BSc Natural Sciences For students entering Part 1 in 2006

Awarding Institution: Teaching Institution: Relevant QAA subject benchmarking group(s): Faculty of Science Date of specification: April 2008 Programme Director: Dr Elizabeth Page Programme Adviser: Dr Elizabeth Page Board of Studies: Natural Sciences Accreditation: - UCAS code: GFC0

The University of Reading The University of Reading

Programme length: 3 years

Summary of programme aims

The Natural Sciences programme aims to produce graduates who have a knowledge and experience of a range of topics in modern science and the links between one and another. It also aims to enhance graduates' skills and experience in communicating and discussing scientific ideas.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard software packages, scientific programming), scientific writing, oral presentation, team-working, problem-solving, use of library resources, time-management, communication skills and career planning and management.

The design of the programme ensures that students practise laboratory skills at each Part which will inculcate an awareness for Health and Safety issues and further develop problem-solving skills along with the investigative abilities required for the final year project.

Students will be encouraged to develop competence in communication skills, both written and oral, and to think critically about some of the current controversial issues surrounding the applications of technological advances and to discuss the moral and ethical issues involved. The course aims to generate graduates able to act as ambassadors for science in the wider community.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for and the level of each module are shown after its title.

Part 1 (three terms)		Credits	Level
Compulsory modules			
NS11A	Communicating Scientific Ideas	20	С

Optional modules

Students must choose a maximum of 40 credits from two of the groups below together with 20 credits from a third group. The choice must include at least one module with a laboratory element (starred).

Module Code	NS Module	Practical	Credits	Level
		content		

Group A (Biology)				
NS1BI6	Introduction to Biology for Natural Sciences(P)	*	40	С
NS1BI7	Cell and Molecular Biology	*	40	С
NS1BI8	Ecology and Microbial Biology	*	40	С
NS1BI9	Biology and Biodiversity	*	40	С
NS1BI1	Introduction to Biology for Natural Sciences(S)	*	20	С
Group B (Chemistry)				
CH1O1	Structure and Mechanism in Organic	*	20	С
011111	Chemistry(O)	.4.	•	G
CH1I1	Introduction to the Periodic Table and Bonding(I)	*	20	С
CH1P1	The Physical World(P)	*	20	С
NS1CH1	Fundamental Chemistry**	*	20	С
•	nd P above to give a Principal Chemistry module			
	ut not to major modules in Chemistry in Part 2			
Group C (Geology)				
NS1GO6	Earth Structure, Geological Fieldwork	*	40	С
NS1GO1	Earth Structure and History	*	20	С
Group D (Mathematics	3)			
NS1MA6	Matrices and Calculus		40	С
MA111	Mathematics for Scientists		20	С
CH1M	Mathematics for Natural Scientists		20	С
Group E (Physics)				
NS1PH6	Classical and Contemporary Physics		40	С
NS1PH7	Classical and Experimental Physics	*	40	С
PH1006	Great Ideas in Physics		20	С
Part 2 (three terms)		Credits	Level	
Compulsory modules		20	т	
PS2P45	History and Philosophy of Science	20	Ι	
Optional modules				
	40 credits from two of the 13 groups of subjects A-I	M together	with 20 cr	edits from a
different group.				

Module code	NS Module	Credits	Level
Group A (Archaeology)			
AR2S1	Archaeological Science	20	Ι
Group B (Biology)			
NS2BI6	Cell and Molecular Biology 2	40	Ι
NS2BI7	Evolution and Diversity	40	Ι
NS2BI1	Biological Structure and Function	20	Ι
NS2BI2	Micro and Macro Evolution	20	Ι
NS2BI3	Plant and Animal Diversity	20	Ι
Group C (Chemistry)			
NS2CH6	Medicinal Chemistry (1)	40	Ι
NS2CH7	Applied Analytical Chemistry	40	Ι
NS2CH8	Physical and Inorganic Chemistry	40	Ι
NS2CH1	Chemistry of the Elements and Analysis	20	Ι
NS2CH2	Analytical Chemistry	20	Ι

