BEng Electronic Engineering and Cybernetics UCAS code: H652 For students entering Part 1 in 2007

Awarding Institution:The University of ReadingTeaching Institution:The University of ReadingRelevant QAA subject benchmarking group(s):EngineeringFaculty of ScienceProgramme length: 3 yearsDate of specification: 24/03/09Programme Director: Dr R.J.MitchellProgramme Director: Dr R.J.MitchellProgramme Advisers: Dr J.W.Bowen (Cybernetics) and Dr R.S.Sherratt (ElectronicEngineering)Board of Studies: CyberneticsAccreditation: Institution of Engineering and Technology;Institute of Measurement andControlControl

Summary of programme aims

The programme aims to develop the students' knowledge of the theory and practice of modern electronic engineering and cybernetics; to encourage their critical and analytical skills; and to develop their skills in applying theoretical concepts to the practice of electronic and cybernetic systems design. (For a full statement of the programme aims and learning outcomes see below)

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematical software, scientific programming), scientific writing, oral presentation, teamworking, problem-solving, use of library resources, time-management, career planning and management, and business awareness.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for each module is shown after its title.

Part 1 (three terms)		Credits	Level
Compulsory mod	dules		
SE1CA5	Cybernetics and Its Application	20	С
SE1SA5	Programming	20	С
SE1SB5	Software Engineering	20	С
SE1EA5	Electronic Circuits	20	С
SE1EB5	Computer and Internet Technologies	20	С
SE1CB5	Engineering Mathematics	20	С

Part 2 (three terms)		Credits	Level	
Co	mpulsory mod	dules		
	CY2A7	Control and Measurement	20	Ι
	CY2D7	Neurocomputation	20	Ι
	SE2A2	Signals and Telecoms	20	Ι
	SE2P6	Engineering Applications	20	Ι
	EE2A2	Embedded Microprocessor Systems	20	Ι
	EE2C2	Digital Circuit Design	10	Ι
	EE2D6	FPGAs and HDLs	10	Ι
Part 3 (three terms)		Credits	Level	
Co	mpulsory mod	dules		
	CY3A2	Computer Controlled Feedback Systems	20	Н
	SE3Z5	Social, Legal and Ethical Aspects of Science and	20	Н
		Engineering		
an	d either			
	CY3P2	Cybernetics Project	30	Н
or	EE3P2	Electronic Engineering Project	30	Н
Ор	tional module	es must be chosen to give a total of 120 credits		
	CY3B9	Machine Intelligence	10	Н
	CY3C2	State Space	10	Η
	CY3D2	Measurement Systems	10	Η
	CY3F8	Virtual Reality	10	Η
	CY3G2	Modern Heuristics	10	Η
	CY3J8	Machines in Motion	10	Н
	CY3K7	Bionics	10	Н
	CY3L2	Mechatronics	10	Η
	CY3N7	Mechanical Design	10	Н
	EE3A2	Digital Signal Processing	10	Η
	SE3C9	Computer Networking	20	Η
	EE3D2	Power Electronics	10	Η
	EE3F2	Video Engineering and Digital Media	10	Η
	EE3H7	Analogue Circuit Simulation	10	Н
	EE3M9	FPGA Embedded processing	10	Н
	EE3U9	Universal Serial Bus	10	Н
	EE3V7	Functional Verification	10	Н
	LAXXX	Language from IWLP	20	Η

Progression requirements

To gain a threshold performance at Part 1 and qualify for the CertHE a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, where all the credits are at C level or above, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1, and to have no module mark below 30%.

To gain a threshold performance at Part 2 and qualify for the DipHE a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2. A student whose average is 60% or greater may be qualified for the MEng Electronic Engineering and Cybernetics degree.

Summary of teaching and assessment

Teaching is organised in modules that typically involve lectures and tutorial or laboratory practicals. Most modules are assessed by a mixture of coursework and formal examination. Some modules, for instance the Part 3 project, are assessed only as coursework.

A student must obtain at least 40% in their project CY3P2 / EE3P2 to be eligible for honours.

