CH1I1	Introduction to Inorganic Chemistry	20	С		
CH1O1	Introduction to Organic Chemistry	20	С		
CH1P1	Introduction to Physical Chemistry	20	С		
AR1TS1	Archaeological Practice	20	С		
CH1SK1	Skills for Chemists	10	С		
The follow	The following module is compulsory for students who do not have an A or AS				
level pass in Mathematics and must be taken in place of CH1SK1.					
CH1M	Chemistry M	20	С		
The following module is compulsory for those students with an A level pass at grade					
C-E and optional for those with a grade A-B.					
CH1M2	Mathematics for Chemistry2	10	С		
arch05.doc			Mar2007		

BSc Chemistry with Archaeology For students entering Part 1 in 2005

Awarding Institution: Teaching Institution: Relevant QAA subject benchmarking group: Faculty of Science

Programme Director: Programme Adviser: Board of Studies: Recognition:

UCAS Code: F1V4

The University of Reading The University of Reading Chemistry Programme Length: 3 years Date of specification: Mar 2007 Dr MJ Almond Dr MJ Almond Chemistry The Royal Society of Chemistry

Credits Level

Summary of programme aims and learning outcomes:

The programme is designed to provide a broad and rigorous study of modern Chemistry and to provide knowledge of key areas of modern archaeology. It is designed to receive recognition by the Royal Society of Chemistry. (For a fuller statement of the programme aims and learning outcomes see below.)

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to develop their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team-working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following skills: IT (word-processing, use of spreadsheets and databases), scientific writing, oral presentation, team-working, problem-solving, use of library resources, time-management, and career planning and management.

Programme content

The BSc Chemistry with Archaeology degree programme is divided into three Parts, each of 120 credits. The degree profile outlined below lists the compulsory modules and gives some indication of the optional modules from which the student must make a selection. Students choose such optional modules in consultation with the Programme Adviser or the Programme Director. The number of credits for each module is given after its title.

Part 1 (three terms 2005-2006)

Compulsory Modules (90 or 100 credits)

Optional modules (10 or 20 or 30 credits)

Students who are not required to take CH1M or CH1M2 will select **one** of the following two 20 credit modules plus a further 10 credit module from outside the School of Chemistry.

Students who take CH1M2 will select one of the following two 20 credit modules.

	, and the second s	Credits	Level	
AR1P1	Introduction to World Prehistory	20	С	
AR1RM1	Introduction to Historical Archaeology	20	С	
Students who take CH1M will select one other 10 credit module.				

Part 2 (three terms) (2006-2007)

Compulsory Mo	dules (120 credits)		
CH2I1	Inorganic Chemistry 2	20	Ι
CH2O1	Organic Chemistry 2	20	Ι
CH2P1	Physical Chemistry 2	20	Ι
CH2A1	Analytical Chemistry & Professional Skills 2	20	Ι
AR2S1	Archaeological Science	20	Ι
AR2F4	Silchester Field School	10	Ι
AR2F6	Techniques in Skeletal Interpretation	10	Ι

Part 3 (three terms) (2007-2008)

Compulsory modules (60 credits)			
CH3A1	Analytical Chemistry & Professional Skills 3	20	Н
CH3PR	Project	40	Η

Optional modules (60 credits)

Four 10 credit modules must be selected from the following:			
CH3I1	Biomolecular Structure and Aspects of Transition	10	Η
	Metal Chemistry		
CH3I2	Shapes and Structures of Small Molecules and	10	Н
	Extended Arrays		
CH3O1	Advanced Organic Chemistry- Synthesis of Complex	10	Н
	Targets		
CH3O2	Advanced Organic Chemistry- Contemporary	10	Н
	Synthetic Methodology		
CH3P1	Advanced Topics in Physical Chemistry 1	10	Н
CH3P2	Advanced Topics in Physical Chemistry 2	10	Η

Additionally **one** 20 credit module must be selected from the following list. The exact list of archaeology modules available for the year 2007-2008 at Part 3 has not yet been finalised but topics will include or be similar to the following:

	1 0		
AR3S6	Paleopathology	20	Н
AR3S4	Micromorphology and the study of early agricultural	20	Η
	and urban settlements and landscapes		
AR3S8	Biomolecular Archaeology	20	Η

Progression from Part 1 to Part 2:

