other credits subject to approval by the Programme Adviser.				

Part 4 (three terms) *Compulsory modules*

Code	Module title	Credits	Level
GVMIMP	Independent Project	40	7
GVMQAD	Quantitative Data Analysis	10	7
GVMSWQ	Soils and Water Quality	10	7
GVMWEM	Waste and Environmental Management	10	7
GVMREM	Remediation	10	7

Optional Modules (40 credits, all of which must be at Level 7 and subject to timetabling constraints and students having appropriate prerequisites)

Environmenta	l science		
GVMCON	Soil contaminants	10	7
GVMEBS	Entrepreneurial and Business skills	10	7
GVMFC	Integrated soil science field class	10	7
GVMPSIA	Practical site investigation	20	7
Construction,	Engineering and Management		
CEM224	Carbon Management	10	7
CEM232	Sustainable Urban Systems	10	7
Agriculture, P	olicy and Development		
APMA90	Climate Change and Food Systems	10	7
APMA102	Ecosystem Services	10	7
APME69	Climate Change & Policy Governance	10	7
APME74	Energy, Climate Change & Development	10	7
Law			
LWMTEE	EU Environmental Law	10	7
Plus up to 20	other credits subject to approval by the Programme Adviser.		

rius up to 20 other credits subject to approval by the Programme Adviser.

Progression requirements

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 AND obtain a weighted average of at least 40% over the modules GV1A3, GV1A4, GV1B1, GV1B2, GV1D1 and GV1E1.

In order to progress from Part 2 to Part 3 a student shall normally be required to achieve the following in Part 2: an overall weighted average of at least 50% over 120 credits; and

a mark of at least 40% in individual modules amounting to not less than 100 credits; and

a mark of at least 35% in individual modules amounting to not less than 120 credits; and

successful completion of specified coursework and/or examination components of relevant modules as described in the module description.

Students who do not meet the above requirements for progression to Part 3 but gain a threshold performance may be eligible to transfer to another programme or leave with a DipHE. To gain a threshold performance at Part 2 a student shall normally be required to achieve:

an overall average of 40% over 120 credits taken in Part 2; and

a mark of at least 30% in individual modules amounting to not less than 100 credits.

In order to progress from Part 3 to Part 4 a student shall normally be required to achieve the following in Part 3: an overall weighted average of at least 40% over 120 credits taken in Part 3; and

a mark of at least 40% in individual modules amounting to not less than 100 credits; and

a mark of at least 35% in individual modules amounting to not less than 120 credits; and

successful completion of specified coursework and/or examination components of relevant modules as described in the module description.

Students who do not meet the above requirements for progression to Part 4 will be considered for a BSc Environmental Studies. the classification for this exit award will be based on 33% from the overall weighted average in Part 2 and 67% on the overall weighted average in Part 3.

To be eligible for Honours, students must normally pass all compulsory modules in both Parts 3 and 4.

Assessment and classification

The University's honours classification scheme is:			
Mark	Interpretation		
70% - 100%	First class		
60% - 69%	Upper Second class		
50% - 59%	Lower Second class		
40% - 49%	Third class		

35% - 39%	Below Honours Standard
0% - 34%	Fail

For the University-wide framework for classification, which includes details of the classification method, please see:www.reading.ac.uk/internal/exams/Policies/exa-class.aspx

The weighting of the Parts/Years in the calculation of the degree classification is

Integrated Masters programmes (MEng, MMath, MChem, etc)

Part 2 20% Part 3 40% Part 4 40%

The placement year does not count towards degree classification. Students who fail the placement year may be eligible to transfer to the MEnvSci Environmental Science.

