## MMath Mathematics <br> For students entering Part 1 in 2013/4

Awarding Institution:
Teaching Institution:
Relevant QAA subject Benchmarking group(s):
Faculty:
Programme length:
Date of specification
Programme Director:
Programme Advisor:
Board of Studies:
Undergraduate
Accreditation:

Optional placement variation(s):

University of Reading
University of Reading
Mathematics, Statistics and Operational Research Science Faculty
4 years
10/Apr/2015
Dr Karen Ayres
Dr Karen Ayres
School of Mathematical and Physical Sciences

Accredited by the Institute of Mathematics and its Applications to meet the educational requirements of the Chartered Mathematician designation. with Placement Experience

## Summary of programme aims

The MMath programme aims to provide the foundation needed for those intending to become professional mathematicians. It achieves this by including a range of topics underlying the main areas of modern work in the subject together with a wide selection of specialist courses studied in depth, along with a range of appropriate subject-specific and transferable skills.

## Transferable skills

During the course of their studies at Reading, all students will be expected to enhance their academic and personal transferable skills. In following this programme, students will have had the opportunity to develop such skills, in particular relating to communication (both written and oral), information handling, numeracy, team working, use of IT and problem-solving and will have been encouraged to further develop and enhance the full set of skills through a variety of opportunities available outside their curriculum.
By the end of the programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematics software), scientific writing, oral presentation, team-working, problem-solving, use of library resources, time-management and career management and planning.

## Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the optional modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of credits per module and the level of each module are shown after its title.

## Part 1 (three terms)

Compulsory modules

| Code | Module title | Credits | Level |
| :--- | :--- | :--- | :--- |
| MA1FM | Foundations of Mathematics | 20 | 4 |
| MA1MM1 | Mathematical Methods I | 20 | 4 |
| MA1MM2 | Mathematical Methods II | 10 | 4 |
| MA1LIN | Linear Algebra | 10 | 4 |

## Selected modules

Students following this programme in Part 1 need to take the following core and optional modules: student stransferring to this programme after Part 1 are permitted to have taken up to 60 credits of their joint subject according to their joint programme specification.
Core modules (students must take 40 credits)

| Mode Code | Module Title | Credits | Level |
| :--- | :--- | :--- | :--- |
| MA1RA1 | Real Analysis I | 20 | 4 |
| ST1PD | Probability and Distributions | 10 | 4 |
| MA1ALG | Algebra I | 10 | 4 |

Plus choose 20 credits from:

MA1GEO Geometry $\quad 10 \quad 4$
$\begin{array}{llll}\text { MA1MMP } & \text { Modelling and Mathematical Physics } & 10 & 4\end{array}$
$\begin{array}{llll}\text { ST1AS Applied Statistics } & 10 & 4\end{array}$
$\begin{array}{llll}\text { ST1SIM } & \text { Statistical inference and Modelling } & 10 & 4\end{array}$
$\begin{array}{llll}\text { PH101 Physics of the Natural World } & 20 & 4\end{array}$
LA1XXX IWLP Language Module 20
4

## Part 2 (three terms)

Compulsory modules

| Code | Module title | Credits | Level |
| :--- | :--- | :--- | :--- |
| MA2ODE | Ordinary Differential Equations | 10 | 5 |
| MA2PDE | Partial Differential Equations | 10 | 5 |
| MA2GS | General Skills | 10 | 5 |
| MA2MIP | Mathematics in Practice | 10 | 5 |
| MA2VC | Vector Calculus | 10 | 5 |
| MA2VAD | Vector Analysis and Differential Equations | 20 | 5 |
| MA2NA1 | Numerical Analysis | 10 | 5 |
| MA2CA1 | Complex Analysis I | 10 | 5 |
| Plus either |  | 10 | 5 |
| MA2AL2 | Algebra II |  |  |
| Or |  | 10 | 5 |
| MA2ALG | Algebra I | 10 | 5 |
| Plus either |  | 10 | 5 |
| MA2RA2 | Real Analysis II | 20 | 5 |
| MA2PTI | Probability Theory I |  |  |

## Year abroad/Year away/Additional year (three terms) <br> Compulsory modules

MA2PY Industrial Placement Year $120 \quad 5$

The placement should not normally be shorter than nine months full-time and students will be assessed in the form of an end-of-year project.

