UCAS code: G400

BSc Computer Science For students entering Part 1 in 2005

Awarding Institution: Teaching Institution: Relevant QAA subject benchmarking group(s): Faculty of Science Date of specification: February 2007 Programme Director: Dr GT McKee Programme Adviser: Dr GT McKee Admissions Tutor: Dr MP Evans Board of Studies: Computer Science Accreditation: British Computer Society University of Reading University of Reading Computing Programme length: 3 years

Summary of programme aims

This programme aims to prepare students for a career in the software industry, with a particular emphasis on technologically advanced software applications having a basis in science. Graduates will be well qualified to play a disciplined and creative part in a research, development or support environment.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematical software, scientific programming), scientific writing, oral presentation, teamworking, problem-solving, use of library resources, time-management, career planning and management, and business awareness.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for each module is shown after its title.

Part 1 (three terms)CreditsCompulsory modulesCredits		
SE1SA5	Programming	20 C
SE1SB5	Software Engineering	20 C
SE1SC5	Computer Science Roadmap	20 C
SE1EB5	Computer and Internet Technologies	20 C
MA116	Mathematics for Computer Scientists	20 C

Optional modules

Students are required to select additional modules to the value of 20 credits to make 120 credits in total. Possible options include:

SE1CA5	Cybernetics and its Application	20 C
SE1TQ5	COTS 1	20 C
	Modern Languages (IWLP)	20 C

Part 2 (three terms)

Compulsory modules

CS2A6	Compilers	10 I
CS2B6	Operating Systems	10 I
CS2C6	Computer Architecture	10 I
CS2D2	Databases	10 I
CS2F6	Collaborative Design and Programming	20 I
CS2G2	Algorithmic Techniques	20 I
CS2R6	Space Robotics	20 I
CS2TS6	Software Engineering 2 and Career Management	20 I

Part 3 (three terms) *Compulsory modules*

Compulsory modules			
	SE3Z5	Social, Legal & Ethical Aspects of Science & Engineering	20 H
	CS3Q2	Computer Science Final Year Project	30 H
Optional modules (a total of 70 credits to be chosen):			
	CS3A2	Computer Networking	10 H
	CS3B2	GUI, Web and Multimedia Design	10 H
	CS3J2	Computer Graphics I	10 H
	CS3D2	Computer Graphics II	10 H
	CS3E6	Distributed Computing	10 H
	CS3F6	XML and Semantic Web Technologies and Applications	10 H
	CS3H7	Concurrent Systems	10 H
	CS3K7	Data Mining	10 H
	CS3L2	Neural Computation	10 H
	CS3M6	Evolutionary Computation	10 H
	CS3U7	Image Analysis	10 H
	CS3V7	Visual Intelligence	10 H
	CS3W7	Multi-Agent Systems	10 H
	CS3Y7	Robot Systems	10 H
	CS3C5	Dependable Systems Design	10 H
	CY3F2	Virtual Reality	10 H
	MM374	Informatics for E-Enterprise	20 H
	CS3TB4	Software Quality and Testing	10 H
	CS3TE4	Requirements Analysis	10 H
	CS3TZ4	Network Security	10 H
	CS4B2	Parallel Algorithms	$10 \mathrm{H}$
	CS4E7	Computational Robotics	$10 \mathrm{H}$

Progression requirements

To gain a threshold performance at Part 1 and qualify for the CertHE a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, where all the credits are at C level or above, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1 to Part 2, a student shall normally be required to achieve a threshold performance at Part 1, and to have no module mark below 30% in any of the compulsory Part 1 modules.

To gain a threshold performance at Part 2 and qualify for the DipHE a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2.

A student must obtain at least 40% in their project (CS3Q2) to be eligible for honours.

Part 2 contributes one third of the overall assessment and Part 3 the remaining two thirds.

Summary of teaching and assessment

Teaching is organised in modules that typically involve both lectures and practical work. Most modules are assessed by a mixture of coursework and formal examination. However, some modules are assessed only as coursework, while others are assessed solely by examination. Details are given in the relevant module descriptions.