Teaching is organized in modules that typically involve lectures, problem solving classes, and practical classes. The assessment is carried out within the University's degree classification scheme, details of which are in the programme handbooks. The pass mark in each module is 40%. Parts 1 and 2 are assessed by a mixture of coursework and formal examination. The period of Professional Experience is assessed by means of a report and presentation. In Parts 3 and 4 there are some modules which are assessed wholly by coursework and others wholly by examination: the details are given in the module descriptions. The research project undertaken in Part 4 involves a substantial component of independent learning, under the supervision and guidance of Project Supervisors. The projects are assessed on the basis of formal reports, oral presentations and development of independent learning skills.

Admission requirements

Entrants to this programme are normally required to have obtained:

Grade C or better in English, Science and Mathematics in GCSE, and a minimum of AAB at A level . One subject from Maths, Physics, Chemistry, Biology, Geography, Geology or Environmental Science preferred; Or International Baccalaureat: minimum 35 points plus minimum 6 in a Higher Level Subjects including at least one science or maths.

Admissions Tutor: Dr Hazel J McGoff

Support for students and their learning

University support for students and their learning falls into two categories. Learning support is provided by a wide array of services across the University, including: the University Library, the Careers, Placement and Experience Centre (CPEC), In-sessional English Support Programme, the Study Advice and Mathematics Support Centre teams, IT Services and the Student Access to Independent Learning (S@il) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, School Senior Tutors, the Students' Union, the Medical Practice and advisers in the Student Services Centre. The Student Services Centre is housed in the Carrington Building and offers advice on accommodation, careers, disability, finance, and wellbeing, academic issues (eg problems with module selection) and exam related queries. Students can get key information and guidance from the team of Helpdesk Advisers, or make an appointment with a specialist adviser; Student Services also offer drop-in sessions and runs workshops and seminars on a range of topics. For more information see www.reading.ac.uk/student

The providing Departments have well-equipped teaching laboratories, analytical laboratories and dedicated computer laboratories. Substantial collections of earth materials and maps are available for hands-on access by students. Within the providing Departments additional support for students is given through practical and field classes and in the course of the independent project. There is a Course Adviser to offer advice on the choice of modules throughout the programme.

Career learning

Career prospects

The requirement for environmental scientists with a sound scientific training continues to grow and opportunities for graduates from this course include employment by environmental consultants, water companies and the many offices of national and local government concerned with environmental issues as well as post-graduate study. Private industry is increasingly concerned to employ scientists to help minimise the adverse environmental impact of its activities.

Opportunities for study abroad

As part of the degree programme students have the opportunity to study abroad at an institution with which the University has a valid agreement.

Students following this degree programme may complete their Professional Experience with a company overseas. This would only be acceptable if the student displays the requisite degree of fluency in the foreign language required, and, if suitable industrial experience can be found. Students may also participate in the ERASMUS exchange scheme where one or two terms are spent studying in a European university. Other exchanges are available in north America and Australia. Further details are available from the Course Director and the Study Abroad Office.

Placement opportunities

This Programme includes a maxi placement in the form of the Year of Professional Experience. Students may also take a micro placement as part of GV2P5 Career and Placement Skills for Environmental Scientists. Noncredit bearing placements are also available. Students can undertake these at any time during their degree although placements should not interfere with normal timetabled classes. Placements may be with companies, voluntary and not-for-profit organisations, schools, museums or universities. The onus for finding placements is on the student but help is available from the Career, Placement and Experience Centre, the School Placement Co-ordinator and the Programme Director. Student should register their placement activity with the Placement Co-ordinator who will ensure that appropriate Health and Safety precautions are in place, that the student will receive supervision during their activity and that placements are recorded on the final degree transcript. Additional voluntary activities are also possible through the RED scheme, CSV and Student Volunteering.