To gain a threshold performance at Part 1 a student shall normally be required to achieve an overall average of 40% over 120 credits taken in Part 1, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 1

to Part 2, a student shall normally be required to achieve a threshold performance at Part 1 and

- not less than 40% in the compulsory core modules (CH111, CH1O1 and CH1P1) averaged together **and**
- not less than 40% in the practical chemistry components of the core modules averaged together and
- not less than 40% in the compulsory Archaeology modules (AR1TS1) and either AR1P1 or AR1RM1)

Progression from Part 2 to Part 3

To gain a threshold performance at Part 2 a student shall normally be required to achieve: an overall average of 40% over 120 credits taken in Part 2, and a mark of at least 30% in individual modules amounting to not less than 100 credits. In order to progress from Part 2 to Part 3, a student shall normally be required to achieve a threshold performance at Part 2, **and**

- not less than 40% in the core modules (CH2I1, CH2O1, CH2P1 and CH2A1) averaged together **and**
- not less than 40% in the practical chemistry components of the core chemistry modules averaged together **and**
- not less than 40% in the compulsory Archaeology modules (AR2S1 and AR2F4)

A pass of at least 40% in module CH3PR is required to qualify for an honours degree.

Students who do not average 40% in their Archaeology modules in Part 1 or Part 2 but who are otherwise qualified may transfer to the BSc Chemistry programme.

Summary of Teaching and Assessment

Teaching is organised in modules that involve a combination of lectures, tutorials, workshops and practical sessions. Modules are assessed by a mixture of coursework and formal examinations. At least 50% of the assessment will normally be by formal examination except for the Part 3 project and the Silchester Field School, which will be assessed through laboratory or field work, the written report and an oral presentation.

Part 2 contributes one third and Part 3 contributes two thirds towards the Final Degree classification.

The University's honours classification is as follows:

Mark	Interpretation
70% - 100%	First class
60% - 69%	Upper Second class
50% - 59%	Lower Second class
40% - 49%	Third class
35% - 39%	Pass below Honours standard
0% - 35%	Fail

Admission requirements

Entrants to this programme are normally required to have obtained: Grade C or better in Mathematics and English in GCSE; and to have achieved UCAS tariff: 260 from 3 A levels including B in Chemistry (two AS grades are acceptable in place of one A-level), or International Baccalaureate: 30 points including 6 in chemistry, or Scottish Highers: BBBB including B in Chemistry, or Irish Leaving Certificate: BBBBC including B in Chemistry.

Admissions Tutor: Dr J M Elliott

email j.m.elliott@rdg.ac.uk

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4000 current periodicals, has a range of electronic sources of information and houses the Learning Resource Centre with some 200 workstations. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisers, Hall Wardens and the Students' Union.

Within the Department of Chemistry additional support is given through practical classes and tutorials in every Part of the degree programme. There are Course Advisers for every Part of the programme and the Director of Undergraduate Studies is also available for consultation and advice on academic and personal matters.

Careers prospects

A BSc degree in Chemistry with Archaeology from the University of Reading provides a strong platform from which to undertake a wide range of careers both within the chemical community and outside. The degree contains a core of chemistry modules and as such Chemistry with Archaeology graduates will have available to them most of the career options that are also available to BSc Chemistry graduates. Chemists are highly valued for their numerical and problem solving skills as well as their technical knowledge. They can use their chemical knowledge as research workers, technical assistants, or sales and marketing personnel within the chemical industry. Alternatively, Chemistry graduates from Reading have found employment using their numerical and other skills in more general areas such as accounting and computing. In addition, some students with a BSc chemistry degree pursue postgraduate work, either at Reading or elsewhere, by studying for a higher degree in specialised areas of Chemistry. Chemistry with Archaeology graduates will be qualified to follow all of the career paths listed above. In addition they will gain specialised knowledge of scientific archaeology and of analytical chemistry. This will allow employment in areas where analytical chemistry is utilised to investigate archaeological problems.

Opportunities for study abroad

Only limited opportunities for study abroad are available in this programme. The programme specification does not allow language modules to be taken, as such study abroad would only be available to those students who already have sufficient language skills. For those students it would be possible for a non-assessed year abroad to be intercalated between parts 2 and 3 of the programme.

