BSc THEORETICAL PHYSICSUCAS Code F340Degree programme for students entering Part 1 in October 2006

Awarding Institution: Teaching Institution: Relevant QAA subject ber Faculty of Science	nchmarking group:	The University of Reading The University of Reading Physics and Astronomy Programme length: 3 years
Date of specification:	3 rd June 2006	
Programme Director:	Dr D. Dunn	
Programme Advisers:	Dr P.A. Hatherly &	Dr P. A. Mulheran
D 1 CO. 1		

Board of Studies:MMPAccreditation:This degree programme is accredited by the Institute of
Physics

Aims

To provide graduates with a secure and demonstrable knowledge and skills base in theoretical physics, an appreciation of the context and impact of physics and the ability to apply the power of scientific methodology and mathematical modelling.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills that all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

By the end of the programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematics software), scientific writing, oral presentation, team-working, problem-solving, use of library resources, time-management, career and management and planning.

Programme content

The profile that follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for and the level of each module are shown in brackets after its title.

Part 1 (2006-7)

Compulsory Modules

Compuisory M	oduics		
Module Code	Module Name	Credits	Level
MA11A	Analysis	20	С
MA11B	Calculus and Mathematical Modelling	20	С
MA11C	Matricies, Vectors and Applications	20	С
PH1006	Great Ideas in Physics	20	С
PH1002	Classical Physics	20	С
PH1004	Experimental Physics I	20	С
Part 2 (2007-8)			
Compulsory M	odulos		
Compaisory M	ouules		
1 0	Module Name	Credits	Level
Module		Credits 10	Level I
Module MA241	Module Name		
Module MA241 MA24B	Module Name Numerical Analysis	10	I
Module MA241 MA24B	Module Name Numerical Analysis Differential Equations	10 20	I I
Module MA241 MA24B PH2001	Module Name Numerical Analysis Differential Equations Thermal Physics	10 20 20	I I I
Module MA241 MA24B PH2001 PH2002	Module Name Numerical Analysis Differential Equations Thermal Physics Quantum Physics	10 20 20 20	I I I I
Module MA241 MA24B PH2001 PH2002 PH2003 PH2005	Module Name Numerical Analysis Differential Equations Thermal Physics Quantum Physics Electromagnetism	10 20 20 20 20 20	I I I I I I

Note: PH2001 contains 5 credits of Introduction to Condensed Matter Physics and 5 credits of Career Skills

Part 3 (2008-9)

Compulsory 1	Modules		
Module	Module Name	Credits	Level
MA37B	Topics in Applied Mathematics	20	Η
PH3003	Physics Project	40	Η
PH3701	Relativity	10	Η
PH3702	Condensed Matter	10	Η
PH3703	Atomic & Molecular Physics	10	Η
PH3715	Statistical Mechanics	10	Η
PH3801	Nuclear & Particle Physics	10	Η
PH3809	Problem-Solving in Physics	10	Η

Progression

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and achieve a minimum of 30% in each of PH1006, PH1002, MA11B, and PH1004.

To gain a threshold performance at Part 2 a student shall normally be required to achieve: an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to

achieve a threshold performance at Part 2 and achieve a mark of not less than 30% in modules PH2001, PH2002 and PH2003.

Summary of teaching and assessment

A wide variety of teaching/learning methods are used; lectures; problem-solving workshops; independent-learning; FLAP; practical laboratories; computational laboratories; projects.

The teaching is organised in modules: In a typical lecture-based module the teaching is supplemented by problem-solving workshops that provide interaction between student and lecturer.

Modules are assessed by a combination of continuous assessment and formal examinations. The aim of the continuous assessment is to provide feedback to each student as the module progresses.

The final-year project (under the guidance of a project supervisor) provides an opportunity for independent learning and investigation.

The contributions of Parts 2, 3 and 4 to the final degree assessment for Physicsadministered MPhys programmes will be in the proportions 1:2:2. For BSc programmes, the contributions of Part 2 and Part 3 to the final assessment will be in the proportions of 1:2.

Admission requirements

Entrants to this programme are normally required to have at least: UCAS Tariff 280 pts, including 180 pts in physics and mathematics. There is no points distinction between BSc and MPhys entry but MPhys has more stringent progression rules at the end of the second year.

Admissions Tutor: Dr M Hilton.

