
A Moving Mesh Approach to Avascular Tumour

Growth

Tamsin lee

January 29, 2010



Abstract

A two-phase mathematical model of an avascular tumour proposed by

Breward, Byrne and others is discussed. Instead of mapping the moving

domain to a fixed domain, a moving mesh approach is taken. The report

compares three moving mesh strategies, two of which arise from biological

considerations. The understanding gained suggests new approaches to

modelling the growth of the tumour.
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Chapter 1

A brief background on cancer

growth

A tumour is a group of cancer cells. Like all cells, these cells gain nutrients, such

as glucose and oxygen, from the surrounding environment. There is disagree-

ment as to what causes a normal cell to turn into a cancer cell. Nonetheless,

it is generally accepted that once a tumour is initiated it has three successive

growth stages that it can possibly go through.

The first stage is referred to as the AVASCULAR stage. At this early

stage the tumour has a large surface area in relation to its size. Consequently,

a large proportion of the cells benefit from the surrounding nutrients and prolif-

erate, causing the tumour to grow rapidly. This can only continue to a certain

size. As the tumour grows the external nutrients cannot diffuse into the cells in

the centre. The cells in the centre go into a quiescent state. In this state, they

are dormant - but are able to proliferate again should nutrients become avail-

able to them. As the cells on the edge continue to proliferate, i.e. the tumour

grows, the proliferating region expands and the cells in the centre die creating

a necrotic core. At this stage, there is a balance between the maximum possi-

ble size of the tumour and its surrounding environment, the key reason being

the limited ability of the majority of cells to obtain nutrients. However, some

mathematical models include other relevant factors such as surface tension [15],

[12], attractive cell forces [4], residual stress [1] and contractility (possibly due

to the wound-healing process) [13].

During the avascular stage, tumours are malignant and are unlikely to

affect the host. However, once the tumour obtains a dependable blood supply

from a nearby capillary, then it advances to the more aggressive VASCULAR

stage. A nutrient rich capillary is drawn into the tumour, onsetting the rapid
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Figure 1.1: The growth of an avascular tumour
.

growth of cancerous cells. The process by which the tumour obtains its own

blood supply is called ANGIOGENESIS and preventing this from occurring is

of particular interest to drug development. This is because once the tumour

has obtained a blood supply the tumours can leave its primary location via the

circulatory system (metastasis) and settle in multiple areas of the body. The

METASTATIC stage is the final stage of tumour growth, and the most difficult

to treat.

From the moment normal cells mutate to cancer cells, there are three

distinct stages to cancer. The different stages have different characteristics so

require individual investigation. We shall study the primary stage, avascular

tumour growth.

1.1 Avascular tumours

As previously mentioned, the later stages of tumour growth are more critical

since it is usually not until after angiogenesis that cancer is detrimental to the

hosts’ health. During the avascular stage, the tumour is malignant. Indeed,

following a study of human cancers in mice [18] there is recent controversial

hypothesis that we all have small dormant avascular tumours in our bodies.

Regardless of this clinical viewpoint, avascular tumour growth warrants

the interest of scientists. It is beneficial to understand the simple system and

its components prior to attempting analysis of a more complex system. Vascu-

lar tumours have many of the same characteristics as avasuclar tumours, but
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the quantity and quality of data on avascular tumours is of a higher standard.

This is because it is comparatively easier and cheaper to reproduce high quality

avascular tumour experimental evidence in in vitro form.

In summary, we will be investigating a model for avascular tumours (see

Figure 1.1) as they are simpler to model and help give an insight into the

mechanisms of vascular tumour growth.

Figure 1.2: An avascular tumour
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Chapter 2

The role of mathematics in

cancer research

Ever since complex life evolved, it has been susceptible to cancer. The old-

est description of cancer in humans was found in an Egyptian papyrus written

between 3000-1500 BC. Today specialists are still extensively researching and

experimenting in attempts to find cures and improve treatments. In the United

Kingdom, one in four people will die of cancer, whilst one in three will be di-

agnosed to have cancer at some point in their life [20]. These figures illustrate

how rife cancer is in modern society - and thereby it gives an indication into

the vast size of the cancer research industry.

