MSc in Environmental Management For students entering in 2009

warding Institution: The University of Reading	
Teaching Institution:	The University of Reading
Faculty of Science and Faculty of Life Sciences	
Programme length:	12 months
Date of specification:	December 2007
Programme Director:	Dr L. J. Shaw
Board of Studies:	Dr. L.J. Shaw, Prof. Stephen
	Nortcliff, Dr C.D. Collins, Dr. S.R.
	Mortimer, School Director of
	Teaching and Learning.
Accreditation:	none

Summary of programme aims

This MSc aims to provide a thorough understanding of the key scientific and socio-economic principles of environmental management and their relationships with current policy and regulatory processes. It also aims to equip students with relevant technical, research and business skills that underpin the application of environmental management in society, industry and government.

Transferable skills

The following skills are provided: information technology; quantitative and qualitative problemsolving; communication in written, visual and oral forms.

Programme content

The following profile states which modules must be taken (the compulsory part).

		Credits	Level	Term
APME58	Resource and Environmental Economics	10	7	1 and 2
SSMWEM	Soils, Waste and Environmental Management	10	7	2
APMA91	Environmental Management: Principles and Practice	10	7	1
SSMBES	Entrepreneurship and Business Skills	10	7	1 and 2
SSMLE	Land evaluation	20	7	1 and 2
LWMTEE	Environmental Law	10	7	1
SSMRP	Research Project	60	7	3 and
				summer vac

The following profile states which modules are recommended

		Credits	Level	Term
GGM017	Sustainable Development	10	7	2

Students should choose 50 credits from the recommended modules (above) and options in the appendix to this specification. Students must choose the optional modules, avoiding clashes on their timetable, with no less than 160 credits out of the total 180 for the degree being at level 7.

Part-time/Modular arrangements

Part time participants may either follow all the modules taught in the Autumn term in their first year and all the modules taught in the Spring term in their second years or alternatively may follow half the modules form the Autumn and Spring terms in both their first and second years. The most appropriate arrangements for the individual applications will be discussed with the Course Director. Part time students will be encouraged to consider running a long-term research project over the two years that they are registered on the course but may carry out their research project in either their first or second year, again as is appropriate to their circumstances.

Progression requirements

None

Summary of teaching and assessment

Teaching is through a combination of lectures, seminars, practicals, computer-based self-taught exercises, site visits and talks by invited speakers. Assessment is through a combination of exams, assessed practicals, essays, scientific reports and presentations.

The University's taught postgraduate marks classification is as follows:

Mark Interpretation

70-100% Distinction

60-69% Merit

50 – 59% Good standard (Pass)

<u>Failing categories</u>: 40 - 49% Work below threshold standard 0 - 39% Unsatisfactory Work

For Masters Degrees

To pass the MSc students must gain an average mark of 50 or more overall including a mark of 50 or more for the dissertation. In addition the total credit value of all modules marked below 40 must not exceed 30 credits and for all modules marked below 50 must not exceed 55 credits.*

Students who gain an average mark of 70 or more overall including a mark of 60 or more for the dissertation and have no mark below 40 will be eligible for a Distinction. Those gaining an average mark of 60 or more overall including a mark of 50 or more for the dissertation and have no mark below 40 will be eligible for a Merit.

For PG Diplomas

To pass the Postgraduate Diploma students must gain an average mark of 50 or more. In addition the total credit value of all modules marked below 40 must not exceed 30 credits and for all modules marked below 50 must not exceed 55 credits.*

Students who gain an average mark of 70 or more and have no mark below 40 will be eligible for the award of a Distinction. Those gaining an average mark of 60 or more and have no mark below 40 will be eligible for a Merit.

For PG Certificate

To pass the Postgraduate Certificate students must gain an average mark of 50 or more. In addition the total credit value of all modules marked below 40 must not exceed 10 credits.*

* The provision to permit a candidate to be passed overall with a profile containing marks below 40 is made subject to the condition that there is evidence that the candidate applied his or herself to the work of those modules with reasonable diligence and has not been absent from the examination without reasonable cause.

Normally, candidates registered for a diploma will complete the taught courses offered in the Autumn and Spring terms and candidates registered for a certificate will complete the taught courses offered in the Autumn or Spring term.

Admission requirements

Entrants to this programme are normally required to have obtained a good (upper second) honours degree in a related field, e.g. Environmental Science, Earth / Geoscience, Chemistry, Biology, Geography and Agriculture. Applications from those with no first degree but who have previous experience may also be considered.

