Programme Specification

BSc Biochemistry

Awarding Institution:

University of Reading
University of Reading

UCAS code: C700

Relevant QAA subject benchmarking group(s): Biosciences

Faculty of Life Sciences

Programme length: 3 years

For students entering Part 3 in: October 2009
Date of specification: April 2009

Programme Director:

Programme Adviser:

Dr Gail Hutchinson

Dr P D Darbre

Board of Studies:

Biological Sciences

Accreditation: None

Summary of programme aims

The aim of the course is to provide a sound education and training in biochemistry with a firm underpinning of chemistry. Emphasis is placed on the student being able to choose, as the course proceeds, those aspects of biochemistry provided by the participating departments that the student finds most rewarding. The subject matter of Parts 1 and 2 is broadly based with specialisation in Part 3 to provide a coherent, in-depth area of study which the student will select. They will receive training and be expected to demonstrate competence in laboratory techniques in biochemistry, the use of computers to access information resources and the use of statistical programmes for data analyses. Students will be expected to acquire individual and group communication skills in written work and in oral and poster presentations. The development of critical reading skills will be strongly encouraged. (For a full statement of the programme aims and learning outcomes see below)

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working in the laboratory, and use of information technology. Students will also gain experience in the methodology of research and scholarship.

Programme content

The profile which follows states which modules must be taken (the compulsory part) and optional modules thought to be most appropriate for biochemists. Students must choose modules offered by the Schools of Biological Sciences, Chemistry, Food Biosciences and Pharmacy, Agriculture, Policy and Development or other University of Reading Schools and Departments, subject to the agreement of the Programme Adviser, to a total of 120 credits in each Part.

Part 1 (three terms, 120 credits)

Compulsory modules (100 credits) Credits Level				
	, ,	Credits	Level	
BI1EC1	Exploiters and Exploited	10	C	
BI1BA12	The Living Cell	20	C	
BI1BB2	Biochemistry and Metabolism	10	C	
BI1BC2	Genes and Chromosomes	10	C	
BI1BD1	Introductory Microbiology	10	C	
BI1BF1	Laboratory and Study Skills for Biomedicine	10	C	
BI1BG3	Practical Biochemistry	10	C	
CH1OR2	Fundamentals of Organic Chemistry	10	C	
CH1PH2	Physical Processes for Biologists	10	C	
Optional modules (20 credits) Students will choose further modules, subject to the agreement				
of the Programme Adviser, to bring their total credits up to 120.				
Recommend	ed modules			
BI1EG2	Plant Diversity, Structure and Utilisation	10	C	
BI1BE2	Pathology: Introduction to Human Disease	10	С	
CH1OR3	Organic Chemistry for Biochemistry & Natural Scientists	10	C	
CH1IN2	Descriptive Inorganic Chemistry	10	C	
PM1PB2	Human Physiology	20	С	
PM1PB2A	Human Physiology	10	С	
LA1XX	Institution-Wide Language Programme	20	C/I	

Part 2 (three terms, 120 credits)

`	ree terms, 120 creatts)		T
	modules (90 credits)	Credits	Level
AS2A1	Statistics for Life Sciences	10	I
BI2BA4	Clinical Biochemistry	10	I
BI2BD4	Life and Death of a Cell	10	I
BI2BE4	Pharmacology and Toxicology	10	I
BI2BI5	Immunology	10	I
BI2BK5	Molecular Biology of Gene Expression	10	I
BI2BL5	Protein Structure and Function	10	I
BI2BM5	Science Communication	10	I
BI2BP6	Practical Skills: Recombinant DNA Exercise	10	I
Optional m	odules (30 credits) Students will choose further modules u	p to a total of	120
	ect to approval by the Programme Adviser.		
BI2BB4	Endocrinology	10	I
BI2BC4	Human Development, Organogenesis & Anatomy	10	I
BI2BF4	Physiology and Genetics of the Bacterial Cell	10	I
BI2BH5	Clinical Haematology and Histopathology	10	I
BI2BJ5	Microbiology: a Medical Perspective	10	I
BI2BO5	Virology	10	I
BI2EH4	Introduction to History and Philosophy of Science	10	I
BI2EL45	History and Philosophy of Science	20	I
CH2A2	Analytical Chemistry for Environmental, Earth and	10	I
	Archaeological Sciences		
CH2O2	Organic Chemistry for Biochemists	10	I
FB2BPP	Protein Purification and Proteomics	10	I
MM270	Practice of Entrepreneurship	10	I