Despite the considerable volumes of time and money that is invested in

this industry, the tools of mathematics have not really been exploited. The

UK’s first specialist cancer research organisation was set up in 1902, yet math-

ematics only started making a major contribution in this field from the early

seventies. Most of the research is in molecular biology, cell biology and drug

delivery. However, the use of mathematics to aid cancer research is increasing

by way of computational modelling, as well as analysis on the large library of

experimental data.

Indeed, it has been noted that a conceptual framework within which all

these new (and old) data can be fitted is lacking [11]. In [10] it states that

‘clinical oncologists and tumour biologists posses virtually no comprehensive

theoretical model to serve as a framework for understanding, organising and

applying these data’. By being educated as to which mechanisms are criti-

cal to the essence of tumour growth, these could possibly be manipulated to

our advantage. As Byrne (1999a) remarks, ‘In order to gain such insight, it

is usually necessary to perform large numbers of time-consuming and intricate
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experiments - but not always. Through the development and solution of math-

ematical models that describe different aspects of solid tumour growth, applied

mathematics has the potential to prevent excessive experimentation’ [6].

Ideally, experiments and modelling work hand-in-hand. The experiments

can not only prove to be costly, but the subtleties of the many intricate pro-

cesses can easily be overlooked. By modelling tumour growth to mimic data

already collected, potentially pivotal characteristics can be identified. This can

ensure that these interactions are monitored closely in future experiments. Ul-

timately, the aim for applied mathematics in tumour growth is to enlighten

biologists as to the key processes, so that these can be artificially altered in a

manner that eradicates (or manages) the disease.

2.1 Parameterisation

Gaining parameters for tumour growth is a challenge within itself. There are

many variables on varying scales - some of which can be difficult to measure.

For example, the in vivo measurement of a pressure that is probably very low

(∼ 10 mmHg) in a sample that is very small in size (max 1mm) is technically

very difficult [16]. ‘An important role of modelling in this respect is to de-

termine, via sensitivity and/or bifurcation analysis, on which parameters the

behaviour of the model crucially depends, thereby identififying which parame-

ters need to be measured correctly’ [16]. For example, when parameterising the

concentration of nutrients surrounding the tumour, the value may refer only to

the glucose concentration as this is the main ingredient. Or perhaps another

nutrient that only appears in trace amounts (hence may be overlooked during

experimentation) has a considerable effect on cancer cells.

When choosing parameters, the values may be chosen to show qualitative

predictions. An example is given in [9] where a phenomenon was shown to be

largely independent of the specific parameter values. All the same, if param-

eters are available then a well-parameterised model can make quantative and

qualitative predictions.
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Chapter 3

A two-phase model of solid

tumour growth

Byrne et al. [7] formulated a two-phase model of solid tumour growth as a more

general version of two different pre-exisiting models for solid tumour growth -

[11] and [17]. Although full details of the modelling are not given in this pa-

per, the biological reasoning and assumptions that contribute to the model are

explicitly described. This is the model that we will be discussing and solving

numerically in this report.

Our first task is to non-dimensionalise the model. This involves the

partial or full removal of units by a suitable substitution of variables. Non-

dimensionalisation can simplify a problem by reducing the number of variables.

It also aids analysis of the behaviour of a system by recovering characteristic

properties. In our case, the key motivator to non-dimensionalising the system

is to enable us to take advantage of parameterisations studied elsewhere.

In this report we shall approximately solve the non-dimensionalised mov-

ing boundary problem by applying a moving mesh approach. We move the

mesh in three different ways: by ensuring that mass fractions in an element re-

main constant over time; by moving the mesh with the cell velocity; by driving

mesh movement iin proportion to that of the moving boundary.

The results generated from these methods are discussed and compared

with previous results.

3.1 Model formulation

In [7] it is assumed that a tumour consists of cells and water, with respective

volume fractions α and β (with α + β = 1). The two phases have an associ-
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ated velocity, pressure and volume-fraction-averaged stress tensor denoted by

(vc, pc, σc) for the cell phase and (vw, pw, σw) for the water phase.

