MChem Chemistry with Year in Industry For students entering Part 1 in 2010/1

Awarding Institution: Teaching Institution: Relevant QAA subject Benchmarking group(s): Faculty: Programme length: Date of specification: Programme Director: Programme Advisor: Board of Studies: Accreditation:

UCAS code: F105

University of Reading University of Reading Chemistry Life Sciences Faculty 4 years 11/Apr/2012 Dr Andrew Russell Dr Elizabeth Page Chemistry The Royal Society of Chemistry

Summary of programme aims

The programme is designed to provide a broad and rigorous study of modern Chemistry and to give students the experience of doing chemically-related work experience in industry. It is accredited by the Royal Society of Chemistry.

Transferable skills

During the course of their studies at Reading, all students will be expected to enhance their academic and personal transferable skills in line with the University's Strategy for Learning and Teaching. In following this programme, students will have had the opportunity to develop such skills, in particular relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, teamworking, and use of information technology and will have been encouraged to further develop and enhance the full set of skills through a variety of opportunities available outside their curriculum.

As part of this programme students are expected to have gained experience and show competence in the following skills: IT (word-processing, use of spreadsheets and databases), scientific writing, oral presentation, team-working, problem-solving, use of library resources, time-management, and career planning and management.

Programme content

The MChem Chemistry with a Year in Industry degree programme is divided into four Parts, each of 120 credits. The degree profile outlined below lists the compulsory modules and gives some indication of the optional modules from which the student must make a selection. Students choose such optional modules in consultation with the Programme Adviser or the Programme Director. The number of credits for each module is given after its title.

Part 1 (three terms)

Compulsory modules

Code	Module title	Credits	Level
CH1CC1	Chemical Concepts in Context	10	4
CH1IN1	Fundamentals of Atomic Structure and the Periodic Table	20	4
CH1OR1	Shape, Structure and Reactivity in Organic Chemistry	20	4
CH1PH1	Physical Processes and Molecular Organisation	20	4
CH1PRA	Laboratory Skills for Chemists	20	4

The following module is **compulsory** for students who do not have an A-level pass in Mathematics:

CH1M	Chemistry M	20	4
	2		

The following module is **compulsory** for students who have an A-level pass at grade **C-E** in Mathematics and **optional** for those with a grade **A-B**:

CH1M2 Mathematics for Chemistry 2	10	4
-----------------------------------	----	---

Optional modules

Students will select modules amounting to 10 credits (if they take CH1M), 20 credits (if they take CH1M2) or 30 credits (if they take neither) from outside the Department of Chemistry.

Part 2 (three terms)

Compulsory modules

Code	Module title	Credits	Level
CH2IN1	Further Inorganic Chemistry	20	5
CH2OR1	Further Organic Chemistry	20	5
CH2PH1 Further Physical Chemistry		20	5
CH2PRA	Extended Laboratory Skills for Chemists	20	5
CH2CC1	Concepts and Skills for Chemists	10	5
CH2AN3	Analytical Chemistry	10	5
Optional modul	les* (20 credits)		

CH2E1	Environmental Chemistry	20	5
CH2MMC	Medicinal Chemistry	20	5

*Students will normally select one chemistry module but this can be replaced by a suitably weighted module from other Schools or a language, timetable permitting.

Part 3 (three terms)

Compulsory modules

Mod Code	Module Title	Credits	Level
CH3IND	MChem Industrial Placement	120	6

Part 3 of the programme takes place in a placement in the Chemical Industry. A distance-learning programme will also be provided for the core modules.

Part 4 (three terms)

Compulsory modules

Mod Code	Module Title	Credits	Level
CH4SK	Chemistry in Industry and Professional Skills	10	7
CH4O1	Advanced Organic Chemistry - Synthesis of Complex Targets (2)	10	7
CH4PR	MChem Chemistry Project	60	7
CH4P1	Measurement Techniques in Physical Chemistry	10	7
CH4I2	Catalysis	10	7

Optional modules* (20 credits) to be chosen from the following modules not chosen at Part 3 or above:

