BSc Environmental Science with Professional Experience UCAS code: F852 For students entering Part 1 in 2005

Awarding Institution:
Teaching Institution:
The University of Reading
The University of Reading
The University of Reading
The University of Reading
Earth Sciences, Environmental

Sciences and Environmental

Studies

Faculty of Science Programme length: 4 years

Date of specification: May 2007

Programme Director: Dr HJ McGoff (SHES) Programme Adviser: Dr T R Astin (SHES) Board of Studies: Environmental Sciences

Summary of programme aims and learning outcomes

The programme aims to provide students with a sound scientific understanding of the processes operating in the Earth system, and to apply this science to the understanding of current and future environmental issues. It also aims to provide students with the scientific and transferable skills that are relevant to the application of environmental science in research, industry and other areas such as government policy.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using spreadsheet and graphical applications programs, scientific programming, internet), scientific writing, oral presentation, experimental methods (laboratory and field), team-working, use of library resources, career planning and management. They will have developed skills in team-working and leadership, and be confident and self-reliant, particularly as a result of experience during field courses, independent fieldwork and their Professional Experience. They will also have a sound knowledge of fieldwork safety procedure.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the 'optional' modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of module credits for each module is listed.

Part 1 (three terms)		Credits	Level	Term
Compuls	ory modules (40 credits)			
ES1B1	Introduction to Environmental Science	10	C	1
ES1B2	Introduction to Environmental Science Fieldwork	10	C Eas	ster Vac
ES1A2	Chemistry and Physics for Environmental Science	10	С	2

And either:

CH1M1	Mathematics M1	10	C	1,3
Or:				
ES1A1	Essential mathematics for Environment and Atmosphere	10	C	1

Optional modules (80 credits)

Students select a minimum of three contributory subjects to Environmental Science, including:

Earth Science, Soil Science, Meteorology, Geography, Chemistry, Biology, Rural Environmental Science, Mathematics. They may also chose a language as part of the Institute-wide Language Programme.

Recomme	nded:	Credits	Level	Term
GO1A1	Earth Structure & Processes	10	C	1
GO1C2	Earth History & Evolution	10	C	2
001.11		1.0		1
SS1A1	Introduction to Soil Science	10	C	1
SS1A2	Soils, Land and the Environment	10	C	2
Others Inc	cluding.			
	Animal Biology	20	C	1,2
	Introduction to Biology (OK without A level Biology)	10	C	2
AR1TS1	Archaeology Practice	20	C	1,2
AR1P1	Introduction to World Prehistory	20	C	1,3
AR1RM1	Introduction to Historic Archaeology	20	C	ĺ
BI1C10	Cell Biology and Biochemistry	10	C	1
BI1C11	Genetics and Molecular Biology	10	C	2
BI1M10	Biodiversity	10	C	1
BI1Z10	Ecology	20	C	2
BI1Z11	Community Ecology	10	C	3
CH1C	Chemistry C (OK without A level Chemistry)	20	C	1,2,3
CH1I1	Introduction to Inorganic Chemistry	20	C	1,2,3
CH1I2	Descriptive Inorganic Chemistry	10	C	2
CH1O2	Fundamental Organic Chemistry	10	C	1
CH1P2	Physical Biochemistry	10	C	1
CH1M2	Mathematics M2	10	C	2,3
AS1A	Communicating with statistics	20	C	1,2
MA111	Mathematics for scientists	20	C	1,2,3
GG1P1	Physical Geography 1: Climatology and Hydrology	20	C	1
GG1P2	Physical Geography 2: Geomorphology and Biogeography	20	C	2
GO1B1	Earth Materials	10	C	1
MT11A	Introduction to Atmospheric Science	20	C	1,2
MT11B	Weather System Analysis	20	C	1,2
PS1AB2	Physical Ecology	10	C	2
PS1BA2	Plant Development	10	C	2
PS1BC2	Introductory Botany	10	C	2
SS1B2	Soil Processes and Applications	10	C	2
IWLP	Various languages	20	C	1,2

