BSc Food Science (with Industrial Training)For students entering Part 1 in Autumn 2005

Awarding Institution: Teaching Institution:

Relevant QAA subject benchmarking group(s):

The University of Reading The University of Reading

UCAS code: D611

Agriculture, Forestry, Agricultural Sciences, Food Sciences and

Consumer Sciences

Programme length: 4 years

Faculty of Life Sciences

Date of specification: February 2007 Programme Director: Mr R A Wilbey Programme Adviser: Mr R A Wilbey

Board of Studies: Undergraduate Programmes in the School of Food Biosciences

Summary of programme aims

The programme aims to provide a degree-level education from which graduates can enter a career in the food industry (or employment in other sectors of the food chain, or related scientific sectors) as scientists and to develop their capacity to undertake research into the science of foods. The testable learning outcomes will be the ability to:

- integrate the scientific disciplines relevant to food
- apply and communicate scientific knowledge to meet the needs of industry and the consumer for the production and marketing of safe and quality foods.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

Programme content

The Food Science programme provides an opportunity for students to follow a general specialism or a nutrition specialism. The profile which follows states which modules must be taken (the core Food Science modules) and, for Part 3, the modules which must be taken when following a specialism (the specialism modules) and, for Parts 2 and 3, lists of modules from which the student must make a selection (the optional modules). For the optional modules, students are free to select any module that is not a compulsory module so as to make 120 credits in each Part.

Part 1 (three terms)

Compulsory modules

Mod Code	Module Title	Credits	Level
AM1M11	Fundamental Microbiology	10	C
AM1M12	Important Microbes	10	C
BI1C10	Cell Biology and Biochemistry	10	C
BI1C11	Genetics and Molecular Biology	10	C
CH1C	Foundation Chemistry	20	C
FB1EPH	Physical Aspects of Biological Systems	20	C
FB1GFB	Topics in Food and Biotechnology	20	C
FB1EM1	Mathematics and Computing for Life Sciences	20	C

	rt 2 (three te			
Coi	mpulsory mod Mod Code		Credits	Level
Cor	re Food Scien	ce Modules (60 credits)		
	FB2C1	Fundamentals of Food Chemistry	20	I
	FB2EFP	Food Processing	20	I
	FB2MF1	Microbiology of Food Preservations	10	I
	FB2MF2	Microbiological Hazards in Foods	10	I
	Food Chemi	istry and Human Nutrition Specialisms		
	FB2C2A	Chemistry of Food Components A	20	I
	FB2N1	Fundamentals of Human Nutrition	20	I
	Food Biotec	hnology Specialism		
	FB2BRD	Bioreactor design	10	I
	FB2BBE	Biochemistry and Enzymology	10	Ī
	AM2M32	Physiology of the bacterial cell	10	I
	AM2C39	Regulation of gene expression	10	I
Ор		es (20 credits):		
	Mod Code	Module Title		
		Institution Wide Language Programme	20	C/I/H
	AM2C31	Molecular Biology	10	I
	AM2M32	Bacteriology I - Physiology	10	I
	AM2M34	Bacteriology II - Genetics	10	I
	AP1EM1	Introduction to Marketing	10	C
	AP1SB1	Introduction to Management	10	C
	FB2BBE	Biochemistry and Enzymology	10	I
		(Plus additional modules subject to timetabling)		
Ind	lustrial Trai	ning Placement Year		
	Mod Code	Module Title		
	FB2PY	Placement Year	120	I
	rt 3 (three te			
Coi	mpulsory mod		<i>a</i>	y 1
	Mod Code	Module Title	Credits	Level
		sms (Core Food Science Modules)		
	FB3GPD	Food Product Development	10	H
	FB3QAS	Food Quality Assurance and Safety	20	Н
	FB3GSE	Sensory Evaluation	10	Н
	FB3PFB	Individual Research Project	40	Н
	Food Scien	ce General Specialism		
	FB3CF1	Special topics in Food and Toxicology	10	Н
	123011	Special copies in 1 out and 1 onioniogy	10	**

10

Н

Selected topics in food chemistry

FB3CF2

Human Nutrition Specialism

FB3N2A	Diet and Disease	10	Н	
FB3N2B	Genes, lifestyle and nutrition	10	Н	
Food Biotec PS3AA8 FB3BGE	chnology Specialism Plant Biotechnology for postharvest quality Molecular Techniques in Biotechnology	10 10	H H	

Optional modules (20 credits):

Mod Code	Module Title	Credits	Level
	Institution Wide Language Programme	20	C/I/H
FB2BBE	Biochemistry and Enzymology	10	I
FB3EB2	Economic manufacturing	10	Н
	(Plus additional modules to be notified later)		

Industrial Training

Students are required to undertake a period of industrial training between Parts 2 and 3. The placement is normally split into two 22 week periods at two different establishments. Performance in the training will be assessed. In addition students are expected to seek relevant industrial training during the Summer vacation between Parts 1 and 2.

Progression requirements

• Progression from Part 1 to Part 2

In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1. To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in all individual modules.

• Progression from Part 2 to Part 3

To gain a threshold performance at Part 2 a student shall normally be required to achieve: an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in all compulsory modules amounting to 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2.

- To pass the Industrial Training Year students must achieve 40%. Students who fail the Industrial Training Year will be required to transfer to the 3 year Programme.
- To obtain the degree at the end of Part 3, students must obtain an overall average of 40%. The final degree assessment is based on the following weightings:

For students registered for a 4 year programme:

Part 2 Modules	23 %
Industry Year	10%
Part 3 Modules	67 %

Summary of teaching and assessment

As indicated above, teaching is organised into modules – each module will consist of lectures, practicals, or a combination of these. Students are assessed on each module, usually by a formal examination, although modules consisting only of practicals (or similar coursework) may not have a formal examination. All coursework is assessed and the assessment contributes towards the modular marks. The Part 3 project is an individual study requiring the submission of formal report for assessment. For the 4 year programmes, the industrial training is assessed by using

formal reports from the employer and the student's tutor and the assessment of a report submitted by the student.