CH4CR	Current Topics in Chemical Research	10	7
CH4MM1	Medicinal Chemistry 1	10	7
CH4MM2	Medicinal Chemistry 2 (requires CH4MM1)	10	7
CH4PC	Polymer Chemistry	10	7
CH4O3	Advanced Organic Chemistry, Oligosaccharides, Natural Products	10	7
	and Advanced Materials		
CH4AN1	Advanced Analytical Techniques for the Molecular Sciences	10	7

Progression requirements

Progression from Part 1 to Part 2:

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and achieve an overall average of 50% over 120 credits taken in Part 1, and

- not less than 50% in the compulsory core modules (CH1IN1, CH1OR1, CH1PH1 and CH1PRA) averaged together **and**
- not less than 40% in the practical module CH1PRA and
- not less than 30% in CH1M if taken.

Progression from Part 2 to Part 3:

To gain a threshold performance at Part 2 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2 and achieve an overall average of 50% over 120 credits taken in Part 2 (of which not less than 100 credits should normally be at level 5 or above), **and**

• not less than 50% in the practical module CH2PRA

[Marks of between 40-49% will be sufficient to proceed to the BSc programme]

Part 2 contributes 20%, Part 3 contributes 30 %, and Part 4 contributes 50% towards the Final Degree classification. A pass of at least 40% in module CH4PR is required to qualify for an Honours degree.

Summary of Teaching and Assessment

Teaching is organised in modules that involve a combination of lectures, tutorials, workshops and practical sessions. Modules are assessed by a mixture of coursework and formal examinations. At least 50% of the assessment will normally be by formal examination except for the Part 4 project, which will be assessed through laboratory work, the written report, a poster and an oral presentation. The University's honours classification is as follows:

Mark	Interpretation
70%-100%	First class
60% - 69%	Upper Second class
50% - 59%	Lower Second class
40% - 49%	Third class
35% - 39%	Pass below Honours standard
0% - 35%	Fail

Admission requirements

Entrants to this programme are normally required to have obtained: Grade C or better in Mathematics and English in GCSE; and to have achieved UCAS tariff: 300 from 3 A levels including B in Chemistry (two AS grades are acceptable in place of one Alevel), or International Baccalaureate: 30 points including 6 in chemistry, or

International Baccalaureate: 30 points including 6 in chemistry, or Scottish Highers: BBBB including B in Chemistry, or Irish Leaving Certificate: BBBBC including B in Chemistry.

Admissions Tutor: Dr JM Elliott (email: j.m.elliott@reading.ac.uk)

Support for students and their learning

University support for students and their learning falls into two categories. Learning support is provided by a wide array of services across the University, including: the University Library, the Student Employment, Experience and Careers Centre (SEECC), In-sessional English Support Programme, the Study Advice and Mathematics Support Centre teams, IT Services and the Student Access to Independent Learning (S@il) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, School Senior Tutors, the Students' Union, the Medical Practice and advisers in the Student Services Centre. The Student Services Centre is housed in the Carrington Building and offers advice on accommodation, careers, disability, finance, and wellbeing. Students can get key information and guidance from the team of Helpdesk Advisers, or make an appointment with a specialist adviser; Student Services also offer drop-in sessions and runs workshops and seminars on a range of topics. For more information see www.reading.ac.uk/student

Within the Department of Chemistry additional support is given through practical classes and tutorials in every Part of the degree programme. There are Course Advisers for every Part of the programme and the Director of Undergraduate Studies is also available for consultation and advice on academic and personal matters.

Career prospects

Although most previous graduates from this degree programme have proceeded to further study for a higher degree at Reading or elsewhere, others have successfully found employment in a wide range of situations after graduation without further study. An MChem degree in Chemistry from the University of Reading provides a strong platform from which to undertake a wide range of careers both within the chemical community and outside. Chemists are highly valued for their numerical and problem solving skills as well as their technical knowledge. They can use their chemical industry. Chemistry graduates from Reading have also found employment using their numerical and other skills in more general areas such as accounting, computing and teaching.