	ree terms : 2006-2007)			
-	ory modules (40 or 50 credits)	Credits	Level	Term
ES2A5	Environmental Systems	10	I	5
ES2J4	Skills for Environmental Scientists	10	I	4
AP2A37	Practical Nature Conservation	10	Ι	5
And one f	ield class from:			
AM2Z38	Field Course (Ecology prerequisites)	10	I	6
AP2A21	Rural Environmental Sciences Field Class 1s	10	I S	ummer
AR2U2	Silchester Field School (AR1TS1prerequisite)	10	I S	ummer
ES2X6	Earth and Atmosphere Field Class	10	I East	ter Vac
GG2FP	Physical Geography Field Class (GG prerequisites)	20	I S	ummer
MT25E	Weather Field weekend (MT11A & MT11B prerequisi	/		ter Vac
PS2BF3	Botany Field Class (PS2BG3 or BIZ11 prerequisite)	10		ummer
SS2A6	Soil Science Field Class (SS2D4 prerequisite)	10	I	6
Optional	Modules (70 or 80 credits)			
	develop depth in a minimum of two contributory subject	s to Enviro	onmental S	cience,
	Geoscience, Soil Science, Meteorology, Geography,			
	Rural Environmental Science, Archaeology, Mathemat			
language	as part of the Institute-wide Language Programme			
D	mdod.			
Recomme				
ES2E4	ental Geochemistry (20 credits)	10	т	1
CH2A2	Environmental Mineralogy	10	I I	4 4
СПZАZ	Analytical Chemistry for Environmental Earth and Archaeological Sciences	10	1	4
	una Archaeological Sciences			
Soil Scien	ace 1 (20 credits)			
SS2D4	Soils and Soil Development	10	I	4
SS2D5	Sustainable Land Management	10	I	5
Others Inc	cluding:			
T 1 4	M 4 1			
	y Methods	10	T	_
GO2N5	Laboratory Methods in Geoarchaeology	10	I	5
	(Also taught to MSc Geoarchaeology)			
Geoscieno	ce (20 credits)			
GO2L4	Sedimentology & Palaeoclimate Analysis	10	I	4
GO2M5	Global Change Through Geological Time	10	I	5
Soil Scien	ace 2 (20 credits)			
SS2A4	Transport Processes in Soils	10	I	4
SS2E6	Environmental Monitoring	10	Ī	6
	2	10	*	5
	ogy (20 to 40 credits)			
AR2S1	Archaeological Science	20	I	4,5
AR2F5	Techniques in Artefact Interpretation	10	I	4
AR2F6	Techniques of skeletal interpretation	10	I	5