## Part 3 (three terms)

Compulsory modules

| Code | Module title | Credits | Level |
| :--- | :--- | :--- | :--- |
| MA3PR | Part 3 Project | 10 | 6 |
| MA3TLA | Topology and Linear Analysis | 20 | 6 |
| MA3MTI | Measure Theory and Integration | 10 | 6 |

Optional Modules
(i) Select at least 60 credits from:

| MA3CA2 | Complex Analysis II | 10 | 6 |
| :--- | :--- | :--- | :--- |
| MA3Z7 | Number Theory | 10 | 6 |


| MA3CEC | Cryptography and Error Correcting Codes | 10 | 6 |
| :--- | :--- | :--- | :--- |
| MA3AGT | Applied Graph Theory | 10 | 6 |
| MA3A7 | Galois Theory | 20 | 7 |
| MA3NAT | Numerical Analysis II | 20 | 6 |
| MA3CV | Calculus of Variations | 10 | 6 |
| MA3DS | Dynamical Systems | 10 | 6 |
| MA3MB | Mathematical Biology | 10 | 6 |
| MA3CM | Classical Mechanics | 10 | 6 |
| MA3FM | Fluid Mechanics | 10 | 6 |
| ST3OR | Operational Research | 10 | 6 |
| MA3WW | Water Waves | 10 | 6 |
| MA3PD2 | Partial Differential Equations II | 10 | 6 |
| MA3FA1 | Functional Analysis I | 10 | 6 |

(ii) Select at most 20 credits from (those who did not take MA2AL2 in Part 2 must take MA2AL2 as an option in Part 3).

| MA2AL2 | Algebra II | 10 | 6 |
| :--- | :--- | :--- | :--- |
| ST3MVA | Multivariate Data Analysis | 10 | 6 |
| ST3ED | Experimental Design | 10 | 6 |
| ST3GLM | Generalised Linear Models | 10 | 6 |
| ST3BDA | Bayesian Data Analysis | 10 | 6 |
| ST3CTS | Computational Techniques in Statistics | 10 | 6 |

## Part 4 (three terms)

Compulsory modules

| Code | Module title |
| :--- | :--- |
| MA4XA | Fourth Year Project |


| Credits | Level |
| :--- | :--- |
| 40 | 7 |

Optional modules
Choose 80 credits from:

| MA4FA2 | Functional Analysis II | 10 | 7 |
| :--- | :--- | :--- | :--- |
| MA4NSO | Numerical Solution of Ordinary Differential Equations | 10 | 7 |
| MA4NSP | Numerical Solution of Partial Differential Equations | 10 | 7 |
| MA4AM | Asymptotic Methods | 20 | 7 |
| MA4XJ | Integral Equations | 10 | 7 |
| MA4ANT | Analytic Number Theory | 10 | 7 |
| MA4OT | Operator Theory | 10 | 7 |
| MA4SMA | Statistical Mechanics and Applications | 10 | 7 |
| MA4DA | Theory and Techniques of Data Assimilation | 10 | 7 |
| MA4SP | Stochastic Processes | 10 | 7 |
| MA4PDE | Advanced Partial Differential Equations | 10 | 7 |
| ST4ECT | Epidemiology and Clinical Trials | 10 | 7 |

## Progression requirements

To gain a threshold performance at Part 1 and qualify for the CertHE a student shall normally be required to achieve an overall weighted average of $40 \%$ over 120 credits taken in Part 1, where all the credits are at 4 level or above, and a mark of at least $30 \%$ in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and obtain a weighted average of least $40 \%$ over the modules MA1MM1, MA1MM2, MA1LIN, MA1FM and obtain marks of at least $30 \%$ in 120 credits.
Although not a requirement, students on the MMath course should be aiming to achieve a $\mathbf{5 0 \%}$ average in Part 1.

