MPhys THEORETICAL PHYSICS

UCAS Code: F323

Degree programme for students entering Part 1 in October 2005

Awarding Institution:	The University of Reading
Teaching Institution:	The University of Reading
Relevant QAA subject benchmarking group:	Physics and Astronomy
Faculty of Science	Programme length: 4 years
Date of specification:	1 March 2005
Programme Director	Dr D. Dunn
Programme Advisers	Dr P.A. Hatherly & Dr P A Mulheran
Board of Studies:	MMP
Accreditation: This degree programme is accredited	d by the Institute of Physics

Aims

To provide graduates with a secure and demonstrable knowledge and skills base in theoretical physics and mathematical modelling, with sufficient scope, depth and experience of research through project work to fit them for a career in theoretical physics or for further postgraduate physics studies.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills that all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

By the end of the programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematics software), scientific writing, oral presentation, teamworking, problem-solving, use of library resources, time-management, career and management and planning.

Programme content

The profile that follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for and the level of each module are shown in brackets after its title.

PART 1 (2005-2006) Compulsory Modules

compulsory wide	ules -		
Module Code	Module Name	Credits	Level
MA11A	Analysis	20	С
MA11B	Calculus and Mathematical Modelling	20	С
MA11C	Matrices, Vectors and Applications	20	С
PH1006	Great Ideas in Physics	20	С

PH1002	Classical Physics	20	С
PH1004	Experimental Physics I	20	С

PART 2 (2006-2007)

Compulsory M	odules			
Module Code	Module Name	Credits	Level	
MA24B	Differential Equations	20	Ι	
PH2001	Thermal Physics	20	Ι	
PH2002	Quantum Physics	20	Ι	
PH2003	Electromagnetism	20	Ι	
PH2005	Introductory Computational Physics	20	Ι	
PH2501	Applied Physics	10	Ι	
Plus one 10 ci	edit module preferably from Mathematics o	r Meteorolog	v (MA24	1

Plus one 10 credit module preferably from Mathematics or Meteorology (MA241 Numerical Analysis recommended)

PART 3 (2006–2007) Compulsory Modules

Compulsory N	Modules			
Module Code	Module Name	Credi	its Level	
MA37E	Numerical Analysis and Dynamical Systems 1	20	Η	
PH3701	Relativity	10	Η	
PH3702	Condensed Matter	10	Η	
PH3703	Atomic & Molecular Physics	10	Н	
PH3715	Statistical Mechanics	10	Η	
PH3801	Nuclear & Particle Physics	10	Η	
PH3804	Fractals & Chaos	10	Μ	
PH3809	Problem-Solving in Physics	10	Μ	
Selected Mod	ules			
Modules to a	total of 10 credits selected from:			
PH3708	Medical Physics	10	Μ	
PH3713	Laser Physics	10	Μ	
Mathematics	and Meteorology modules may be selected	subject to	o time-tabli	ng

Mathematics and Meteorology modules may be selected subject to time-tabling constraints and with the approval of the Programme Director.

Modules to a total of 20 credits selected from:

PH3806	Atomic & Molecular Physics II	10	Н
PH3807	Cosmology I	10	Н
PH3811	Stellar physics	10	Н
Mathamatica	and Mataaralagy madulag may be	colocted subject	to time to

Mathematics and Meteorology modules may be selected subject to time-tabling constraints and with the approval of the Programme Director.

PART 4 (2008-2009)

Compulsory M	Compulsory Modules			
Module	Module Name	Credits	Level	
PH4001	Research Project	60	М	
PH4A03	Current Topics	10	М	
PH4A01	Advanced Quantum Theory	10	М	
PH4A02	Lagrangian Field Theory & Symmetry	10	Μ	

Selected Modules

Modules to a total of 30 credits selected from:

(Note – a module taken in Part 3 cannot be repeated)			
PH3708	Medical Physics	10	Μ
PH3713	Laser Physics	10	Μ
PH3806	Atomic & Molecular Physics II	10	Μ
PH3807	Cosmology (Models of the Universe)	10	Н
PH4B04	Particle Physics and the Standard Model	10	Μ
PH4B01	Statistical Physics & Critical Phenomena	10	Μ
PH4B02	Modern Spectroscopic Techniques	10	Μ

Progression

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and achieve a minimum of 30% in each of PH1006, PH1002, MA11B, and PH1004.

To gain a threshold performance at Part 2 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3 on the MPhys programme, a student shall normally be required to achieve a threshold performance at Part 2 and achieve an overall average of 60% over 120 credits taken in Part 2 (of which not less than 100 credits should normally be at I level or above) and achieve a mark of not less than 30% in modules PH2001, PH2002 and PH2003. Students who do not achieve the requirements of the MPhys programme, but have achieved the threshold performance with not less than 30% in modules PH2001, PH2002 and PH2003 will not normally be permitted to continue on the MPhys programme, but will be offered the option of transferring to a BSc programme.