Admissions Tutor: Dr. A. Verhoef/ Dr. L. J. Shaw

All candidates are normally interviewed by two members of staff.

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme.

Student guidance and welfare support is provided by Personal Tutors, School Senior Tutors, the Students' Union, the Medical Practice and the Student Services Centre. The Student Services Centre is housed in the Carrington Building and includes the Careers Advisory Service, the Disability Advisory Service, Accommodation Advisory Team, Student Financial Support, Counselling and Study Advisors. Student Services has a Helpdesk available for enquiries made in person or online (www.risisweb.reading.ac.uk), or by calling the central enquiry number on (0118) 378 5555. Students can get key information and guidance from the team of Helpdesk Advisers, or make an appointment with a specialist adviser; Student Services also offer drop-in sessions on everything from accommodation to finance. The Carrington Building is open between 8:30 and 17:30 Monday to Thursday (17:00 Friday and during vacation periods). Further information can be found in the Student Diary (given to students at enrolment) or on the Student website (www.reading.ac.uk/student).

Career prospects

On completion of this course, graduates may expect to find employment in the "Environmental Sector", specifically within consultancies, local government and government research agencies, industry and within academia.

Opportunities for study abroad or for placements

During their research projects, students may be based abroad or with the UK at consultancies, governmental agencies, research institutes or industrial bodies provided the Course Director is satisfied that suitable facilities and supervision are available to them.

Educational aims of the programme

The MSc aims to provide a thorough understanding of the key scientific and socio-economic principles of environmental management and their relationships with current policy and regulatory processes. It is intended that students will gain an understanding of (i) the human impact on the natural environment and natural resources; and, (ii) how that impact can be managed from a natural and social science perspective. The MSc also aims to equip students with relevant

technical, research and business skills that underpin the application of environmental management in society, industry and government.

Programme Outcomes

Knowledge and Understanding

	Knowledge and understanding of:		Teaching/learning methods and
1.	The interrelated nature of diverse		strategies
	components of the earth system and		
	how to model and predict		
	environmental cycles and processes		Lectures, laboratory and field practicals,
2.	Environmental and natural resource		seminars, group discussions, videos,
	problems arising from the activity of		presentations by industrial practitioners,
	humans	\longrightarrow	site visits, data handling exercises,
3.	Scientific and socioeconomic		computer-based exercises.
	principles of the management of		
	human impacts on natural		
	environments		
4.	Managed environments and the		
	ecosystem services they provide		Assessment
5.	Techniques and processes involved in		Practical reports, examination, essays,
-	site investigation and risk assessment		computer and laboratory-based practicals
6.	Sources, processing and disposal of		
_	waste materials		
7.	Issues associated with population		
	change, pollution, resource use,		
	poverty and climate change at global		
0	and local scales		
8.	Key areas of environmental law and		
	regulation in England and Wales and		
0	Europe Statistical matheds and their		
9.	Statistical methods and their		
10	application to environmental data		
10.	Experimental design and sampling		
	strategy		

B.	Intellectual skills – able to:	Teaching/learning methods and
1.	Explain how the diverse components	strategies
	of the Earth system interact with	
	consequences for biogeochemical	Lectures, laboratory and computer based
	cycles and global climate.	practicals
2.	Explain how environmental	
	economics can be used to understand	
	the processes which have given rise to	
	environmental problems and identify	
	appropriate policy measures to	
	contradict them.	
3.	Explain the main issues and concepts	
	associated with sustainable	
	development and assess the process	
	of change to more sustainable systems	
4.	Evaluate ecosystem services provided	
	in a range of environments and the	Assessment
	impact of human activities on their	Exams (1-7), essays (1,3,6,7), team
	provision.	debates (3), written reports (2,4,5),
5.	Outline strategies and procedures for	project thesis and presentation (5 and 8).
	site investigation, risk assessment and	
	environmental management	
6.	Illustrate sources of and disposal	
	routes for industrial and domestic	
	waste	
7.	Discuss key areas of environmental	
	law and regulation in England and	
	Wales, including the impact of EU	
	law	
8.	Plan and carry out a research project	

~		-	
	Practical skills – able to:		ching/learning methods and
1.	Analyse environmental data using	stra	tegies
	classical and spatial statistical		
	methods	Labo	pratory practicals, seminars, lectures,
2	Use computer packages to graphically		pendent research project
2.	present field data	mac	pendent researen project
2	1		
3.	Carry out risk assessments and site		
	investigations		
4.	Use laboratory skills to characterise		
	the biological, physical and chemical		
	components of the environment		
5.	Plan and carry out a research project		
5.	i fan and earry out a research project		
		Asse	ssment
		Labo	pratory and/or field reports (1-4),
			ect thesis and presentation (5).
		proje	eet thesis and presentation (3).
			se skills are assessed primarily with
		refer	rence to specific modules (see
		mod	ule descriptions for details) and (4)
			depend on choice of optional
			ules and topic of research project.
		mou	and topic of research project.