The cell and water phases are treated as incompressible fluids whose den-

sities are equal to leading order. Consequently, by applying mass balances to

the cell and water phases, two partial differential equations (PDEs) for α and

β are generated. These PDEs are stated in terms of the respective velocities

and the volume conversion rates Sc = −Sw (since the net cell proliferation rate

is zero; thus cells are viewed as being made essentially of water). These PDEs

are simplified to the one-dimensional forms

∂α

∂t
+

∂

∂x
(αvc) = Sc(α, C),

∂

∂x
(αvc + (1 − α)vw) = 0, (3.1)

where Sc is consistent with [19] and is taken to be of the form

Sc(α, C) =

(

s0C

1 + s1C

)

α(1 − α) −

(

s2 + s3C

1 + s4C

)

α

for positive constants s0, s1, s2, s3 and s4, and where C is a function of (x, t)

that represents the nutrient concentration within the tumour.

The formulation of the model continues by applying momentum balances

to the two phases, assuming that inertial effects are negligible and no external

forces act on the system. This reduces the momentum conservation laws to

force balances. The resulting equations contribute to closing the model.

It is further assumed that on the timescale of interest, the cell and water

phases can be treated as viscous and inviscid fluids respectively. This allows the

volume-fraction-averaged stress tensors σc, σw to be written in terms of shear

and bulk viscosity coefficients of the cell phase, µc, λc, and pressure for the cell

phase, pc.

In [7] a three-dimensional model of avascular tumour growth is devel-

oped. It is then assumed that the tumour undergoes one-dimensional growth,

parallel to the x-axis, that occupies the region −xN (t) ≤ x ≤ xN (t) at time t

and is symmetric about its midpoint x = 0. In addition to (3.1) the final model

consists of the momentum balance equations

∂

∂x

(

−p − αΣc(α) + (2µc + λc)α
∂vc

∂x

)

= 0, −(1 − α)
∂p

∂x
= k(α)(vw − vc)(3.2)

and the nutrient diffusion equation

∂2C

∂x
− QC(α, C) = 0, (3.3)
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where

• Σc(α) is the pressure difference between the two phases and may include

contributions due to, for example, cell-cell interactions and membrane

stress. It is defined by

Σc(α) =

{

0 0 ≤ α < αmin

Σ̂c|α−α∗|r−1

(1−α)q (α − α∗) αmin ≤ α < 1

for positive constants q, r, 0 < αmin < α∗ < 1 and Σ̂c.

When specifying Σc(α), α∗ denotes a natural cell packing density: if α >

α∗ cells move to reduce their stress, while if α < α∗, they aggregate, if

they are not too sparsely populated (α ≥ αmin) By definition we have

Σc(0) = 0,

• p = pc − Σc(α) where pc is the pressure for the cell phase,

• k(α) is a drag coefficient of the form,

k(α) = k0α(1 − α),

for a positive constant k0,

• Qc(α, C) models the rate at which the tumour cells consume nutrients,

and is of the form

Qc(α, C) =
Q0Cα

1 + Q1C
≥ 0,

for positive constants Q0 and Q1.

By definition, the tumour occupies the domain in which α > 0. At the boundary

its growth rate is governed by the cell velocity at x = xN (t), so

dxN

dt
= vc(xN , t). (3.4)
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These equations are defined on a moving domain, and in the model are subject

to the boundary conditions and initial conditions below,

vc = vw =
∂C

∂x
= 0 at x = 0, (3.5)

p = 0, (2µc + λc)
∂vc

∂x
− Σc(α) = 0, C = C∞ at x = xN (t) (3.6)

α = α0(x), x = x0 at t = 0. (3.7)

Equations (3.5) ensure symmetry about x = 0. In (3.6), C∞ denotes the nutri-

ent concentration in the medium surrounding the tumour and we assume that

C is continuous across the moving boundary x = xN (t). Equation (3.6) also

guarantees continuity of the normal component of the cell and water stress ten-

sors across x = xN (t), with the ambient pressure outside the tumour normalised

so that p = 0 there and the tumour boundary is stress-free. Finally, equations

(3.7) specify the initial cell distribution within the tumour and its initial size.

By integrating the second part of (3.1) and the first part of (3.2), subject

to (3.5) and (3.6), expressions for vw and p are deduced. These expressions can

be substituted into the second part of (3.2) to give the single equation

∂

∂x

(

(2µc + λc)α
∂vc

∂x
− αΣc(α)

)

=
k(α)

(1 − α)2
vc (3.8)

for vc.