Admission requirements

Entrants to this programme are normally required to have obtained: Grade B in Mathematics and Grade C in English in GCSE; and achieved A level: 300 points from 3 A Levels, or 340 points from 3 A Levels and 1 AS Level (total points exclude General Studies) International Baccalaureate: 33 points; or Irish Highers: AABBB Equivalent qualifications are acceptable.

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Within the providing Department additional support is given though practical laboratory classes. The development of problem-solving skills is assisted by appropriate assignment and project work. There is a Course Adviser to offer advice on the choice of modules within the programme. Course handbooks are provided for each Part of the course: these give more details about the modules which make up the degree. In addition, the School of Systems

Engineering produces a Handbook for Students, which provides general information about the staff and facilities within the school.

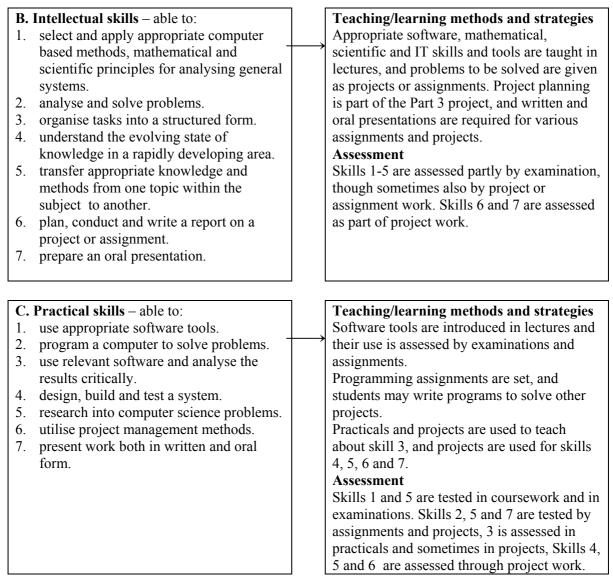
Career prospects

In recent years most students who have followed this programme have gone into careers in the software industry. These range from small start up companies to multi-nationals and several graduates have started their own businesses. Others have joined research groups in university and industry, the public service, and the teaching professions.

Opportunities for study abroad

N/A

Educational aims of the programme


To develop the students' knowledge of the theory and practice of modern computer science, necessary for them to secure employment as professional software engineers in a wide variety of industries; to encourage their critical and analytical skills; and to develop their skills in applying theoretical concepts to the practice of computer systems design.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

A. Kno	owledge and understanding of:		Teaching/learning methods and strategies
1.	software engineering and theoretical		The knowledge required for the basic topics
	issues in Computer Science.		is obtained via lectures, exercises, practicals,
2.	a range of programming languages		assignments and project work.
	and environments.		Appropriate IT and other software packages
3.	information technology.		are taught.
4.	appropriate mathematical techniques,		Practical demonstrators and project
	including the use of mathematics as a		supervisors advise students, and feedback is
	tool for communicating results, —	\longrightarrow	provided on all continually assessed work.
	concepts and ideas.		As the course progresses students are
5.	business context.		expected to show greater initiative.
6.	engineering practice.		Assessment
			Most knowledge is tested through a
			combination of practicals, assignments and
			formal examinations. Students write reports
			on many assignments, and also make oral
			presentations of their work.

D. Transferable skills – able to:	Teaching/learning methods and strategies
1. use software tools.	Software tools are taught partly in lectures,
2. acquire, manipulate and process data.	mainly through practical sessions and
3. use creativity and innovation.	assignments.
4. solve problems.	Data skills are acquired in laboratory and
5. communicate scientific ideas.	projects. Creativity and innovation and
6. give oral presentations.	problems solving are experienced through
7. work as part of a team.	projects, as are team working, time
8. use information resources.	management and presentations. Use of
9. manage time.	information resources, such as the library and
	IT methods is experienced through projects
	and assignments.
	Assessment
	Some skills, like the use of software tools
	and ability to communicate orally and in
	written form are directly assessed, in
	assignments or projects, other skills are not
	directly assessed but their effective use will
	enhance the students overall performance.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.