Programme outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

		1	
	Knowledge and understanding of:		Teaching/learning methods and strategies
1.			The knowledge required for the basic topics is
	of chemistry		provided in formal lectures supported by problem
2.	a selection of more specialist topics in		sets for students to tackle on their own and which
	the three main branches of the subject		are discussed formally in tutorial sessions with
	and in analytical chemistry		members of staff.
3.	the main techniques involved in practical		
	work		Practical classes are held throughout Parts 1 & 2 in
4.	the spectroscopic methods used to ident-	\rightarrow	which students develop their skills prior to
	ify molecules and to determine their		applying them in their Part 3 project.
	structure and the basics of the underlying		
	theory		Feedback on student work is provided by the
5.	specialised topics in archaeology		discussion and return of work in tutorials and by
	particularly in scientific archaeology		regular workshop sessions during which students
6.	the principles of archaeological		tackle unseen problems in the presence of
	fieldwork		academic staff who provide support.
			All practical work is marked and returned to the
			student.
			Assessment
			Most knowledge is tested through a combination of
			coursework and unseen formal examinations,
			although 3 and 6 are assessed by coursework.
			Dissertations and oral presentations also contribute
			to assessment, particularly in Part 3.

Skills and other attributes

B. Intellectual skills – be able to:	Teaching/learning methods and strategies
1. think logically	Logic is an essential part of the understanding and
2. analyse and solve problems	construction of synthetic methods and mechanistic
3. organise tasks into a structured form	pathways which form the framework for much
•	
4. understand the evolving state of	organic and inorganic chemistry.
knowledge in a rapidly developing area	
5. transfer appropriate knowledge and	While not exclusively the preserve of physical
methods from one topic within the	chemistry, problem solving plays a major part in
subject to another	this section of the course and in the Silchester
6. plan, conduct and write a report on an	Field School.
independent project.	
independent project.	
	Latest developments in the subject are introduced
	where appropriate, particularly in Part 3.
	Practical reports in Part 1 & 2 provide training for
	the Part 3 project report.
	Assessment
	1.0000000000000000000000000000000000000
	1-4 are assessed directly and indirectly in most
	parts of this chemistry with archaeology
	programme, while 5 contributes to the most
	successful work.
	6 is assessed in the Part 3 project report.

 C Practical Skills:- be able to 1. follow practical instructions safely and accurately 2. carry out a variety of experimental procedures 3. measure and interpret various spectroscopic techniques 4. interpret quantitatively the results of their experiments 5. formulate safety protocols 6. devise suitable experimental methods for tackling a particular problem 7. carry out archaeological study in the field 	 Teaching/learning methods and strategies Detailed practical manuals are provided for all practical courses in Parts 1 & 2, together with sources of recommended further reading. Staff and post-graduate demonstrators are present during every practical session to guide and help students and to mark their reports. Workshop sessions are held to assist students in interpreting spectroscopic information obtained on unknown compounds. In Part 3 students work on individual projects under the supervision of one or more members of staff. Assessment 1 to 4 are tested to different extents by the practical work associated with Parts 1 & 2 of the chemistry course and in Archaeological Science 3 is assessed through problems set in written examinations. 5 is specifically assessed during the organic practical course in Part 2, although safe working procedures are emphasised at every stage. 3 is specifically but not exclusively assessed within core modules CH2A1 and CH3A1. 6 is assessed through the Silchester Field School
 D. Transferable skills – be able to: 1. use IT (word-processing, spreadsheets and chemical databases) 2. communicate scientific ideas 3. give oral presentations 4. work as part of a team 5. use library resources 6. manage time 7. plan their career 	Teaching/learning methods and strategiesThe use of IT is embedded throughout theprogramme but, is specifically addressed in thecore module CH1SK1.Team work and career planning are part of moduleCH2A1 and teamwork is also a major componentof the Silchester Field School. Oral presentationsare associated with modules CH3A1 and CH3PR.Library resources are specifically addressedthrough a small project in module CH3A1, andwithin the third year project.Time management is essential for the timely andeffective completion of the programmeAssessment1 - 5 contribute assessed coursework within thetwo compulsory modules on analytical andprofessional skills, CH2A1 and CH3A1.Career planning is assessed through the 5 creditCMS course embedded within module CH2A1.

Please note - This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in the module description and in the programme handbook. The University reserves the right to modify this specification in unforeseen circumstances, or where the process of academic development and feedback from students, quality assurance processes or external sources, such as professional bodies, requires a change to be made. In such circumstances, a revised specification will be issued.