The model thus comprises the diffusion equation describing the nutri-

ent concentration (3.3), an equation describing the velocity (3.8) (derived from

the second part of (3.1)), and a PDE for the volume fraction of cells (3.1),

subject to the boundary and initial conditions given in (3.5) to (3.7).

3.2 Non-Dimensionalisation

The model put into a simple non-dimensional form by taking a typical length

scale associated with the initial tumour size to be

L = xN (0),
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and a time scale associated with the outside nutrient concentration to be

T =
1 + s1C∞

s0C∞
.

This scaling provides us with the normalised variables

α̂ = α ⇒ α = α̂, volume fraction

Ĉ = C
C∞

⇒ C = C∞Ĉ, concentration

t̂ = 1
T

t = s0C∞

1+s1C∞

t ⇒ t = 1+s1C∞

s0C∞

t̂, time

x̂ = 1
L
x = 1

xN (0)x ⇒ x = xN (0)x̂, length

x̂N (t̂) = 1
L
xN (t̂) = 1

xN (0)xN (t) ⇒ xN (t) = xN (0)x̂N (t̂), length

v = T
L
vc = 1+s1C∞

xN (0)s0C∞

vc ⇒ vc = xN (0)s0C∞

1+s1C∞

v̂. velocity

We thus obtain the following non-dimensionalised system

∂α̂

∂t̂
+

∂

∂x̂
(α̂v) =

(1 + ŝ1)Ĉ

1 + ŝ1Ĉ
α̂(1 − α̂) −

ŝ2 + ŝ3Ĉ

1 + ŝ4Ĉ
α̂ = Ŝ(α̂, Ĉ) (3.9)

∂

∂x̂

[

α̂µ
∂v

∂x̂
− α̂χ(α̂)

]

= k̂
α̂

1 − α̂
v (3.10)

∂2Ĉ

∂x̂2
−

QĈα̂

1 + Q̂1Ĉ
= 0 (3.11)

with initial and boundary conditions
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x̂N (0) = 1, α = α0 at t̂ = 0 (3.12)

v̂ =
∂Ĉ

∂x̂
= 0 at x̂0 = 0 (3.13)

⇒ µ
∂v̂

∂x̂
− χ(α̂) = 0,

∂x̂N

∂t̂
= v̂, Ĉ = 1 at x̂ = x̂N (3.14)

In equations (3.9) to (3.14) we have introduced the parameters

ŝ1 = s1C∞, ŝ2 =
(1 + s1C∞)

1 + s1C∞
s2, ŝ3 =

1 + s1C∞

s0
s3, ŝ4 = s4C∞,

k̂ =
k0x

2
N (0)s0C∞

1 + s1C∞
, µ = (2µc + λc)

s0C∞

(1 + s1C∞)
,

χ(α̂) =

{

0 0 ≤ α̂ < αmin

Σ̂c|α̂−α∗|r−1

(1−α̂)q (α̂ − α∗) αmin ≤ α̂ < 1
,

Q = Q0x
2
N (0), Q̂1 = Q1C∞.

In what follows the hats ( .̂ ) are dropped from the variables and param-

eters.

In this study we shall solve this model numerically using three moving

mesh methods.
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Chapter 4

Moving meshes

Generally, for the numerical solution of time-dependent differential equations

with a moving boundary a static or a moving mesh method can be used. Either

of these can be considered as an adaptive mesh method. With a static mesh the

discrete solution and equation are initially defined on a given mesh. At each

time step a new mesh (which may have a different number of nodes to the pre-

vious mesh) is generated and the solution is interpolated from the old mesh to

the new. Static methods are generally robust, but the computation can be slow.

When using a moving mesh, a mesh with a fixed number of nodes moves

smoothly with the solution itself. Often, a mesh equation and the differen-

tial equation are solved simultaneously to generate the new nodes and solution.

