BSc Environmental Science with Professional Experience UCAS code: F852 For students entering Part 1 in 2007

Awarding Institution: Teaching Institution: Relevant QAA subject benchmarking group(s):

Faculty of Science Date of specification: July 2007 Programme Director: Dr HJ McGoff (SHES) Programme Adviser: Dr HJ McGoff (SHES) Board of Studies: Environmental Sciences The University of Reading The University of Reading Earth Sciences, Environmental Sciences and Environmental Studies Programme length: 4 years

Summary of programme aims and learning outcomes

The programme aims to provide students with a sound scientific understanding of the processes operating in the Earth system, and to apply this science to the understanding of current and future environmental issues. It also aims to provide students with the scientific and transferable skills that are relevant to the application of environmental science in research, industry and other areas such as government policy.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using spreadsheet and graphical applications programs, scientific programming, internet), scientific writing, oral presentation, experimental methods (laboratory and field), team-working, use of library resources, career planning and management. They will have developed skills in team-working and leadership, and be confident and self-reliant, particularly as a result of experience during field courses, independent fieldwork and their Professional Experience. They will also have a sound knowledge of fieldwork safety procedure.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the 'optional' modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of module credits for each module is listed.

Part 1 (th	ree terms 2007-08)	Credits	Level	Term
Compulso	ry modules (40 credits)			
ES1B1	Introduction to Environmental Science	10	С	1

ES1B2	Introduction to Environmental Science Fieldwork	10	C Ea	ster Vac.
ES1A2	Chemistry and Physics for Environmental Science	10	С	2
And eithe	r:			
CH1M1	Mathematics M1	10	С	1,3
Or:				
CH1M2	Mathematics M2	10	С	2.3

Optional modules (80 credits)

Students select a minimum of three contributory subjects to Environmental Science, including: Earth Science, Soil Science, Meteorology, Geography, Chemistry, Biology, Rural Environmental Science, Mathematics. They may also chose a language as part of the Institute-wide Language Programme.

<u>Recomme</u> GO1D1 GO1D2	<u>nded</u> : Earth Structure Earth History	<i>Credits</i> 10 10	Level C C	Term 1 2
SS1A1 SS1A2	Introduction to Soil Science Soils, Land and the Environment	10 10	C C	1 2
Others Inc	eluding:			
Biology BI1BA1 BI1EB2 BI1ED2 BI1EF2 BI1EF23 BI1EG2	The Living Cell Humans and the Changing World Mammals: Diversity, Behaviour and Conservation Ecology: Species and their Interactions Ecology: Species and their Interactions Plant Structure & Functions	10 10 10 10 20 10	C C C C C C	1 2 2 2,3 2
Archaeolo AR1TS2 AR1TS3	gy Bones, Bodies and Burials: the Archaeology of Death Practising Archaeology: methods & approaches	20 20	C C	2,3 1,3
Mathemat AS1A CH1M2	ics Communicating with Statistics Mathematics	20 20	C C	1,2 1,2,3
Chemistry CH1FC1 CH1FC2 CH1OR2 CH1PH2 CH1IN2	Fundamental Chemistry 1 (OK without A level Chemistry Fundamental Chemistry 2 Fundamentals of Organic Chemistry Physical Processes for Biologists Descriptive Inorganic Chemistry	 10 10 10 10 10 10 	C C C C C	1 2,3 1 2 1
Geograph GG1C	y Climatology and Hydrology	10	С	1

GG1D GG1GS	Hydrology Geomorphology	10 10	C C	1 2	
Meteorolo MT11A MT11B	gy Introduction to Atmospheric Science Weather System Analysis	20 20	C C	1,2 1,2	
Languages IWLP Various languages 20 C 1,2					
Part 2 (th	ree terms : 2008-2009)				
Compulse	ory modules (40 or 50 credits)	Credits	Level	Term	
ES2A5	Environmental Systems	10	Ι	5	
ECOLZ 4	Skills for Environmental Scientists		Ι	4	
ES2K4	Skills for Environmental Sciencisis	10			
ES2K4 AP2A37	Practical Nature Conservation	10	Ι	5	
AP2A37		-	Ι		
AP2A37	Practical Nature Conservation	-	I		
AP2A37 And one f	Practical Nature Conservation	10		5	
AP2A37 And one f AP2A21	Practical Nature Conservation ield class from: Rural Environmental Sciences Field Class	10 10	I I	5	
AP2A37 And one f AP2A21 AR2U2	Practical Nature Conservation Teld class from: Rural Environmental Sciences Field Class Silchester Field School	10 10 10	I I	5 6 6	

Optional Modules (70 or 80 credits)

Students develop depth in a minimum of two contributory subjects to Environmental Science, including: Geoscience, Soil Science, Meteorology, Geography, Chemistry, Biology, Plant Sciences, Rural Environmental Science, Archaeology, Mathematics. They may also chose a language as part of the Institute-wide Language Programme

