MPhys PHYSICS AND METEOROLOGYUCAS Code: FFH9Degree programme for students entering Part 1 in October 2005

Awarding Institutio	n:	The University of Reading
Teaching Institution	1:	The University of Reading
Relevant QAA subj	ect benchmarking group:	Physics
Faculty of Science		Programme length: 4 years
Date of specification	n:	2 March 2005
		Revised 6 February 2008
Programme Directo	r:	Dr R.J.Stewart
Programme Adviser	r:	Dr E.J. Highwood
Board of Studies:		MMP
Accreditation:	This degree programme has be by the <i>Institute of Physics</i>	een given provisional accreditation

Aims

To provide graduates with a secure and demonstrable knowledge and skills base in physics and meteorology, an appreciation of the context and impact of physics and meteorology and the ability to apply the power of scientific methodology.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills that all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

By the end of the programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematics software), scientific writing, oral presentation, teamworking, problem-solving, use of library resources, time-management, career and management and planning.

Programme content

The profile that follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for and the level of each module are shown in brackets after its title.

PART 1 (2005-2006)

Compulsory Modules			
Module Code	Module Name	Credits	Level
MA111	Mathematics for Scientists	20	С
MT11A	Introduction to Atmospheric Science	20	С
MT11B	Weather Systems Analysis	20	С

PH1006	Great Ideas in Physics	20	С
PH1002	Classical Physics	20	С
PH1101	Current Research Topics I	10	С
PH1202	Fourier and Vector Methods	10	С

PART 2 (2006-2007) Compulsory Modules

Compulsory Mo	odules		
Module	Module Name	Credits	Level
MT24A	Atmosphere & Ocean Dynamics	20	Ι
MT24B	Atmospheric Physics	20	Ι
MT24C	Numerical Methods for Environmental Science	10	Ι
PH2001	Thermal Physics	20	Ι
PH2002	Quantum Physics	20	Ι
PH2003	Electromagnetism	20	Ι
PH2501	Applied Physics	10	Ι
Note: PH2001 a	contains 5 credits of Introduction to Condensed M	atter and	5 credits of

Note: PH2001 contains 5 credits of Introduction to Condensed Matter and 5 credits of Career Skills

PART 3 (2007-2008) Compulsory Modules

Module Code	Module Name	Credits	Level
PH3701	Relativity	10	Н
PH3702	Condensed Matter	10	Н
PH3703	Atomic & Molecular Physics	10	Н
PH3801	Nuclear & Particle Physics	10	Н
MT37D	Remote sensing methods & Applications	10	М
MT38B	Climate Change	10	Μ
	-		
Selected Modu	les		

Selected Modules

Choose EITHER PH3809	Problem Solving in Physics	10	Н
OR MT37B	General studies	10	Н

Select **50 credits** from the following, at least 20 of which must come from Meteorology modules and 20 from Physics modules:

MT26F	Atmospheric analogues	10	Η
MT36E	Boundary layer meteorology	20	Η
MT37C	Data Analysis for weather & climate research	10	Η
MT37E	Dynamics of weather systems	10	Η
PH3707	Computational Physics I	10	Η
PH3708	Medical Physics	10	Μ
PH3715	Statistical Mechanics	10	Η
PH3713	Laser Physics	10	Μ
PH3806	Atomic & Molecular Physics II	10	Η
PH3807	Cosmology I	10	Η
PH3808	Computational Physics II (requires PH3707)	10	Η
PH3811	Stellar physics	10	Н

PART 4 (2008-2009)

Selected Mode	ules		
Select EITHE	CR		
PH4003	Physics Research Project S	40	Μ
OR			
MT4XA	Meteorology Research Project,	40	Μ

Select **80 credits** from the following list. At least **20** must be Meteorology modules and **20** must be Physics modules. Modules taken in Part 3 may not be repeated in Part 4.

MT4XF	Oceanography	10	Μ
MT4YA	Global circulation	10	Μ
MT4YC	Numerical weather prediction	10	Μ
PH3708	Medical Physics	10	Μ
PH3713	Laser Physics	10	Μ
PH4B12	Galactic Physics M	10	Μ
PH4B16	Atomic & Molecular Physics M	10	Μ
PH4B17	Cosmology M	10	Μ
PH4A01	Advanced Quantum Theory	10	Μ
PH4A02	Lagrangian Field Theory & Symmetry	10	Μ
PH4B01	Statistical Physics & Critical Phenomena	10	Μ
PH4B02	Modern Spectroscopic Techniques	10	Μ
PH4B04	Particle Physics and the Standard Model	10	Μ

Progression

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and achieve a minimum of 30% in each of PH1006, PH1002, MA111, MT11A and MT11B.

To gain a threshold performance at Part 2 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3 on the MPhys programme, a student shall normally be required to achieve a threshold performance at Part 2 and achieve an overall average of 60% over 120 credits taken in Part 2 (of which not less than 100 credits should normally be at I level or above). Students who do not achieve the requirements of the MPhys programme, but have achieved the threshold performance will not normally be permitted to continue on the MPhys programme, but will be offered the option of transferring to a BSc programme.

Summary of teaching and assessment

A wide variety of teaching/learning methods are used; lectures; problem-solving workshops; independent-learning; FLAP; practical laboratories; computational laboratories; projects.