To gain a threshold performance at Part 2, a student shall normally be required to achieve:
(i) a weighted average of $40 \%$ over 120 credits taken at Part 2;
(ii) marks of at least $40 \%$ in individual modules amounting to not less than 80 credits; and
(iii) marks of at least $30 \%$ in individual modules amounting to not less than 120 credits.

In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2 and achieve an overall weighted average of $50 \%$ over 120 credits taken in Part 2 . Students who fail to progress are permitted one re-sit examination in each module in which they obtain less than $50 \%$. For any module passed in a re-sit examination the maximum mark carried forward into the final degree classification will be the higher of (a) the first attempt mark and (b) the lower of 40 and the mark achieved in the re-examination. Students who do not meet the requirements for progression on the MMath but gain a threshold performance at Part 2 are eligible to transfer to BSc Mathematics.

Students are required to pass the professional/placement year in order to progress on the programme which incorporates the professional/placement year. Students who fail the professional/placement year transfer to the non-placement year version of the programme.

In order to progress from Part 3 to Part 4, a student shall normally be required to achieve an overall weighted average of $40 \%$ over 120 credits taken in Part 3, and a mark of at least $30 \%$ in individual modules amounting to not less than 100 credits. Students who fail to progress are permitted one re-sit examination in each module in which they obtain less than $40 \%$. For any module passed in a re-sit examination the maximum mark carried forward into the final degree classification will be the higher of (a) the first attempt mark and (b) the lower of 40 and the mark achieved in the re-examination. Students who do not meet the requirements for progression to Part 4 will be eligible for the award of BSc Mathematics, provided they have achieved a threshold performance. The classification for the BSc programme will be based on one third of the overall weighted average in Part 2 and two-thirds of the overall weighted average in Part 3.

## Assessment and classification

The University's honours classification scheme is:
Mark Interpretation

70\%-100\% First class
60\%-69\% Upper Second class
50\% - 59\% Lower Second class
40\%-49\% Third class
35\%-39\% Below Honours Standard
0\%-34\% Fail
For the University-wide framework for classification, which includes details of the classification method, please see: www.reading.ac.uk/internal/exams/Policies/exa-class.aspx

The weighting of the Parts/Years in the calculation of the degree classification is

## Integrated Masters programmes (MEng, MMath, MChem, etc)

Part 2 20\%
Part 3 30\%
Part 4 50\%
Teaching is organised in modules that typically involve both lectures and problems. Modules are assessed by a mixture of coursework and formal examination. There are some modules which are assessed wholly by coursework and others wholly by examination; the details are given in the module descriptions.

## Admission requirements

Entrants to this programme are normally required to have obtained:

- UCAS Tariff: A Level: AAB including grade A in A Level Mathematics; or
- International Baccalaureat: 35 points including 6 in Higher Mathematics.

Equivalent qualifications are acceptable.

Admissions Tutor: Dr Steve Langdon

## Support for students and their learning

University support for students and their learning falls into two categories. Learning support is provided by a wide array of services across the University, including: the University Library, the Careers, Placement and Experience Centre (CPEC), In-sessional English Support Programme, the Study Advice and Mathematics Support Centre teams, IT Services and the Student Access to Independent Learning (S @il) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, School Senior Tutors, the Students' Union, the Medical Practice and advisers in the Student Services Centre. The Student Services Centre is housed in the Carrington Building and offers advice on accommodation, careers, disability, finance, and wellbeing, academic issues (eg problems with module selection) and exam related queries. Students can get key information and guidance from the team of Helpdesk Advisers, or make an appointment with a specialist adviser; Student Services also offer drop-in sessions and runs workshops and seminars on a range of topics. For more information see www.reading.ac.uk/student

Within the Mathematics \& Statistics Department additional support is given though practical classes in Part 1. The development of problem-solving skills is assisted by extensive provision of model solutions to problems. There is a Course Adviser to offer advice on the choice of modules within the programme.