Opportunities for study abroad or for placements

There may be limited opportunities for students to take their industrial placement in Europe, but this will depend on their having the necessary linguistic skills as well as finding a suitable placement.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

A. Knowledge and understanding of:

1. The fundamental concepts and techniques chemistry

2. A selection of more specialist topics in the three main branches of the subject and in analytical chemistry

3. The main techniques involved in practical work 4. The spectroscopic methods used to identify molecules and to determine their structure and the basics of the underlying theory

Teaching/learning methods and strategies

The knowledge required for the basic topics is provided in formal lectures supported by problem sets for students to tackle on their own and which are discussed formally in tutorial sessions with members of staff.

2 is addressed particularly during Part 4 of the course.

Practical classes are held throughout Parts 1 and 2 in which students develop their skills prior to applying them in their Parts 3 and 4 projects.

Feedback on student work is provided by the discussion and return of work in tutorials and by regular workshop sessions during which students tackle unseen problems in the presence of academic staff who provide support.

All practical work is marked and returned to the student.

Assessment

Most knowledge is tested through a combination of coursework and unseen formal examinations, although 3 is assessed by coursework. Dissertations and oral presentations also contribute to assessment, particularly in Parts 3 and 4.

Skills and other attributes

B. Intellectual skills - *able to:*

- 1. Think logically
- 2. Analyse and solve problems
- 3. Organise tasks into a structured form
- 4. Understand the evolving state of knowledge in a

Teaching/learning methods and strategies

Logic is an essential part of the understanding and construction of synthetic methods and mechanistic pathways which form the framework for much organic and inorganic chemistry. rapidly developing area

5. Transfer appropriate knowledge and methods

from one topic within the subject to another

6. Plan, conduct and write a report on an

independent project 7. Construct a poster

8. The ability to work in an industrial environment

C. Practical skills - able to:

1. Follow practical instructions safely and accurately

2. Carry out a variety of experimental procedures

3. Measure and interpret various spectro-scopic techniques

4. Interpret quantitatively the results of their

experiments

5. Formulate safety protocols

6. Devise suitable experimental methods for tackling a particular problem

D. Transferable skills - able to:

1. Use IT (word-processing, spreadsheets and chemical databases)

- 2. Communicate scientific ideas
- 3. Give oral presentations
- 4. Work as part of a team
- 5. Use library resources
- 6. Manage time
- 7. Plan their career.

While not exclusively the preserve of physical chemistry, problem solving plays a major part in this section of the course.

Latest developments in the subject are introduced where appropriate, particularly in Part 4. Practical reports in Part 1 and 2 provide training for the Part 3 and 4 project reports.

Assessment

1 - 4 are assessed directly and indirectly in most parts of this chemistry course, while 5 contributes to the most successful work.
6 and 7 are assessed in the Parts 3 and 4 project reports.

Teaching/learning methods and strategies

Detailed practical manuals are provided for all practical courses in Parts 1 and 2, together with sources of recommended further reading. Staff and postgraduate demonstrators are present during every practical session to guide and help students and to mark their reports.

Workshop sessions are held to assist students in interpreting spectroscopic information obtained on unknown compounds.

In Part 4 students work on individual projects under the supervision of one or more members of staff.

Assessment

1 to 4 are tested to different extents by the practical work associated with Parts 1 - 3 of the chemistry course.

3 is assessed through problems set in written examinations.

5 is specifically assessed during the organic practical course in Part 2, although safe working procedures are emphasised at every stage.3 is specifically but not exclusively assessed within core module CH2PRA and CH2AN3.6 is assessed in the Part 4 project and during the placement in Industry.

Teaching/learning methods and strategies

The use of IT is embedded throughout the programme but, is specifically addressed in the core module CH1PRA.

Oral and written presentation skills, problemsolving, team working, time management and extracting and summarising information are specifically addressed in CH1CC1 and CH2CC1 and throughout the remainder of the programme. Team work and career planning are both part of module CH2CC1. Oral presentations are associated with module CH4PR.

Library resources are specifically addressed through the fourth year project.

Time management is essential for the timely and effective completion of the programme

Assessment

1 - 5 contribute assessed coursework within the compulsory modules on professional skills, CH2CC1 and CH1CC1.

2 - 6 are assessed in module CH1CC1 and CH2CC1. Career planning is assessed through the 5 credit CMS course embedded within module CH2CC1.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance process or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.