The teaching is organised in modules: In a typical lecture-based module the teaching is supplemented by problem-solving workshops that provide interaction between student and lecturer.

Modules are assessed by a combination of continuous assessment and formal examinations. The aim of the continuous assessment is to provide feedback to each student as the module progresses.

The final-year project (under the guidance of a project supervisor) provides an opportunity for independent learning and investigation.

The contributions of Parts 2, 3 and 4 to the final degree assessment for Physicsadministered MPhys programmes will be in the proportions 1:2:2. For BSc programmes, the contributions of Part 2 and Part 3 to the final assessment will be in the proportions of 1:2.

Admission requirements

Entrants to this programme are normally required to have at least: UCAS Tariff 280 pts, including 180 pts in physics and mathematics. There is no points distinction between BSc and MPhys entry but MPhys has more stringent progression rules at the end of the second year.

Admissions Tutor: Dr M Hilton.

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Within the contributing departments additional support is given though practical classes in Part 1. The development of problem-solving skills is assisted by extensive provision of model solutions to problems. There is a Course Adviser to offer advice on the choice of modules within the programme.

Career prospects

In recent years the graduates on Reading physics-based degrees have progressed to careers in

- Scientific Research in Government and Industrial Laboratories
- Computing and IT industry
- Electronic engineering
- Production engineering
- Management in industry
- Accountancy and Financial Sector

and also to Further education (PhD, MSc and BEd degrees).

Opportunities for study abroad

Opportunities for study abroad within the EU are available through the University Study Abroad Programme.

Educational aims of the programme

To provide graduates with a secure and demonstrable knowledge and skills base in physics and meteorology with sufficient scope, depth and experience of research through project work to fit them for a career in physics, meteorology or other applied physics; or for further postgraduate studies.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

Knowledge and chaefstanding	
A. Knowledge and understanding of:	Teaching/learning methods and strategies
The empirical nature of physics: that	The knowledge required for the basic
theories must be testable and must be	topics is delineated in formal lectures
tested quantitatively.	supported by problem-solving
The core topics of physics: classical and	workshops.
quantum mechanics; thermal and	The knowledge required for more
statistical physics; wave, optics and	specialist topics is enhanced through self-
electromagnetism; particle physics.	learning based on guided reading,
The application of physical and	problem solving and project work.
mathematical methods to the description,	Investigation of some of current research
modelling and prediction of physical	topics in undertaken as a series of team
phenomena.	projects in each of the first three years
Some of the frontiers of current research	Assessment
	Most knowledge is tested through a combination
	of coursework and unseen formal examinations.
	Practical work is assessed by means of logbooks,
	reports and viva examinations. Dissertation and oral presentations also contribute.
	oral presentations also contribute.

Skills and other attributes

Sking and other attributes	
B. Intellectual skills – the ability to:	Teaching/learning methods and strategies
Recognise and use subject-specific	Most modules are designed to develop 1
theories, paradigms, concepts and	and 2.
principles	1, 2 and 3 are enhanced through the use
Analyse, synthesise and summarise	of coursework assignments, and project
information critically	work. 4 is enhanced mainly by project
Apply knowledge and understanding to	work.
address familiar and unfamiliar problems	Assessment
Collect and integrate evidence to	1-3 are assessed indirectly in most parts
formulate and test hypotheses	of the programme. 3 is also assessed by a
	general problem-solving paper in finals. 4
	is assessed in the final-year research
	project.

C. Practical skills Planning, conducting, and reporting on experimental investigations Planning, conducting, and reporting on theoretical/computational investigations Referencing work in an appropriate manner	Teaching/learning methods and strategies Laboratory work, projects and IT classes are designed to enhance skills 1 and 2. 3 is emphasised through guidelines and advice given to students in connection with project work. Assessment 1 and 2 are tested in laboratory and project modules. 3 is taken into account within the assessment of laboratory and project
D. Transferable skills	reports. Teaching/learning methods and strategies
Communication: the ability to communicate knowledge effectively through written and oral presentations	Skill listed under 1 and 2 are developed throughout most of the programme, but especially through practical and project

	Cl-ill lists d sur den 1 and 2 and desseland
Communication: the ability to	Skill listed under 1 and 2 are developed
communicate knowledge effectively	throughout most of the programme, but
through written and oral presentations.	especially through practical and project
Numeracy and C & IT: appreciating	work.
issues relating to treatment of laboratory	3 is encouraged through team-working
data; preparing, processing, interpreting	within several modules.
and presenting data; solving numerical	4 is enhanced partly through the
problems using computer and non-	provision of a Career Development Skills
computer based techniques; using the	module during part 3, and partly through
Internet critically as a source of	a PAR tutorial system.
information.	5 is covered by study skills incorporated
Interpersonal skills: ability to work with	in Part I modules.
others as a team, share knowledge	
effectively; recognise and respect the	Assessment
views and opinions of other team	1 is assessed directly as an outcome of
members.	project work, and contributes to the
Self management and professional	assessment of practical work. 2 is
development: study skills, independent	assessed directly in the Computational
learning, time management, identifying	Physics module and indirectly in most
and working towards targets for personal,	laboratory modules. Skills in 3, 4 and 5
academic and career development	are not assessed but their effective use
Library skills: the effective use of library	will enhance performance in H level
and internet resources.	modules.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.