Recommended:

Environm	Environmental Geochemistry (20 credits)				
ES2E4	Environmental Mineralogy	10	Ι	4	
CH2A2	Analytical Chemistry for Environmental Earth and Archaeological Sciences	10	Ι	4	
Soil Scier	ace 1 (20 credits)				
SS2D4	Soils and Soil Development	10	Ι	4	
SS2D5	Sustainable Land Management	10	Ι	5	
Others Inc	cluding:				
Geoscienc	ce (20 credits)				
GO2L4	Sedimentology & Palaeoclimate Analysis	10	Ι	4	
GO2M5	Global Change Through Geological Time	10	Ι	5	
Soil Scier	ace 2 (20 credits)				
SS2A4	Transport Processes in Soils	10	Ι	4	

ES2F5	Soil Ecology & Functions	10	Ι	5
Archaeolo	egy (20 to 40 credits)			
AR2S1	Archaeological Science	20	Ι	4,5
AR2F5	Techniques in Artefact Interpretation	10	I	4
AR2F6	Techniques of Skeletal Interpretation	10	I	5
111121 0	reeninques of skeletal interpretation	10	1	5
	ence and Agriculture (20 to 40 credits)			
AP2EE3	Environmental Economics (prerequisite AP1EE1)	10	Ι	4
AP2A39	Environment and the Farm Business (prerequisite AP1A02)	10	Ι	5
AP2A26	Forestry and Woodlands	10	Ι	4
AP2A38	Organic Farming	10	Ι	4
AP2A45	Environment in Practice 2	20	Ι	4,5,6
Plant Scie	nces (20 to 40 credits)			
PS2BB4	Evolution and Plant Biodiversity	10	Ι	4
PS2BD4	Plants and the Environment	10	I	4
PS2BC5	Ecological Aspects of Environmental Assessment	10	I	5
PS2BG3	Flora of the British Isles	10	I	6
152005	r tora of the Dritish istes	10	1	0
Biology	(20 to 40 credits)			
BI2B31	Macro Evolution	10	Ι	4
BI2Z31	Micro Evolution	10	Ι	5
AM2Z33	Animal Behaviour	10	Ι	5
AM2Z34	Invertebrate Zoology	10	Ι	5 4
AM2Z41	Applied Ecology	10	Ι	5
•	d Philosophy of Science (10 or 20 credits)		_	
PS2NA4	Introduction to the History and Philosophy of Science	10	Ι	4
	(excludes PS1N45)			
PS2N45	History and Philosophy of Science	20	Ι	4
	(excludes PS2NA4)			
Meteorolo	egy (20 or 40 credits)			
MT24A	Atmosphere & Ocean Dynamics	20	Ι	4,5
MT2BB	Atmospheric Physics	20	Ī	4,5
		20	1	1,5
Mathemat	ics			
AS2A1	Statistics for Life Sciences	10	Ι	4
MT24C	Numerical Methods for Environmental Science	10	Ι	4
•	Geography (20 to 40 credits)			
GG2ER	Energy Resources	10	Ι	4
GG2M	GIS and Mapping	10	Ι	4
GG2P1	Geomorphological Hazards	10	Ι	4
GG2P3	Human Activity and Environmental Change	10	Ι	4

GG2P9	Remote Sensing and Image Processing	10	I	4
GG2P5	Hydrological Processes	10	I	4
GG2P8	Biogeography and Ecosystems	10	I	5
Environm CH2P1 CH2I1	ental Chemistry (20 or 40 credits) Intermediate Physical Chemistry (prerequisite CH1P1) Inorganic Chemistry (prerequisite CH1I1)	20 20	I I	4,6 5,6

Part 3 (three terms: 2009-2010)

Part 3 will consist of the 120 credits of professional experience and its assessment (by in service assessment, written report and presentation) and will contribute 10% of the Part 2 marks. There is a separate Handbook for the Professional Year.

	Part 4 (three terms: 2010-2011)Compulsory modules (60 credits)CreditsLevelTerm						
AP3A87	Environmental Management	10	H	1erm 7			
ES3A8	Environmental Issues	10	H	8			
ES3PR	Independent Project	30	H	7,8			
ES3LP	Library Project	10	Н	7,8			
		10		7,0			
<i>Optional</i> Recomme	<i>Modules (60 credits)</i> ended:						
GO3X8	Earth Systems Field Class	10	Н	8			
ES3C7	Earth Systems Science	10	Η	8			
Others Including:							
	ce (10 or 20 credits)						
ES3B8	Environmental Geophysics	10	Η	8			
GO3H8	Crime Scene Analysis	10	Н	8			
Soil Scien	ace (10 to 40 credits)						
ES3D7	Land Evaluation	20	Н	7,8			
ES3E7	Fundamental & Applied Soil Ecology	10	Η	7			
SS3A8	Management of Soil Fertility	10	Η	8			
	Archaeology (20 or 40 credits)						
AR3S1	Environmental Archaeology and the Cultural	20	Н	7			
AR3S2	Landscape of Prehistory Environment and Landscape in Historic Periods	20 20	н Н	8			
AK352	Environmeni una Lanascape in Historic Ferioas	20	п	0			
	ence & Agriculture (20 to 40 credits)						
AP3EP3	Rural Policy & Countryside Planning	10	Н	7			
APA44	Approaches to Sustainable Development	10	Н	8			
AP3A68	Wildlife in the Farming Environment	10	Н	8			
AP3A90	Climate Change & Food Systems	10	Н	8			