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Within the contributing departments additional support is given though practical classes in Part 1. The development of problem-solving skills is assisted by extensive provision of model solutions to problems. There is a Course Adviser to offer advice on the choice of modules within the programme.

Career prospects

In recent years the graduates on Reading physics-based degrees have progressed to careers in

- Scientific Research in Government and Industrial Laboratories
- Computing and IT industry
- Electronic engineering
- Production engineering
- Management in industry
- Accountancy and Financial Sector

and also to Further education (PhD, MSc and BEd degrees).

Opportunities for study abroad

The University provides opportunities for its students to study abroad from periods of a minimum of 3 months up to a maximum 12 months at its partner institutions across the world provided suitable courses in the external institution are available.

Educational aims of the programme

To provide graduates with a secure and demonstrable knowledge and skills base in theoretical physics, an appreciation of the context and impact of physics and the ability to apply the power of scientific methodology and mathematical modelling.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

Knowledge and Understanding	
A. Knowledge and understanding of:	Teaching/learning methods and
1. The empirical nature of	strategies
physics: that theories must be	The knowledge required for the
testable and must be tested	basic topics is delineated in formal
quantitatively.	lectures supported by problem-
2. The core topics of physics:	solving workshops.
classical and quantum	The knowledge required for more
mechanics; thermal and	specialist topics is enhanced
statistical physics; wave,	through self-learning based on
optics and electromagnetism;	guided reading, problem solving
particle physics.	and project work.
3. The application of physical	Assessment
and mathematical methods to	Most knowledge is tested through a combination of coursework and unseen
the description, modelling	formal examinations. Practical work is
and prediction of physical	assessed by means of logbooks, reports and
phenomena.	viva examinations. Dissertation and oral
	presentations also contribute.

Skills and other attributes

Skills and other attributes	
B. Intellectual skills – the ability to:	Teaching/learning methods and
1. Recognise and use subject-	strategies
specific theories, paradigms,	Most modules are designed to
concepts and principles	develop 1 and 2.
2. Analyse, synthesise and	1, 2 and 3 are enhanced through the
summarise information	use of coursework assignments, and
critically	project work. 4 is enhanced mainly
3. Apply knowledge and	by project work.
understanding to address	Assessment
familiar and unfamiliar	1-3 are assessed indirectly in most
problems	parts of the programme. 3 is also
4. Collect and integrate	assessed by a general problem-
evidence to formulate and	solving paper in finals. 4 is assessed
test hypotheses	in the final-year project.
C. Practical skills	Teaching/learning methods and
1. Planning, conducting, and	strategies
reporting on experimental	Laboratory work, projects and IT
investigations	classes are designed to enhance
2. Planning, conducting, and	skills 1 and 2.
reporting on	3 is emphasised through guidelines
theoretical/computational	and advice given to students in
investigations	connection with project work.
3. Referencing work in an	Assessment
appropriate manner	1 and 2 are tested laboratory and
	project modules.
	3 is assessed as part of laboratory
	1 ./
	and project reports.
	i v

	insferable skills		Teaching/learning methods and
1.	Communication: the ability		strategies
	to communicate knowledge		Skill listed under 1 and 2 are
	effectively through written _	\rightarrow	developed throughout most of the
	and oral presentations.		programme, but especially through
2.	Numeracy and C & IT:		practical and project work.
	appreciating issues relating to		3 is encouraged through team-
	treatment of laboratory data;		working within several modules.
	preparing, processing,		4 is enhanced partly through the
	interpreting and presenting		provision of a Career Development
	data; solving numerical		Skills module during part 3, and
	problems using computer and		partly through a PAR tutorial
	non-computer based		system.
	techniques; using the		5 is covered by study skills
	Internet critically as a source		incorporated in Part I modules.
	of information.		1
3.	Interpersonal skills: ability to		Assessment
	work with others as a team,		1 is assessed directly as an outcome
	share knowledge effectively;		of project work, and contributes to
	recognise and respect the		the assessment of practical work. 2
	views and opinions of other		is assessed directly in the
	team members.		Computational Physics module and
4.	Self management and		indirectly in most laboratory
	professional development:		modules. Skills in 3, 4 and 5 are no
	study skills, independent		assessed but their effective use will
	learning, time management,		enhance performance in H level
	identifying and working		modules.
	towards targets for personal,		modules.
	academic and career		
	development		
5	Library skills: the effective		
0.	use of library and internet		
	resources.		

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.