Part 3 (three terms)

Compulsory modules (40 Credits) Credits Level					
		Credits	Level		
BI3PRO	Project	40	Н		
	Recommended modules: (80 Credits)				
	choose additional modules to achieve a total of 120 credits,	-			
_	agreement of the Programme Adviser, including modules from other Departments or				
Schools. Det	ails of available modules can be found on the University web	site at			
www.info.rd	g.ac.uk/Module/.				
BI3BA7	Medical Genetics	10	Н		
BI3BB7	Selected Topics in Endocrinology and Endocrine Disease	10	Н		
BI3BC7	Bacterial Pathogens	10	Н		
BI3BD8	Cancer	10	Н		
BI3BE8	Cardiovascular Disease	10	Н		
BI3BF7	Cell Communication and Disease	10	Н		
BI3BG8	Mechanisms for Microbial Function	10	Н		
BI3BH8	Mammalian Reproduction	10	Н		
BI3BI8	Neurobiology	10	Н		
BI3BJ8	Viral Pathogens	10	Н		
BI3BM7	Immunology of Bacterial, Viral and Parasitic Disease	10	Н		
BI3BN8	Use and Abuse of the Microbial World	10	Н		
BI3SA1	Epidemiology	10	Н		
BI3SA2	Clinical Trials	10	Н		
FB3N2A	Diet and Disease	10	Н		
FB3N2B	Genes Lifestyle and Nutrition	10	Н		
FB3N3	Bioavailability, Diet and Gut Health	10	Н		

Progression requirements

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken at Part 1 and a mark of at least 30% in individual modules amounting to not less than 100 credits. **In order to progress from Part 1 to Part 2** a student shall normally be required to achieve a threshold performance at Part 1.

To gain a threshold performance at Part 2 a student shall normally be required to achieve an overall average of 40% over 120 credits taken at Part 2 and a mark of at least 30% in individual modules amounting to not less than 100 credits. **In order to progress from Part 2 to Part 3** a student shall normally be required to achieve a threshold performance at Part 2.

Summary of teaching and assessment

Teaching is organised in modules. Teaching in Part 1 consists of lectures and practical classes with small group work being largely restricted to the Experiments: Design and Interpretation module. Modules can be assessed by 100% coursework but more usually are assessed by a combination of coursework (30%) and formal examination (70%).

In Parts 2 and 3, lectures and practical classes continue to be major modes of teaching but they are increasingly supplemented by seminars and other group work. Modules can be 100% in-course assessed but are more usually assessed by a combination of coursework (30%) and formal examination (70%).

Part 2 contributes one third of the overall assessment and Part 3 the remaining two thirds. In order to be eligible for Honours, students must gain an overall weighted average mark of 40% and must gain a mark of at least 40% in the Research Project module.

The assessment is carried out within the University's degree classification scheme, details of which are in the programme handbooks.

Admission requirements

Entrants to this programme are normally required to have obtained:

UCAS Tariff: 300 points from no more than 4 subjects at A level, including grade B in A level Biology and one other Science A level at grade C. Total points exclude Key Skills and General Studies. **GCSEs:** grade C required in Mathematics, English and Science.

International Baccalaureate: Pass Diploma and achieve 6,6,5 in 3 higher level subjects, including Biology and another Science.

Applicants with other types of qualifications and mature students are also encouraged to apply.

Admissions Tutor: Dr S C Andrews

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

The Programme Adviser is available to offer advice on the choice of modules within the degree course.

Career prospects

After graduation, students will be qualified to undertake a career in a range of areas, or to use skills and problem-solving abilities in careers not directly related to biochemistry. Honours graduates will be eligible for graduate membership of the Institute of Biology which could lead to Chartered Biologist status. You will be qualified to enter a variety of careers, including work in industry (pharmaceuticals, biomedical, agrochemicals), government service (research institutes and bodies such as the Environment Agency) and other public bodies. As numerate scientists you could also enter a wide variety of commercial and business occupations.