Rural Scie	ence and Agriculture (20 to 40 credits)			
AP2EE3		10	I	4
AP2A39	Environment and the Farm Business (prerequisite AP1A02	2)10	I	5
AP2A26	Forestry and Woodlands	10	I	4
AP2A25	Grassland Management	10	Ī	4
AP2A38	Organic Farming	10	Ĭ	4
111 21100			-	•
Plant Scie	ences (20 to 40 credits)			
PS2BB4	Evolution and Plant Biodiversity	10	I	4
PS2BD4	Plants and the Environment	10	Ī	4
PS2BC5	Ecological Aspects of Environmental Assessment	10	Ī	5
PS2BG3	Flora of the British Isles	10	Ī	6
102000	1 10.00 07 11.00 27 11.00 12.00 1		-	Ü
Biology	(20 to 40 credits)			
BI2B31	Macro Evolution	10	I	4
BI2Z31	Micro Evolution	10	I	5
AM2Z32	Vertebrate Zoology (AM1Z10 prerequisite)	10	I	4
AM2Z33		10	I	5
	Invertebrate Zoology	10	Ī	4
History ar	nd Philosophy of Science (10 or 20 credits)			
PS2NA4	± •	10	I	4
	(excludes PS1N45)			
PS2N45	History and Philosophy of Science	20	I	4
- 2	(excludes PS2NA4)			
	(
Meteorolo	ogy (20 or 40 credits)			
MT24A		20	I	4,5
MT2BB	Atmospheric Physics	20	I	4,5
	1 ,			,
Mathemat	ics			
AS2A1	Statistics for Life Sciences	10	I	4
MT24C	Numerical Methods for Environmental Science	10	I	4
	·			
Physical (Geography (20 to 40 credits)			
GG2DEG	Development, Environment and Gender (prerequisite)	10	I	4
GG2ER	Energy Resources	10	I	4
GG2M	GIS and Mapping	10	I	4
GG2P1	Geomorphological Hazards	10	I	4
GG2P3	Human Activity and Environmental Change	10	I	4
GG2P6	Remote Sensing and Image Processing	10	I	4
GG2P7	Fluvial Hydrology & Morphology	10	I	4
GG2P8	Biogeography and Ecosystems	10	I	
GG2RE	Resources and the environment	10	I	5 5
·				-
Environm	ental Chemistry (20 credits)			
CH2P2	Intermediate Physical Chemistry (prerequisite CH1P1)	10	I	4
CH2I2	Inorganic Chemistry (prerequisite CH111)	10	Ī	5
-	G	-	-	-

Part 3 (2007-2008)

Part 3 will consist of the 120 credits of professional experience and its assessment (by inservice assessment, written report and presentation) and will contribute 10% of the Part 2 marks. There is a separate Handbook for the Professional Year.

Part 4 (th	ree terms: 2008-2009)			
Compulso	ry modules (60 credits)	Credits	Level	Term
AP3A87	Environmental Management	10	Н	7
ES3A8	Environmental Issues	10	Н	8
ES3PR	Independent Project	30	Н	7,8
ES3LP	Library Project	10	Н	7,8
Optional I	Modules (60 credits)			
Recomme	<u>nded</u> :			
GO3X8	Earth Systems Field Class	10	Н	8
ES3C7	Earth Systems Science	10	Н	8
Others Inc	eluding:			
Geoscienc	ee (10 or 20 credits)			
ES3B8	Environmental Geophysics	10	Н	8
GO3H8	Crime Scene Analysis	10	Н	8
Soil Scien	ce (10 to 40 credits)			
ES3D7	Land Evaluation	20	Н	7,8
ES3E7	Fundamental & Applied Soil Ecology	10	H	7,8
SS3A8	Management of Soil Fertility	10	H	8
SSSAO	Management of Sou Fertility	10	11	o
	gy (20 or 40 credits)			
AR3S1	Environmental Archaeology and the Cultural			
	Landscape of Prehistory	20	Н	7
AR3S2	Environment and Landscape in Historic Periods	20	Н	8
Rural Scie	ence & Agriculture (20 to 40 credits)			
AP3EP3	Rural Policy & Countryside Planning	10	Н	7
APA44	Approaches to Sustainable Development	10	Н	8
AP3A68	Wildlife in the Farming Environment	10	Н	8
AP3A90	Climate Change & Food Systems	10	Н	8
Biological	Sciences (10 to 20 credits)			
_	Plants & Climate	10	Н	7
	Evolutionary Genetics & Phylogeny	10	Н	7
Physical (Geography (20 or 40 credits)			
GG338	Mountain Environments	20	Н	7
GG333	Geographical Information Systems	20	Н	7
GG362	Water Resources	20	Н	7
GG336	Managing Environmental Change	20	Н	8
50550				O

Meteorolo	ogy (20 to 40 credits)			
MT37D	Remote Sensing Methods & Applications	10	Н	7
MT37F	Oceanography	10	Н	7
MT38D	Advanced Analysis of Weather Systems	10	Н	8
MT38B	Climate Change	10	Н	8

Progression requirements

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1. In addition, students shall normally obtain at least 40% in the compulsory modules ES1B1, ES1B2, ES1A2, and either ES1A1 or CH1M1, averaged together.