Group D (Food Bioscien	ces)			
NS2FB6	Food Chemistry and Nutrition	40	Ι	
FB2N1	Human Nutrition	20	Ι	
Group E (Geology)				
NS2GO6	Geological Processes and Change	40	Ι	
NS2GO1	Global Change and Sedimentology	20	Ι	
NS2GO2	Environmental Geochemistry 1	20	Ι	
Group F (IT)				
CS1TQ2	Commercial Off the Shelf Software	20	С	
Group G (Mathematics)				
NS2MA6	Applications of Calculus	40	Ι	
MA24L	Differential Equations	20	Ι	
*** This choice does not Group H (Meteorology)	t lead to Part 3 Mathematics modules other than MA3	B7.		
NS2MT6	Meteorology	40	Ι	
NS2MT1	Atmospheric Science	20	С	
Group I (Physics)				
NS2PH6	Quantum Physics and Electromagnetism	40	Ι	
PH2002	Quantum Physics	20	Ι	
Group J (Plant Sciences)				
NS2PS1	Plant Sciences(S)	20	Ι	
Group K (Statistics)				
AS1A	Communicating with Statistics	20	С	
NS2AS1	Introduction to Statistical Literacy and Practice	20	Ι	
Group M (Language)				
XX	French, Spanish, German, Italian, Greek, Japanese, Chinese	20		
Part 3 (three terms) Compulsory modules			Credits	Level
1 P	ect and General Science Issues		40	Н

Optional modules:

Students must choose 40 credits in two distinct, or 40 credits in one and 20 credits in two other subjects from Archaeology, Biology, Biomimetics, Chemistry, Food Biosciences, Geology, Mathematics, Meteorology, Physics, Plant Sciences or Statistics. The modules currently available are listed in the Appendix.

Progression requirements

To gain a threshold performance at Part 1, when all modules are taken at the C level, a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and

obtain at least 40% in each of the Groups in which 40 credits are taken.

To gain a threshold performance at Part 2 a student shall normally be required to achieve:

an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2.

Summary of teaching and assessment

Part 2 contributes one third of the final assessment, and Part 3 the remaining two thirds.

Teaching is organised in modules that typically involve both lectures and problems. The assessment is carried out within the University's degree classification scheme, details of which are in the programme handbooks. The pass mark in each module is 40%. Modules in Part 1 and 2 are assessed by a mixture of coursework and formal examination.

Admission requirements

Entrants to this programme are normally required to have obtained: Grade C or better in English and Mathematics in GCSE; and achieved UCAS Tariff: 300 points including at least one A-Level in Science or Mathematics (Biology, Chemistry, Mathematics, Physics) International Baccalaureat: 32 points with 6 points in at least one science. Irish Leaving Certificate: BBBBB Two AS grades are accepted in place of one A-Level

Admissions Tutor: Dr Elizabeth M. Page

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Career prospects

The programme provides an excellent background in the sciences, leading to a familiarity with a broad range of scientific ideas and techniques. Careers open to graduates with this background include management, financial services, or science-related positions in industry or local government (e.g. energy, environment or safety). There are opportunities for continuing particular areas of study within the programme to MSc or PhD programmes, or to train as a teacher.

Opportunities for study abroad or for placements

There are no formal arrangements.

Educational aims of the programme

The Natural Sciences programme aims to produce graduates who have a knowledge and experience of a range of topics in modern science and the links between one and another. It also aims to enhance graduates' skills and experience in communicating and discussing scientific ideas.

The programme is designed to satisfy the requirements of students wishing to combine a number of sciences, whilst retaining the flexibility to respond to changing interests and subject strengths. The course will provide a broad education in the sciences in comparison to the more traditional route of a single or combined course. In addition the dedicated modules in Communicating Scientific Ideas and the History and Philosophy of Science will expose students to the broader issues surrounding the study and application of science and prompt them to consider and comment on the ethical issues associated with many contemporary ideas in science. These compulsory modules which form a strand running through the course will define the Natural Sciences degree as a holistic entity.