With a moving mesh, interpolation of dependent variables from the old mesh

to the new mesh is unnecessary. It is possible to map a moving domain onto a

Figure 4.1: A moving boundary problem

fixed domain at the expense of an additional variable to cover for the boundary

movement (Figure 5.2). This is the approach used in [4]. In this work we use a

moving mesh strategy.
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Figure 4.2: A moving boundary problem having been mapped onto a fixed
domain

4.1 Conservative and Non-Conservative methods

It is possible to approach the problem in this study by finding the time rate of

change α̇ of the solution α on a moving mesh having a given velocity ẋ. To do

this the chain rule is used to differentiate α(x, t) with respect to time, giving

α̇ =
∂α

∂t
+

∂α

∂x
ẋ = S(α, C) −

∂

∂x
(αv) +

∂α

∂x
ẋ.

This technique generates an additional term
(

∂α
∂x

ẋ
)

due to the mesh movement.

However, it also makes the moving equation non-conservative in the sense that

∫

α̇ dx 6=
d

dt

∫

α dx,

which is inconsistent with the mass conservation equation (3.1).

A conservative approach is to differentiate the integral of the solution
∫

α dx

with respect to time, taking into account the time-variation of the limits. To

do this we apply Leibnitz integral rule and substitute in the PDE (3.1), giving

d

dt

∫

α dx =

∫

∂α

∂t
dx +

[

αẋ
]

=

∫ [

∂α

∂t
+

∂

∂x
(αẋ)

]

dx

=

∫

Sc(α, C) dx +
[

α(ẋ − vc)
]

.

The moving mesh methods used in this study are based on the latter approach,

which is conservative.
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4.2 Different methods to move the mesh

We will investigate three strategies for moving the mesh, i.e., different ways to

define the mesh velocity ẋ. The three mesh velocities will be:

A: based on conserving mass fractions,

B: the cell velocity v,

C: proportional to the boundary movement dxN

dt
.

As with all moving mesh methods, the methods here retain the information at

the free boundary. For this problem, that means that the final mesh node xN

tracks the tumour radius.

4.3 The General Algorithm

For all three methods, we use the following algorithm:

(1) Calculate the concentration C.

(2) Calculate the cell velocity v.

(3) Calculate the mesh velocity ẋ.

(4) Update the mesh x(t) by using an explicit time-stepping scheme.

(5) Using the new mesh, calculate the solution of α .

Steps (1) and (2) are therefore common to the three methods, and we discuss

these first.
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Chapter 5

The numerical processes

Firstly in this chapter we give details of the numerical process for finding the

C and v (Steps 1 and 2), both of which are calculated using finite differences

on an irregular mesh. Then we look at solving the PDE for α using the three

different moving mesh approaches.

5.1 Calculating the nutrient concentration C(x, t)

(Step 1)

We have the nonlinear PDE (3.11)

∂2C

∂x2
−

QCα

1 + Q1C
= 0,

with boundary conditions given in (3.13) and (3.14)

∂C

∂x
= 0 at x = 0,

C = 1 at x = xN .

We discretise the differential equation (3.11) on a variable mesh {xj}, and

rearrange the discretisation so that the coefficients for Cj of ∂2C
∂x2 are on the left

hand side and distinct, i.e.

Cj+1−Cj

xj+1−xj
−

Cj−Cj−1

xj−xj−1

1
2(xj+1 − xj−1)

=
QCjαj

1 + Q1Cj
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which can be written as

T l
jCj−1 + T d

j Cj + T u
j Cj+1 = w(Cj) (j = 1, 2, ..., N − 2), (5.1)

where

T l
j =

2

(xj − xj−1)(xj+1 − xj−1)
,

T d
j =

−2

(xj+1 − xj)(xj − xj−1)
,

T u
j =

2

(xj+1 − xj)(xj+1 − xj−1)

and

w(Cj) =
QCjαj

1 + Q1Cj
.

Equation (5.1) does not hold for j = N as this is known. For j = 0, N − 1, we

need to take account of the boundary conditions.

We write the non-linear system (5.1) in matrix form as

TC = w(C) (5.2)

where

C is a vector with entries C0 to CN−1 (j = 0, 1, ..., N − 1),

w(C) is a vector with entries w(Cj) (j = 0, 1, ..., N − 1),

and

T is a tridiagonal matrix of the Cj coefficients given in (5.1),

T =





















T d
0 T u

0 0 · · · 0

T l
1 T d

1 T u
1

. . .
...