To gain a threshold performance at Part 2 a student should normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Parts 3, a student shall normally be required to achieve a threshold performance at Part 2. In addition students shall normally obtain at least 40% in the compulsory modules AP2A37, ES2A5, ES2J4, and a field class module, averaged together.

Summary of teaching and assessment

Teaching is organized in modules that typically involve lectures, problem solving classes, and practical classes. The assessment is carried out within the University's degree classification scheme, details of which are in the programme handbooks. The pass mark in each module is 40%. Parts 1 and 2 are assessed by a mixture of coursework and formal examination. In Part 4 there are some modules which are assessed wholly by coursework and others wholly by examination: the details are given in the module descriptions. The Part 4 project involves a substantial component of independent learning, under the supervision and guidance of Project Supervisors. The projects are assessed on the basis of formal reports, oral presentations and development of independent learning skills.

Part 2 contributes one third (33%) of the overall assessment and Part 4 the remaining two thirds (67%).

To be eligible for Honours, students must normally pass Level H modules with a total credit of at least 100.

Admission requirements

Entrants to this programme are normally required to have obtained:

Grade C or better in English Science and Mathematics in GCSE, and UCAS Tariff: *either* 280 points from 3 subjects *or* 320 points from 4 subjects. These must include at least one subject from Maths, Physics, Chemistry, Biology, Geography, Geology or Environmental Science;

Or International Baccalaureat: 31 points including Mathematics and Science;

Or Irish Highers: four grade Bs and one grade C including two sciences.

Admissions Tutor: Dr Samantha Baxter

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

The providing Departments have well-equipped teaching laboratories, analytical laboratories and dedicated computer laboratories. Substantial collections of earth materials and maps are available for hands-on access by students. Within the providing Departments additional support for students is given through practical and field classes and in the course of the independent project. There is a Course Adviser to offer advice on the choice of modules throughout the programme.

Career prospects

The requirement for environmental scientists with a sound scientific training continues to grow and opportunities for graduates from this course include employment by environmental consultants, water companies and the many offices of national and local government concerned with environmental issues as well as post-graduate study. Private industry is increasingly concerned to employ scientists to help minimise the adverse environmental impact of its activities.

Opportunities for study abroad

Students following this degree programme may complete their Professional Experience with a company overseas. This would only be permitted if the student displays the requisite degree of fluency in the foreign language required, and, if suitable industrial experience can be found. Students may also participate in the ERASMUS exchange scheme where one or two terms are spent studying in a European university. Further details are available from the Course Director and the Study Abroad Office.

Educational aims of the programme

The programme aims to provide a thorough degree-level education in Environmental Science, with optional emphases being designed within Pathways, such as Environmental Change, Earth and Atmosphere, Environmental Management, Soil and Water.

Part 1 is designed to provide a sound foundation in Environmental Science, and supporting knowledge of relevant Chemistry, Physics and Mathematics to develop the knowledge and skills required for studying the environmental sciences. Options in mathematics depend on the mathematical skills of the student prior to entry. A wide range of subject options contribute, and shape the particular pathway chosen. Part 2 has a core of compulsory modules to develop further skills and technical experience in the core subject areas, with particular emphasis on environmental management. Options are designed to give depth to knowledge and methodology in key selected subject areas. Part 3 is designed to provide professional, practical experience in a company or organisation, giving the student an opportunity to gain relevant skills and experience whilst working alongside practicing environmental scientists. Part 4 is integrative whilst providing scope for specialisation through the selection of options and

through project work. The latter provides the student with the opportunity to demonstrate their ability to conduct and report on a detailed research investigation, drawing on their understanding of the fundamental concepts in Environmental Science.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