Admission requirements

Entrants to this programme are normally required to have obtained: GCSE: Grade C or better in Mathematics and English in GCSE; and achieved Advanced Level (AS and A2):

- A core science at A2 level with either a core or related science subject at AS level (where 'Core Science' is defined as: mathematics, chemistry, physics and biology, and 'Related Science' is defined as: food technology, environmental science and human biology)
- A UCAS Tariff of 240 with 80 obtained in at least one core science

International Baccalaureat:

Irish Leaving Certificate:

Admissions Tutor: Dr R Frazier

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Career prospects

The food industry has a great demand for qualified food science graduates for a wide range of activities. Graduates from this programme gain employment, for example, in research (gaining an understanding of the underlying science of foods from nutritional factors to enzyme reactions) or in product development (developing new products or introducing new ingredients into exiting products). Many food retailers employ graduates to ensure the safety and quality of their ownlabel products and to monitor the goods received from their suppliers. Other opportunities arise in companies supplying the food industry with ingredients, equipment and packaging and in specialist food research laboratories. In addition to the career opportunities in the biotechnological industries, the academic training our graduates receive equips them for positions in other industries, commerce and Government service.

Opportunities for study abroad or for placements

The School participates in a number of exchange programmes under the EU Socrates scheme which includes the opportunity to take industrial training in another European country. Students have, as a result, been to a number of countries including Germany, France, Spain and Italy. Although not common, industrial training attachments have also been arranged in other countries including the United States of America and Australia.

Educational aims of the programme

The Food Science programme aims to:

 Provide a programme of education which can enable its graduates to enter a career in the food industry as scientists capable of ensuring the production and marketing of safe and quality foods.

- Provide a broadly based scientific education whose graduates can also enter into
 employment in other sectors of the food chain or related scientific sectors where they can
 apply their scientific skills.
- Allow individuals to develop their capacity to undertake research into the science of foods.
- Provide students with a programme containing integrated periods of industrial training allowing students to experience and apply the skills developed during the course.
- Provide undergraduates with opportunities to develop their inter-personal and communication skills.
- Enable graduates to meet the entry requirements of the Institute of Food Science and Technology (IFST).

Programme Outcomes

Knowledge and Understanding

A. Knowledge and understanding of:

- food composition (including major chemical interactions and nutritional factors) in the context of food quality and safety
- 2. food processing and food processing equipment
- 3. microbiological aspects of food quality and safety
- 4. a more detailed understanding of a specialist area depending upon chosen specialism.

Teaching/learning methods and strategies

Lectures and practical classes provide the basic knowledge. A variety of coursework gives opportunities for extending knowledge and techniques. Individual and group projects reinforce techniques and give experience of practical applications. The industrial training year provides a major opportunity for most students to enhance their knowledge of some or all of topics 1 - 4.

Assessment

Most knowledge is tested through a combination of coursework and unseen formal examinations. Project work, reports, oral presentations and computer-based exercises also contribute to the final assessment. Where appropriate, the industrial training assessment is also used.

Skills and other attributes

B. Intellectual skills – able to:

- 1. analyse and solve problems,
- 2. critically evaluate scientific literature,
- 3. assess problems and design experiments to test hypotheses,
- 4. apply knowledge to new problems,
- 5. plan, conduct and report on an individual research project.

Teaching/learning methods and strategies

Topics 1 and 2 are essential components of the programme and are embedded in many parts of the programme. Topics 3 and 4 are introduced in Part 2 course-work. Topics 3, 4 and 5 are fully developed during the individual research project in Part 3 of the programme. The industrial training year provides a major opportunity for most students to enhance their skills relating to some or all of topics 1 - 5.

Assessment

Coursework is structured to assess topics 1, 2, 3 and 4. Topics 3, 4 and 5 are assessed as components of the individual research project. Where appropriate, the industrial training assessment is also used.

C. Practical skills – able to:

- 1. develop and perform chemical and physical, microbiological and sensory laboratory tests to assess the quality and safety of foods,
- 2. participate in, and help develop, food research and food product development programmes,
- 3. operate quality assurance procedures in food processing,
- 4. participate in the assessment of a food production process by the use of techniques such as Hazard Analysis and Critical Control Points (HACCP) so as to ensure the production of safe and quality foods.

Teaching/learning methods and strategies

Topic 1 is introduced by lectures but is developed fully by appropriate laboratory exercises during all Parts of the programme. Topics 2, 3 and 4 are developed during lectures, exercises and group work in Part 3 of the programme. The industrial training year provides a major opportunity for most students to enhance their skills relating to some or all of topics 1 - 4.

Assessment

All topics will be assessed by coursework. Where appropriate, the industrial training assessment is also used.

D. Transferable skills – able to:

- 1. work as an individual, in a small group or as part of a larger team,
- 2. prepare reports and make presentations that effectively present the results of investigations carried out,
- 3. critically assess and present data using appropriate statistical techniques,
- 4. make effective use of information technology,
- 5. consider and manage career choice.

Teaching/learning methods and strategies

The development of transferable skills is integrated into many parts of the programme. Students are required to work both as individuals and as part of groups. Career skills (topic 5) are introduced in a Part 1 module and reinforced by the industrial training year. The industrial training year provides a major opportunity for most students to enhance their skills relating to some or all of topics 1 - 5.

Assessment

All topics are assessed both by coursework within the modules and in formal examinations. Where appropriate, the industrial training assessment is also used.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.