0
. . .

. . .
. . . 0

...
. . . T l

N−2 T d
N−2 T u

N−2

0 · · · 0 T l
N−1 T d

N−1





















.

Boundary Conditions: j = 0

The boundary condition (3.13) states that ∂C
∂x

= 0 at x = 0, meaning that
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the function is symmetrical about x0. Hence, we conclude that at x1 = −x−1

we have C1 = C−1. Substituting these values into (5.1) for j = 0 gives

−2

x2
1 − x2

0

C0 +
2

x2
1 − x2

0

C1 =
QC0α0

1 + Q1C0
. (5.3)

Therefore, we have values for T d
0 , T u

0 and w0(C)

T d
0 = −T u

0 =
−2

x2
1 − x2

0

,

w(C0) =
QC0α0

1 + Q1C0
.

Boundary Conditions: j = N − 1

For the right boundary we return again to (5.1), this time for j = N − 1

with the substitution CN = 1 (from (3.14)),

2

(xN−1 − xN−2)(xN − xN−2)
CN−2 −

2

(xN − xN−1)(xN−1 − xN−2)
CN−1

=
QCN−1αN−1

1 + Q1CN−1
−

2

(xN − xN−1)(xN − xN−2)
.

So T l
N−1 and T d

N−1 remain as defined by equation (5.1), but the final entry in

w(C) has an extra term due to the boundary condition.

Now we have our complete matrix system, T , to obtain Cj (j = 0, 1, ...N−

1), but note that the right hand side is nonlinear.

Numerically solving the discretized PDE

For the solution of (5.2) we use Newton’s method, where the residual vector R

of (5.2) is

R = TC − w(C).

We seek C such that R = 0, so equation (5.2) holds. Note that if Q1 = 0

the equations are linear and no iteration is needed. Otherwise, we carry out

Newton’s Method.
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The Sub-Algorithm for Step (1)

Preliminary: Make an initial guess for C:

For p = 0, 1, 2, ...

(a): Use Cp to find w(Cp);

(b): Find the residual, Rp = TCp − w(Cp).

(c): Calculate the Jacobian of Rp,

Jp =
∂Rp

∂Cp
= T −

{

∂wp
i

∂Cp
j

}

where i, j = 0, 1, ..., N − 1 and

{

∂w
p
i

∂C
p
j

}

is the diagonal matrix

∂wi

∂Cj
=















Qα0

(1+Q1C0)2
0 · · · 0

0 Qα1

(1+Q1C1)2
. . .

...
...

. . .
. . . 0

0 · · · 0
QαN−1

(1+Q1CN−1)2















.

(d): Find Hp = (Jp)−1Rp.

(e): Set Cp+1 = Cp − Hp.

(f): With the new approximation Cp+1, return to (a) and repeat until (e)

converges, as measured by ‖Cp+1 − Cp‖2 < 1 × 10−6.

5.2 Calculating the cell velocity v(x, t)

(Step 2)

We have the linear PDE (3.10)

∂

∂x

[

αµ
∂v

∂x
− αχ(α)

]

= k
α

1 − α
v (5.4)

with boundary conditions given in (3.13) and (3.14)

v = 0 at x = 0, (5.5)

µ
∂v

∂x
− χ(α) = 0 at x = xN (t). (5.6)
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We discretise (5.4) on the same variable mesh in a manner that gives us a

system of equations for vj

1

xj+ 1

2

− xj− 1

2

{

[

αµ
∂v

∂x
− αχ(α)

]

j+ 1

2

−

[

αµ
∂v

∂x
− αχ(α)

]

j− 1

2

}

= k
αj

1 − αj
vj

for j = 1, 2, ..., N − 1,

leading to

αj+ 1

2

µ

(

vj+1 − vj

xj+1 − xj

)

− αj+ 1

2

χ(αj+ 1

2

) − αj− 1

2

µ

(

vj − vj−1

xj − xj−1

)

+ αj− 1

2

χ(αj− 1

2

)

= k
αj

1 − αj
(xj+ 1

2

− xj− 1

2

)vj .