Part 2 contributes one third of the final degree assessment and Part 3 contributes two thirds.

Admission requirements

Entrants to this programme are normally required to have obtained: Grade B or better in Combined Science and grade B or better in Mathematics at GCSE; and achieved UCAS Tariff: 280 points with grade C or better in Maths and C or better in Physics or Electronics, or equivalent International Baccalaureat: 30 points including 6 in Higher Mathematics. Equivalent qualifications are acceptable. Admissions Tutor: Dr Will Browne

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers, and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Within the providing School additional support is given though practical laboratory classes. The development of problem-solving skills is assisted by appropriate assignment and project work. There is a Programme Adviser to offer advice on the choice of modules within the programme. Course handbooks are provided for each Part of the course: these give more details about the modules which make up the degree. In addition, the School of Systems Engineering produces a Handbook for Students, which provides general information about the staff and facilities within the school, and other aspects of the University.

Career prospects

Career prospects for Cybernetists and Electronic Engineers tend to be good as our courses are very relevant to today's high technology society. Some graduates join large companies, often IT based companies; others join smaller companies and consultancies; and some choose to further their research interests either in the School or at other Universities.

Graduates from this programme may, after a period of professional experience, together with other appropriate educational requirements, apply for Chartered Engineer status.

Opportunities for study abroad or for placements

N/A

Educational aims of the programme

The programme aims to develop the students' knowledge of the theory and practice of modern electronic engineering and cybernetics; to encourage their critical and analytical skills; and to develop their skills in applying theoretical concepts to the practice of electronic and cybernetic systems design. The programme is distinctive in that it combines the interdisciplinary nature of cybernetics with electronic engineering.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding				
A. Knowledge and understanding of:	Teaching/learning methods and strategies			
1. Appropriate mathematical techniques to	The knowledge required for the basic topics			
help model and analyse systems	is obtained via lectures, tutorials, laboratory			
2. Science underlying both electronic	practicals, assignments and project work.			
engineering and cybernetic systems.	Appropriate IT packages are taught.			
3. Information technology.	Demonstrators in laboratory and project			
4. Systems design.	supervisors advise students, and feedback is			
5. Management and business practices,	provided on all continually assessed work.			
including finance, law, marketing and	As the course progresses, students are			
quality control.	expected to show greater initiative and			
6. Engineering practice.	undertake independent research.			
	Assessment			
	Most knowledge is tested through a			
	combination of practicals, assignments and			
	formal examinations (open book in part 3):			
	students write reports on most assignments			
	after part 1, and oral presentations also			
	contribute.			

Knowledge and Understanding

Skills and other attributes

1. Use appropriate mathematical methods Mathematics	rning methods and strategies
or IT tools 1 1 lectures and	and IT tools are introduced in
	their use is assessed by
	and assignments.
	assignments are set, and
	write programs to solve other
4. Design, build and test a system. projects.	
5. Research into cybernetics and electronic Laboratory pr	acticals and projects are used to
engineering. teach about 3	, and projects are used for 4, 5,
6. Use project management methods. 6 and 7.	
7. Present work.	
Assessment	
1 and 5 are	tested in coursework and in
	. 2, 5 and 7 are tested by
	and projects, 3 is assessed in
	sometimes in projects, 4, 5 and
	d through project work.
	a through project work.
D. Transferable skills – able to: Teaching/lea	rning methods and strategies
8	s are taught in lectures, but most
	atory sessions and assignments.
	are acquired in laboratory
	nd projects. Creativity and
	ving are experienced through
6. Give oral presentations.	
	and presentations. Use of
1 0	L
	esources, such as the library and
	is experienced through projects
and assignme.	nts.
Assessment	like the use of IT tests and the
	like the use of IT tools and the
	nmunicate orally and in written
	ctly assessed, in assignments or
	1 111 11 11 1
projects, othe	r skills are not directly assessed
projects, othe but their eff	r skills are not directly assessed fective use will enhance the all performance.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.