Summary of teaching and assessment

A wide variety of teaching/learning methods are used; lectures; problem-solving workshops; independent-learning; FLAP; practical laboratories; computational laboratories; projects.

The teaching is organised in modules: In a typical lecture-based module the teaching is supplemented by problem-solving workshops that provide interaction between student and lecturer.

Modules are assessed by a combination of continuous assessment and formal examinations. The aim of the continuous assessment is to provide feedback to each student as the module progresses.

The final-year project (under the guidance of a project supervisor) provides an opportunity for independent learning and investigation.

The contributions of Parts 2, 3 and 4 to the final degree assessment for Physicsadministered MPhys programmes will be in the proportions 1:2:2. For BSc programmes, the contributions of Part 2 and Part 3 to the final assessment will be in the proportions of 1:2.

Admission requirements

Entrants to this programme are normally required to have at least: UCAS Tariff 280 pts, including 180 pts in physics and mathematics. There is no points distinction between BSc and MPhys entry but MPhys has more stringent progression rules at the end of the second year.

Admissions Tutor: Dr M Hilton.

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Within the contributing departments additional support is given though practical classes in Part 1. The development of problem-solving skills is assisted by extensive provision of model solutions to problems. There is a Course Adviser to offer advice on the choice of modules within the programme.

Career prospects

In recent years the graduates on Reading physics-based degrees have progressed to careers in

- Scientific Research in Government and Industrial Laboratories
- Computing and IT industry
- Electronic engineering
- Production engineering
- Management in industry
- Accountancy and Financial Sector

and also to Further education (PhD, MSc and BEd degrees).

Opportunities for study abroad

Opportunities for study abroad within the EU are available through the University Study Abroad Programme.

Educational aims of the programme

To provide graduates with a secure and demonstrable knowledge and skills base in theoretical physics and mathematical modelling, with sufficient scope, depth and experience of research through project work to fit them for a career in theoretical physics or for further postgraduate physics studies.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding	
A. Knowledge and understanding of:	Teaching/learning methods and strategies
The empirical nature of physics: that	The knowledge required for the basic
theories must be testable and must be	topics is delineated in formal lectures
tested quantitatively.	supported by problem-solving
The core topics of physics: classical and	workshops.
quantum mechanics; thermal and	The knowledge required for more
statistical physics; wave, optics and	specialist topics is enhanced through self-
electromagnetism; particle physics.	learning based on guided reading,
The application of physical and	problem solving and project work.
mathematical methods to the description,	Investigation of some of current research
modelling and prediction of physical	topics in undertaken as a series of team
phenomena.	projects in each of the first three years
Some of the frontiers of current research	Assessment
	Most knowledge is tested through a
	combination of coursework and unseen
	formal examinations. Practical work is
	assessed by means of logbooks, reports
	and viva examinations. Dissertation and
	oral presentations also contribute.

Skills and other attributes

Teaching/learning methods and strategies
Most modules are designed to develop 1
and 2.
1, 2 and 3 are enhanced through the use
of coursework assignments, and project
work. 4 is enhanced mainly by project
work.
Assessment
1-3 are assessed indirectly in most parts
of the programme. 3 is also assessed by a
general problem-solving paper in finals. 4
is assessed in the final-year research
project.

C. Practical skills Planning, conducting, and reporting on experimental investigations Planning, conducting, and reporting on theoretical/computational investigations Referencing work in an appropriate manner	Teaching/learning methods and strategiesLaboratory work, projects and IT classes are designed to enhance skills 1 and 2. 3 is emphasised through guidelines and advice given to students in connection with project work.Assessment 1 and 2 are tested in laboratory classes and projects. 3 is assessed in experimental and project reports
D. Transferable skills Communication: the ability to communicate knowledge effectively through written and oral presentations. Numeracy and C & IT: appreciating issues relating to treatment of laboratory data; preparing, processing, interpreting and presenting data; solving numerical problems using computer and non- computer based techniques; using the Internet critically as a source of information. Interpersonal skills: ability to work with others as a team, share knowledge effectively; recognise and respect the views and opinions of other team members. Self management and professional development: study skills, independent learning, time management, identifying and working towards targets for personal, academic and career development Library skills: the effective use of library and internet resources.	 Teaching/learning methods and strategies Skill listed under 1 and 2 are developed throughout most of the programme, but especially through practical and project work. 3 is encouraged through team-working within several modules. 4 is enhanced partly through the provision of a Career Development Skills module during part 3, and partly through a PAR tutorial system. 5 is covered by study skills incorporated in Part I modules. Assessment 1 is assessed directly as an outcome of project work, and contributes to the assessment of practical work. 2 is assessed directly in the Computational Physics module and indirectly in most laboratory modules. Skills in 3, 4 and 5 are not assessed but their effective use will enhance performance in H level modules.

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably expect to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in module and programme handbooks.