We may write (5.7) as

Al
jvj−1 + Ad

jvj + Au
j vj+1 = b(αj) (5.7)

where

Al
j =

(αj + αj−1)µ

2(xj+1 − xj−1)
,

Ad
j = −

1

2

(

(αj + αj−1)µ

xj − xj−1
+

(αj + αj+1)µ

xj+1 − xj
− k

αj

2(1 − αj)
(xj+1 − xj−1)

)

,

Au
j =

(αj + αj+1)µ

2(xj+1 − xj)

and

b(αj) =
1

2
(αj + αj+1)χ

(

1

2
(αj + αj+1)

)

−
1

2
(αj + αj−1)χ

(

1

2
(αj + αj−1)

)

.

Next we investigate the boundary conditions at for j = 0 and j = N .

Boundary Conditions: j = 0

When j = 0 we have v0 = 0 as stated in (3.5). This means that our sys-

tem of equations above omits j = 0 and so begins with j = 1.

Boundary Conditions: j = N

The right boundary condition, at j = N , requires more work. First we dis-
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cretise (5.6) at N by taking the average at N − 1
2 and N + 1

2 ,

0 =
1

2

[

µ
∂v

∂x
− χ(α)

]

N+ 1

2

+
1

2

[

µ
∂v

∂x
− χ(α)

]

N− 1

2

. (5.8)

Now let us return to (5.7) for j = N ,

1

xN+ 1

2

− xN− 1

2

{

[

αµ
∂v

∂x
− αχ(α)

]

N+ 1

2

−

[

αµ
∂v

∂x
− αχ(α)

]

N− 1

2

}

= k
αN

1 − αN
vN

Substituting (5.8) into the above equation we have

−(αN+ 1

2

+ αN− 1

2

)

[

µ
∂v

∂x
− χ(α)

]

N− 1

2

= k
αN

1 − αN
(xN+ 1

2

− xN− 1

2

)vN ,

which gives

−(αN+ 1

2

+ αN− 1

2

)

[

µ

(

vN − vN−1

xN − xN−1

)

− χ(αN− 1

2

)

]

= k
αN

1 − αN
(xN+ 1

2

− xN− 1

2

)vN .

This can be written

Al
NvN−1 + Ad

NvcN
= b(αN ) (5.9)

where Al
N = 2αNµ

xN−xN−1
, Ad

N = − 2αNµ
xN−xN−1

− k αN

1−αN
(xN − xN−1), and

b(αN ) = −2αNχ
(

1
2(αN + αN−1)

)

.

The Sub-Algorithm for Step (2)

Let Al
j , Ad

j and Au
j (j = 1, 2, ..., N) be the respective entries to the lower,

main and upper diagonals of a matrix A, and b(αj) be the entries of b(α)

(j = 1, 2, ..., N). Hence, the cell velocity v is determined by solving

Av = b(α). (5.10)
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5.3 Finding α using a moving mesh

Once C and v are determined over the region, we seek the solution of the time-

dependent PDE (3.9) using a moving mesh approach. We will examine three

different ways to move the mesh. For all three methods, the updated mesh is

obtained from the mesh velocity used in an explicit time-stepping scheme.

The first way of moving the mesh (Method A) defines the mesh movement

by keeping the cell mass fractions constant in time. The second uses the cell

velocity as the mesh velocity (Method B). Both these methods move the mesh

based on biological properties and so are intuitively relevant to the modelling

of the problem. The third method (Method C) is more geometrical in nature,

moving the nodes proportionally to the boundary movement. We describe each

method in turn.

5.3.1 Method A

To find the mesh velocity of the nodes we assume conservation of mass fractions,

1

θ(t)

∫ xj(t)

0
α dx = γj

where

θ(t) =

∫ xN (t)

0
α dx,

is the total (variable) mass and γj is constant with respect to time, so that

γjθ(t) =

∫ xj(t)

0
α dx. (5.11)

Differentiating θ(t) with respect to time using Leibnitz integral rule gives,

θ̇ =

∫ xN (t)

0

∂α

∂t
dx + [αẋ]

xN (t)
0 .