A. Knowledge and understanding of:

- 1. Earth Systems including the lithosphere, hydrosphere, atmosphere and biosphere
- 2. Interactions between the processes operating in the different components of the Earth System.
- 3. The evolution of the Earth and the environment through different time scales, and the evidence for that change
- 4. Monitoring and management of natural and human-induced environmental change.
- 5. Scientific examination of the implications of sustainability and sustainable development.
- 6. A selected range of optional topics
- 7. Environmental issues and management with an interdisciplinary and integrative perspective.
- 8. Fieldwork safety issues and procedures

Teaching/learning methods and strategies

Underlying knowledge in the essential areas is set out in lectures, in most cases directly supported by illustrative practicals. The essential field experience required for proper understanding is provided by compulsory field courses in Part 1 and Part 2, with additional optional field courses in Part 3. Students conduct an independent project in the form of practical investigation into an environmental topic in Part 3, with support and advice from academic and technical staff.

Assessment

Most knowledge is tested through a combination of coursework and unseen formal examinations. Dissertations and oral presentations also contribute in Part 3.

Skills and other attributes

B. Intellectual skills – able to:

- 1. think logically and critically in a scientific manner
- 2. analyse and interpret environmental observations and data and recognise and identify issues and problems with that data
- 3. organise tasks into a structured form
- 4. understand the current state of knowledge of the environment a rapidly developing area
- 5. integrate and apply concepts and principles from one area of environmental science to another
- 6. recognise the need for professional codes of conduct

Teaching/learning methods and strategies

Logical and critical thinking is an essential part of interpreting environmental science data and materials, it is embedded throughout the programme. The ability to integrate and apply concepts and principles from one area of the subject to another are intrinsic to highlevel performance in the programme. Current developments in environmental science are highlighted by contact with visiting experts in the field in Part 3.

Assessment

1 and 2 are assessed indirectly in most parts of the programme, 3 in the course of laboratory and fieldwork. 4 is focused on by courses in Parts 2 and 3, while 5 contributes to more successful work. 6 not directly assessed.

C. Practical skills – able to:

- plan, conduct and report on investigations, including the use of secondary data
- 2. collect, record and analyse data using appropriate field and laboratory techniques
- 3. reference work in an appropriate manner
- 4. carry out a risk assessment for field and laboratory investigations
- 5. consider the impact of field investigations on the environment as well as other interested parties

Teaching/learning methods and strategies

Observing, recording and interpreting is taught in laboratory and field classes throughout the course. An investigative independent practical project is conducted by the student in Part III, with advice from academic and technical staff. Risk assessment forms an essential part of each field course and any field based project work.

Assessment

1 & 2 are tested both formatively in coursework and particularly during the final year projects. summatively in examinations. 2 is assessed by means of coursework and project work, 4 & 5 during field classes and project work.

D. Transferable skills – able to:

- 1. use IT (word-processing, using standard software and the Internet)
- 2. understand issues of sample selection, accuracy, precision and uncertainty in field and laboratory work
- 3. prepare, process, interpret and present data in an appropriate manner, using both quantitative and qualitative techniques
- 4. communicate scientific ideas in verbal, written and graphic form to a variety of audiences.
- 5. work as part of a team, identifying individual and collective goals, respecting the views and opinions of others and evaluating both individual and team performances.
- 6. use library resources
- 7. manage their time
- 8. plan their career, developing skills for self-managed and lifelong learning.

Teaching/learning methods and strategies

The use of IT is embedded throughout the programme with special sessions in Part 1 and in the Skills Module in Part 2. Oral presentation and communication skills are developed in various modules, culminating in the Part 3 practical project. Career management is taught in the Part 2 Skills module. Teamworking is particularly emphasised in field courses. Time management is essential for the timely and effective completion of the programme. Library and internet resources are required for the literature review in Part 3, and contribute to the best performances throughout.

Assessment

1, 2, 3 & 4 are assessed through coursework and particularly in the Part 3 project. 5 in field courses, 6 in the Library Project and 8 in the skills module in Part 2. 7 is not directly assessed but contributes to successful performance throughout the programme.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.