Biological Sciences (10 to 20 credits)						
PS3AB7	Plants & Climate	10	Η	7		
AM3Z75	Evolutionary Genetics & Phylogeny	10	Η	7		
Physical Geography (20 or 40 credits)						
GG338	Mountain Environments	20	Н	7		
GG333	Geographical Information Systems	20	Η	7		
GG362	Water Resources	20	Η	7		
GG336	Managing Environmental Change	20	Н	8		
Meteorology (20 to 40 credits)						
MT37D	Remote Sensing Methods & Applications	10	Η	7		
MT37F	Oceanography	10	Η	7		
MT38D	Advanced Analysis of Weather Systems	10	Η	8		
MT38B	Climate Change	10	Η	8		

Progression requirements

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1. In addition, students shall normally obtain at least 40% in the compulsory modules ES1A2, ES1B1, ES1B2, and **either** CH1M1 **or** CH1M2 averaged together.

To gain a threshold performance at Part 2 a student should normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2. In addition students shall normally obtain at least 40% in the compulsory modules AP2A37, ES2A5, ES2K4, and a field class module, averaged together.

Summary of teaching and assessment

Teaching is organized in modules that typically involve lectures, problem solving classes, and practical classes. The assessment is carried out within the University's degree classification scheme, details of which are in the programme handbooks. The pass mark in each module is 40%. Parts 1 and 2 are assessed by a mixture of coursework and formal examination. In Part 4 there are some modules which are assessed wholly by coursework and others wholly by examination: the details are given in the module descriptions. The Part 4 project involves a substantial component of independent learning, under the supervision and guidance of Project Supervisors. The projects are assessed on the basis of formal reports, oral presentations and development of independent learning skills.

Part 2 contributes one third (33%) of the overall assessment and Part 4 the remaining two thirds (67%).

To be eligible for Honours, students must normally pass Level H modules with a total credit of at least 100.

Admission requirements

Entrants to this programme are normally required to have obtained: Grade C or better in English Science and Mathematics in GCSE, and UCAS Tariff: of 300 points including at least 2 full 'A' levels. These must include at least one subject from Maths, Physics, Chemistry, Biology, Geography, Geology or Environmental Science; *Or* International Baccalaureat: 31 points including Mathematics and Science;

Or Irish Highers: four grade Bs and one grade C including two sciences.

Admissions Tutor: Dr Samantha Baxter

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

The providing Departments have well-equipped teaching laboratories, analytical laboratories and dedicated computer laboratories. Substantial collections of earth materials and maps are available for hands-on access by students. Within the providing Departments additional support for students is given through practical and field classes and in the course of the independent project. There is a Course Adviser to offer advice on the choice of modules throughout the programme.

Career prospects

The requirement for environmental scientists with a sound scientific training continues to grow and opportunities for graduates from this course include employment by environmental consultants, water companies and the many offices of national and local government concerned with environmental issues as well as post-graduate study. Private industry is increasingly concerned to employ scientists to help minimise the adverse environmental impact of its activities.

Opportunities for study abroad

Students following this degree programme complete their Professional Experience with a company overseas. This would only be acceptable if the student displays the requisite degree of fluency in the foreign language required, and, if suitable industrial experience can be found. Students may also participate in the ERASMUS exchange scheme where one or two terms are spent studying in a European university. Further details are available from the Course Director and the Study Abroad Office.

Educational aims of the programme

The programme aims to provide a thorough degree-level education in Environmental Science, with optional emphases being designed within Pathways, such as Environmental Change, Earth and Atmosphere, Environmental Management, Soil and Water.