D. Transferable skills – able to:	Teaching/learning methods and
1. Produce word documents containing	strategies
tables, numbered and bulleted lists, a	
variety of fonts, graphics and pictures	
2. Sort data and perform basic	seminars, tutorials, individual research
arithmetic and statistical procedures	projects, data exercises, team-based
within Excel	presentations
3. Produce charts and graphs in a variety	7
of formats using Excel	
4. Produce slides for a presentation	
within the PowerPoint package that	
include text, bullet points, drawings,	
use of pre-set animations for the	
appearance of text	
5. Give clear presentations on science	
and social science topics	
6. Effectively use library and internet	
resources to search and retrieve	
information	Assessment
7. Produce clearly-written scientific	
reports	Transferable skills are largely assessed
8. Work in teams	indirectly through individual assignments
9. Plan and carry out research projects	(essays, scientific reports). Skill 9 is
including managing time in an	assessed through the individual research
efficient fashion	project and skill 10 is assessed directly
10. Reflect and evaluate own academic	for those students choosing the
progress and its implications for	entrepreneurship and business skills
career planning	option (see MDF for more details).

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the processes of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.

Appendix

Streams for optional modules

Dirtain 1.	Stream 1. Contaminated and built environments						
code	title	convenor	term and credits	Availability 09/10			
SSMQAD	Quantitative analysis of spatial data	Denise lambkin	A 10	Clashed			
SSMBIO	Soil microbiology and biotechnology	Liz Shaw	A 10	Clashed			
SSMCON	Soil contaminants	Chris Collins	A 10	Clashed			
SS2D4	Transport processes in soil	Anne Verhoef	A 10				
GGMUE	Urban environments	Maria Shahgedanova	A 10				
SSMPSIA	Practical site investigation and assessment	Chris Collins	A + S 20				
SSMSW Q	Soils and water quality	Steve Robinson	S 10				
GG361	Aquatic environments: problems and solutions	Penny Johnes	A 20	May be a cap on numbers			

Stream 2: The changing environment

code	title	convenor	term and credits	Availability 09/10
IDM073	Environmental problems and policies	Derek Shepherd	A 10	
GGMUE	Urban environments ¹	Maria Shahgedanova	A 10	
APMA48	Tropical rangeland management	Alistair Murdoch	S 10	not running
APMA51	Rethinking agricultural development	Amir Kassam	S 10	clashed
APMA90	Climate change and food systems	Timothy Wheeler	S 10	clashed
CEMRC	Carbon management	David Shipworth	S 10	clashed
GG336	Managing environmental	Maria	S 20	not running
	change	Shahgedanova		
IDM068	Extractive Industries	Gavin Hilson	S10	

Stream 3: Rural Policy and Development

code	title	convenor	term and	Availability
			credits	09/10
APMA41	Agriculture in the tropics	Peter	A 10	
		Craufurd		
APMA89	Water, agriculture and irrigation	Peter	A 10	
		Craufurd		
APMA48	Tropical rangeland management	Alistair	S 10	not running
		Murdoch		
APMA51	Rethinking agricultural development	Amir Kassam	S 10	clashed

¹ Only available if the MSc in Urban Sustainability runs.

REMRP	Rural policy and planning ²	Angela	A 10	clashed
Р		Cropley		
APME61	Appraisal of agricultural and rural	Srinivasan	S 10	
	development projects			
BIMER5	Ecological aspects of environmental	Jonathon	S 10	clashed
	assessment	Mitchley		
IDM027	Trends and issues in natural resource	Derek	S 10	not running
	policy and livelihoods	Shepherd		_
APMEST	European study tour	Tahir Raman	Summer 10	

 $^{^{2}}$ The module is currently taught with a largish group of Part 3s and the convenor is currently in the process of thinking of how to implement a split and will inform of outcome when this is decided