## Career learning

## Career prospects

MMath Mathematics graduates typically find employment in areas involving applications of the subject or research as well as finance, management services and teaching. Recent graduates from this programme entered jobs as risk analyst (engineering consultancy company), Scientific Officer (DERA), tax processor, PhD training and banking.

## Opportunities for study abroad

There are currently no opportunities for Study Abroad on this programme.

## Placement opportunities

A version of this programme to include a maxi placement is available. Students undertaking a maxi placement spend a year in industry between the second and third taught year and will be transferred to a 5-year programme. This year does not contribute to the final degree classification.

## Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

## Knowledge and Understanding

## A. Knowledge and understanding of:

1. The fundamental concepts and techniques of calculus, analysis, algebra, dynamics and numerical mathematics
2. The use of the basic techniques of mathematics in applicable areas of mathematics, such as differential equations, mechanics, coding theory and numerical analysis
3. The application of theoretical ideas
4. A selection of more specialist optional topics
5. A deeper insight into specialist areas of mathematics and its applications
6. Project work on an advanced topic, forming a substantial independent investigation
7. More advanced material which draws together mathematical ideas from more than one area

## Teaching/learning methods and strategies

The knowledge required for the basic topics is delineated in formal lectures supported by problem sets for students to tackle on their own. In Part 1 these are supported by tutorials and practical classes through which students can obtain feedback on their non-assessed work
In the later parts of the course students are expected to work at additional problems on their own and seek help when required, using the office hours of staff. Where appropriate, model solutions are provided for problems set.

## Assessment

Most knowledge is tested through a combination of coursework and unseen formal examinations, although the project is assessed through its report and an oral presentation. Dissertations and oral presentations also contribute in other parts of the
programme.

## Skills and other attributes

## B. Intellectual skills - able to:

1. Think logically
2. Analyse and solve problems
3. Organise tasks into a structured form
4. Integrate theory and applications
5. Transfer appropriate knowledge and methods from one topic within the subject to another 6 . Plan, conduct and write a report on a substantial independent project

## C. Practical skills - able to:

1. Understand and construct mathematical proofs
2. Formulate and solve mathematical problems
3. Analyse numerical methods and respond to the issues of accuracy, stability and convergence 4. Plan, execute and report on a substantial project, and defend the result

## Teaching/learning methods and strategies

Logic is an essential part of the understanding and construction of mathematical proofs and is embedded throughout the programme. The quality of solutions to a problem is substantially determined by the structure of that response; analysis, synthesis, problem solving, integration of theory and application, and knowledge transfer from one topic to another are intrinsic to high-level performance in the programme.

## Assessment

1-3 are assessed indirectly in most parts of Mathematics, while 4 and 5 contribute to the more successful work. 6 is assessed in the project dissertation.

## Teaching/learning methods and strategies

Mathematical proof is taught in Part 1 lectures and reinforced in practical classes. Problem solving is introduced in lectures in Part 1 and forms a large part of subsequent Mathematics. Numerical analysis courses introduce and develop the ideas of accuracy, stability and convergence, illustrated by practical tasks.

## Assessment

1 and 2 are tested both formatively in coursework and summatively in examinations. 3 is assessed practically through coursework and the principles through formal examination. 4 is assessed through the project dissertation and its oral presentation.

## Teaching/learning methods and strategies

The use of IT is embedded throughout the computational side of the course. Team work and career planning are part of one Part 2 module. Communication skills are the focus of a module in Part 2, and these are deployed in the final year project. Time management is essential for the timely and effective completion of the programme. Library resources are required for the small project within one Part 2 module and the final year project, and contribute to the best performances throughout.

## Assessment

1 and 2 are assessed through coursework. 3-5 and 7 contribute assessed coursework towards the module General Skills and Mathematics in Practice, and 2, 3 and 5 also in the project. The other skills are not necessarily directly assessed but their effective use will enhance performance in later modules.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance process or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.