Part 1 is designed to provide a sound foundation in Environmental Science, and supporting knowledge of relevant Chemistry, Physics and Mathematics to develop the knowledge and skills required for studying the environmental sciences. Options in mathematics depend on the mathematical skills of the student prior to entry. A wide range of subject options contribute, and shape the particular pathway chosen. Part 2 has a core of compulsory modules to develop further skills and technical experience in the core subject areas, with particular emphasis on environmental management. Options are designed to give depth to knowledge and methodology in key selected subject areas. Part 3 is designed to provide professional, practical experience in a company or organisation, giving the student an opportunity to gain relevant skills and experience whilst working alongside practicing environmental scientists. Part 4 is integrative whilst providing scope for specialisation through the selection of options and through project work. The latter provides the student with the opportunity to demonstrate their ability to conduct and report on a detailed research investigation, drawing on their understanding of the fundamental concepts in Environmental Science.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

			Chacistanang
А.	Knowledge and understanding of:		Teaching/learning methods and strategies
1.	Earth Systems including the lithosphere,		Underlying knowledge in the essential areas
	hydrosphere, atmosphere and biosphere		is set out in lectures, in most cases directly
2.	Interactions between the processes		supported by illustrative practicals. The
	operating in the different components of		essential field experience required for proper
	the Earth System.		understanding is provided by compulsory
3.	The evolution of the Earth and the		field courses in Part 1 and Part 2, with
	environment through different time		additional optional field courses in Part 3.
	scales, and the evidence for that change —	\longrightarrow	Students conduct an independent project in
4.	Monitoring and management of natural		the form of practical investigation into an
	and human-induced environmental		environmental topic in Part 3, with support
	change.		and advice from academic and technical
5.	Scientific examination of the		staff.
	implications of sustainability and		
	sustainable development.		Assessment
6.	A selected range of optional topics		Most knowledge is tested through a
7.	Environmental issues and management		combination of coursework and unseen
	with an interdisciplinary and integrative		formal examinations. Dissertations and oral
	perspective.		presentations also contribute in Part 3.
8.	Fieldwork safety issues and procedures		

Knowledge and Understanding

Skills and other attributes

B.	Intellectual skills – able to:	Teaching/learning methods and strategies
1.	think logically and critically in a	Logical and critical thinking is an essential
	scientific manner	part of interpreting environmental science
2.	analyse and interpret environmental	data and materials, it is embedded throughout
	observations and data and recognise and	the programme. The ability to integrate and
	identify issues and problems with that	apply concepts and principles from one area
	data	of the subject to another are intrinsic to high-
3.	organise tasks into a structured form	level performance in the programme.
4.	understand the current state of	Current developments in environmental
	knowledge of the environment – a	science are highlighted by contact with
	rapidly developing area	visiting experts in the field in Part 3.
5.	integrate and apply concepts and	
	principles from one area of	Assessment
	environmental science to another	1 and 2 are assessed indirectly in most parts
6.	recognise the need for professional codes	of the programme, 3 in the course of
	of conduct	laboratory and fieldwork. 4 is focused on by
		courses in Parts 2 and 3, while 5 contributes
		to more successful work. 6 not directly
		assessed.

C. Practical skills – able to:	Teaching/learning methods and strategies
1. plan, conduct and report on	Observing, recording and interpreting is
investigations, including the use of	taught in laboratory and field classes
secondary data	throughout the course. An investigative
2. collect, record and analyse data using	independent practical project is conducted by
appropriate field and laboratory	the student in Part III, with advice from
techniques	academic and technical staff. Risk
3. reference work in an appropriate manner	assessment forms an essential part of each
4. carry out a risk assessment for field and	field course and any field based project work.
laboratory investigations	
5. consider the impact of field	Assessment
investigations on the environment as well	1 & 2 are tested both formatively in
as other interested parties	coursework and particularly during the final
	year projects. summatively in examinations.
	2 is assessed by means of coursework and
	project work, 4 & 5 during field classes and
	project work.

D. Transferable skills – able to:

- 1. use IT (word-processing, using standard software and the Internet)
- 2. understand issues of sample selection, accuracy, precision and uncertainty in field and laboratory work
- 3. prepare, process, interpret and present data in an appropriate manner, using both quantitative and qualitative techniques
- 4. communicate scientific ideas in verbal, written and graphic form to a variety of audiences.
- 5. work as part of a team, identifying individual and collective goals, respecting the views and opinions of others and evaluating both individual and team performances.
- 6. use library resources
- 7. manage their time
- 8. plan their career, developing skills for self-managed and lifelong learning.

Teaching/learning methods and strategies The use of IT is embedded throughout the programme with special sessions in Part 1 and in the Skills Module in Part 2. Oral presentation and communication skills are developed in various modules, culminating in the Part 3 practical project. Career management is taught in the Part 2 Skills module. Teamworking is particularly emphasised in field courses. Time management is essential for the timely and effective completion of the programme. Library and internet resources are required for the literature review in Part 3, and contribute to the best performances throughout.

Assessment

1, 2, 3 & 4 are assessed through coursework and particularly in the Part 3 project. 5 in field courses, 6 in the Library Project and 8 in the skills module in Part 2. 7 is not directly assessed but contributes to successful performance throughout the programme.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.