Industrial Placement

Students who are interested in a scientific career, whether in industry, research or some other related field can apply for a year's placement between Parts 2 and 3. Students who wish to apply would normally be expected to have a weighted average of at least 60% in Part 1.

Opportunities for study abroad: The Erasmus programme (within Socrates) enables undergraduates to undertake project work for one term in their final year at one of a number

of European Universities. Recent exchanges involving AMS students have taken place with the following: University of Tours, France; Odense University, Denmark; Uppsala University, Sweden; University College Cork, Ireland; University of Zaragoza, Spain; ENSA, Montpellier, France; University of Cagliari, Sardinia. Students also have the opportunity to go to Rostock University, Germany and Siena University, Italy.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

A. Knowledge and understanding of:
The fundamental concepts of the
chemistry that supports biological
processes such as metabolism, synthetic
pathways and enzyme catalysis,
underpinned by a knowledge of organic
and other branches of chemistry, and
their application to biological systems.

Teaching/learning methods and strategies

Compulsory and optional modules in Parts 1 and 2 introduce students to the chemistry that underpins living organisms at a variety of levels. A wide range of teaching strategies is employed in these modules, initially in relatively large-group lecture and practical sessions in Part 1. Smaller group teaching comes to dominate in Parts 2 and 3 and includes, depending on the modules chosen, additional teaching methods such as seminars, and tutorials in chosen biochemical aspects of the modules offered. In Part 3 students will be able to select a specific area of biochemistry for in-depth study and will undertake a research project with one-to-one supervision by a member of academic staff or equivalent.

Assessment

Most knowledge is tested through a combination of coursework and unseen formal examinations. Dissertations, oral and poster presentations also contribute.

Skills and other attributes

B. Intellectual skills – able to:

- 1. Think logically
- 2. Analyse and solve problems.
- 3. Organise tasks in a structured form
- 4. Transfer appropriate knowledge and methods from one topic to another within the overall subject
- 5. Plan, conduct and write a report on an independent project
- 6. Design experiments to test specific hypotheses.

Teaching/learning methods and strategies

Rational thought and logical analysis is embedded throughout the programme, where solutions to key problems in biology have come about through the application of chemical and biochemical concepts and experiments. Basic skills associated with problem solving and data analysis are taught in a specific module using a variety of teaching methods. These skills are further developed in individual modules, for example in the The Chemistry of Cellular Function module students will carryout a series of experiments that build on each other to address a specific scientific problem and then analyse and report on the results. In Part 3 students are able to enhance their critical and analytical skills by undertaking a project and to demonstrate this by presenting the results in an accompanying dissertation.

Assessment

Assessment is predominantly by examination. Critical evaluation of scientific data and literature is assessed in essay and dissertation form.

C. Practical skills – able to:

- 1. Undertake biochemical laboratory tasks and techniques
- 2. Plan experiments and carry them out in the laboratory

Teaching/learning methods and strategies

Practical laboratory skills will be taught in School teaching laboratories. Further practical skills may also form part of the Part 3 project, where students will be taught on a one-to-one basis how to design and implement a programme of scientific investigation.

Assessment

By practical laboratory reports.

D. Transferable skills – able to:

- 1. Use IT
- 2. Communicate scientific ideas
- 3. Give oral and poster presentations
- 4. Work as part of a team
- 5. Use library resources
- 6. Manage time
- 7. Plan their career

Teaching/learning methods and strategies

Specific Concepts and Skills modules in Parts 1 and 2 teach skills using a combination of seminars, demonstrations and practical approaches. In addition, other modules include aspects of different skills. Many modules include an integral component of written and oral communication as coursework. In Part 3 students undertake a detailed solo project during which their individual planning and time management skills are developed through contact with their academic supervisor.

Assessment

Numeracy and problem solving are assessed in course during experimental design modules. Other skills are assessed by coursework as part of the science communication module. In addition, most individual modules include written and oral coursework as 30% of the total module assessment. The use of IT is embedded throughout the course.

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably expect to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in module and programme handbooks.