Programme Outcomes

Knowledge and Understanding

A. Knowledge and understanding of:

- 1. Earth Systems including the lithosphere, hydrosphere, atmosphere and biosphere
- 2. Interactions between the processes operating in the different components of the Earth System.
- 3. The evolution of the Earth and the environment through different time scales, and the evidence for that change
- 4. Monitoring and management of natural and human-induced environmental change.
- 5. Scientific examination of the implications of sustainability and sustainable development.
- 6. A selected range of optional topics
- 7. Environmental issues and management with an interdisciplinary and integrative perspective.
- 8. Fieldwork safety issues and procedures

Teaching/learning methods and strategies

Underlying knowledge in the essential areas is set out in lectures, in most cases directly supported by illustrative practicals. The essential field experience required for proper understanding is provided by compulsory field courses in Part 1 and Part 2, with additional optional field courses in Parts 3 and 4. Students conduct an independent project in the form of practical investigation into an environmental topic in Part 4, with support and advice from academic and technical staff.

Assessment

Most knowledge is tested through a combination of coursework and unseen formal examinations. Dissertations and oral presentations also contribute in Parts 3 and 4.

Skills and other attributes

B. Intellectual skills - *able to:*

- 1. think logically and critically in a scientific manner
- 2. analyse and interpret environmental observations and data and recognise and

Teaching/learning methods and strategies

Logical and critical thinking is an essential part of interpreting environmental science data and materials, it is embedded throughout the programme. The ability to integrate and apply identify issues and problems with that data

- 3. organise tasks into a structured form
- 4. understand the current state of knowledge of the environment a rapidly developing area
- 5. integrate and apply concepts and principles from one area of environmental science to another
- 6. recognise the need for professional codes of conduct

C. Practical skills - able to:

- 1. plan, conduct and report on investigations, including the use of secondary data
- 2. collect, record and analyse data using appropriate field and laboratory techniques
- 3. reference work in an appropriate manner
- 4. carry out a risk assessment for field and laboratory investigations
- 5. consider the impact of field investigations on the environment as well as other interested parties

D. Transferable skills - *able to:*

- 1. use IT (word-processing, using standard software and the Internet)
- 2. understand issues of sample selection, accuracy, precision and uncertainty in field and laboratory work
- 3. prepare, process , interpret and present data in an appropriate manner, using both quantitative and qualitative techniques
- 4. communicate scientific ideas in verbal, written and graphic form to a variety of audiences.
- 5. work as part of a team, identifying individual and collective goals, respecting the views and opinions of others and evaluating both individual and team performances.
- 6. use library resources
- 7. manage their time
- 8. plan their career, developing skills for selfmanaged and lifelong learning.

concepts and principles from one area of the subject to another are intrinsic to high-level performance in the programme. Current developments in environmental science are highlighted by contact with visiting experts in the field in Parts 3 and 4.

Assessment

1 and 2 are assessed indirectly in most parts of the programme, 3 in the course of laboratory and fieldwork. 4 is focused on by courses in Parts 2 through 4, while 5 contributes to more successful work. 6 not directly assessed.

Teaching/learning methods and strategies

Observing, recording and interpreting is taught in laboratory and field classes throughout the course. An investigative independent practical project is conducted by the student in Part 4, with advice from academic and technical staff. Risk assessment forms an essential part of each field course and any field based project work.

Assessment

1 & 2 are tested both formatively in coursework and particularly during the final year projects. summatively in examinations. 2 is assessed by means of coursework and project work, 4 & 5 during field classes and project work.

Teaching/learning methods and strategies

The use of IT is embedded throughout the programme with special sessions in Part 1 and in the Skills Module in Part 2. Oral presentation and communication skills are developed in various modules. The component of oral and presentation skills increases through the years. Career management is taught in the Part 2 Skills module. Teamworking is particularly emphasised in field courses and the Part 4 Entrepreneurial and Business skills and Practical site investigation modules. Time management is essential for the timely and effective completion of the programme. Library and internet resources are required for the Part 3 library project and the research project in Part 4, and contribute to the best performances throughout.

Assessment

1, 2, 3 & 4 are assessed through coursework and particularly in the Part 3 project and Part 4 modules. 5 in field courses, 6 in the research project and 8 in the skills module in Part 2. 7 is not directly assessed but contributes to successful performance throughout the programme.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be

found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance process or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.