The programme aims to produce graduates with a broad base across the sciences with expertise and experience in a number of disciplines along with the vital transferable skills of communication, IT and team working. Whilst the programme structure allows the Natural Science student to visit a variety of different disciplines it also permits a degree of specialisation in many areas (assuming the relevant prerequisites) culminating in the final year project. Such a Natural Science graduate will be well placed to continue their studies by pursuing a higher degree.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

 A. Knowledge and understanding of: 1. the broad development of science and scientific ideas 2. at least four distinct scientific subjects 3. the use of information technology in a scientific context. 	Teaching/learning methods and strategies Much of the knowledge is delineated in formal lectures backed up by seminars, tutorials and laboratory classes, but some areas (particular in the science communication and the history and philosophy of science) are best delivered through workshops and seminars.
	Assessment Assessment is varied, including formal examinations, dissertation, oral presentation, essays and laboratory reports, as is most appropriate to the area being studied.

Knowledge and Understanding

Skills and other attributes

B. Intellectual skills – able to:	Teaching/learning methods and strategies
1. think logically	Logic is an essential part of the understanding
2. analyse and solve problems	of science and is embedded throughout the
3. recognise and use subject-specific	programme. The quality of a solution to a
theories, paradigms, concepts and	problem is substantially determined by the
principles	structure of that response; analysis, synthesis,
4. analyse, synthesise and summarise	problem solving, integration of theory and
information critically	application, and knowledge transfer from one
5. apply knowledge and understanding to	topic to another are intrinsic to high-level
address familiar and unfamiliar problems	performance in the programme.
6. collect and integrate evidence to formulate	Most modules are designed to develop 1-5. 4
and test hypotheses	– 6 are enhanced through the use of
7. conduct independent study of a chosen	coursework assignments, fieldwork and
topic and report on the results.	project work. 6 and 7 are promoted mainly by
8. appreciate moral and ethical issues	project work. 8 is addressed in discussion
relating to the sciences.	classes.
	Assessment
	1- 4 are assessed indirectly in most parts of
	science, while 5 contributes to the more
	successful work. 7 is assessed in the project
	report. 8 is assessed by a general paper.
	successful work. 7 is assessed in the project

 C. Practical skills – able to: 1. plan, conduct, and report on investigations, including the use of secondary data 2. write and defend a report on a chosen topic 3. reference work in an appropriate manner 4. conduct scientific experiments and report reliably on their outcomes 	Teaching/learning methods and strategies1 is emphasised through guidelines and advicegiven to students in connection with practicalwork. 2 and 3 are emphasised throughguidelines issued to students in connectionwith project work. 4 is delivered through thelaboratory classesAssessment1 and 2 are assessed through the projectdissertation and its oral presentation. 4 isassessed through laboratory reports orpractical examinations.
 D. Transferable skills – able to: 1. use IT (word-processing, using standard software packages, scientific programming) 2. communicate scientific ideas 3. give oral presentations 4. interpersonal skills: ability to work independently and with others and share knowledge effectively; recognise and respect the views and opinions of other team members. 5. use library resources 6. use the internet critically as a source of information. 7. apply self management and professional development: study skills, independent learning, time management, identifying and working towards targets for personal, academic and career development. 	 Teaching/learning methods and strategies The use of IT is introduced in Part 1 and is common throughout the programme. Team work and career planning are part of one Part 2 module, PS2P45. Communication skills are the focus of one module in Part 2, and these are deployed in the final year project. Time management is essential for the timely and effective completion of the programme. Library resources are required for the final year project, and contribute to the best performances throughout. Assessment 1 and 2 are assessed through coursework. 5 is enhanced partly through the provision of a Career Management Skills element during Part 2, and partly through a PAR tutorial system. 5 is partly assessed through the project. The other skills are not directly assessed but their effective use will enhance performance in later modules.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.