Substituting in the PDE (3.9) and boundary conditions (3.13)- (3.14) gives

θ̇ =

∫ xN (t)

0

{

S(α, C) −
∂

∂x
(αv)

}

dx + αN ẋN − α(0, t)ẋ0,

=

∫ xN (t)

0
S(α, C) dx. (5.12)
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It is worth noting that this corresponds to the global mass balance result

d

dt

∫ xN (t)

0
α dx =

∫ xN (t)

0
S(α, C) dx

which leads to equation (3.1).

Now let us return to (5.11) and apply the Leibnitz integral rule again,

d

dt

∫ xj(t)

0
α dx =

∫ xj(t)

0

∂α

∂t
dx +

[

αẋ
]xj(t)

0
.

Substituting in the PDE (3.9) and using ẋ0 = 0, (the node x0 does not move)

we get

d

dt

∫ xj(t)

0
α dx =

∫ xj(t)

0

{

S(α, C) −
∂

∂t
(αv)

}

dx + αj ẋj

=

∫ xj(t)

0
S(α, C) dx −

[

αv
]

xj
+ αj ẋj

=

∫ xj(t)

0
S(α, C) dx − αjvj + αj ẋj

= γj θ̇.

By (3.1) again, and from (5.11) and (5.12),

ẋj =
1

αj

{

γθ̇ −

∫ xj(t)

0
S(α, C) dx + αjvj

}

=
γj

αj

∫ xN (t)

0
S(α, C) dx −

1

αj

∫ xj(t)

0
S(α, C) dx + vj

Time-Stepping

At each time level the new xj is calculated using an explicit time-stepping

scheme, such as the forward Euler scheme.

xm+1
j = xm

j + ∆tẋm
j ,

and similarly θ is updated by

θm+1 = θm + ∆tθ̇m.
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Recovering the Solution α

To find an equation that allows us to calculate the solution, α, from

the mesh we return to (5.11) and equate
∫

α dx at times t and 0 between the

two points (j + 1) and (j − 1) , as in

1

θ(t)

∫ xj+1(t)

xj−1(t)
α(x, t) dx =

1

θ(0)

∫ xj+1(0)

xj−1(0)
α(x, 0) dx.

Applying the mean value theorem for integrals and taking the mean value to

be at xj(t), we obtain the approximation

1

θ(t)
(xj+1(t) − xj−1(t)) α(xj , t) =

1

θ(0)
(xj+1(0) − xj−1(0)) α(xj , 0).

We rearrange this equation to make αj the subject, giving the approximation

αj = α(xj , t) =
θ(t)

θ(0)

(xj+1(0) − xj−1(0))

(xj+1(t) − xj−1(t))
α(xj , 0).

Referring back to the general algorithm in section 5.3), we can now give more

details about steps (3) and (5) for method A,

Preliminary: Set up an initial mesh and an initial α. Calculate an initial value for θ(t)

using the initial conditions, θ(0) =
∫ xN (t)
0 α(x, 0) dx.

3(a): Calculate θ̇(t) =
∫ xN (t)
0 S(α, C) dx.

3(b): Calculate the mesh velocity ẋj from

ẋj =
1

αj

{

γj θ̇(t) −

∫ xj(t)

0
S(α, C) dx + αjvj

}

(j = 1, 2, ..., N)

4(a): Update the θ values using an explicit time-stepping scheme.

4(b): Update the mesh nodes using an explicit time-stepping scheme.

5: Find the updated solution using

αj(t) =
θ(t)

θ(0)

(xj+1(0) − xj−1(0))

(xj+1(t) − xj−1(t))
αj(0) (j = 0, 1, .., N − 1)

where by symmetry x−1 = x1. A one-sided approximation is used to find

αN .
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We now move on to Method B.

5.3.2 Method B

Under this strategy the velocity of the boundary is equal to the velocity of the

cells at the boundary. Then

dxj

dt
= ẋj = v(xj , t) (j = 1, 2, .., N)

ẋ0 = 0.

Once the mesh velocity is defined as above, the new mesh can be determined

by an explicit time stepping scheme, as in Method A.

To recover α on this new mesh in a conservative manner we define the partial

masses

Θj =

∫ xi+1(t)

xi−1(t)
α dx. (5.13)

Differentiating Θj with respect to time, using Leibnitz integral rule, where

ẋj = vj ,

Θ̇j =
d

dt

∫ xj+1(t)

xj−1(t)
α dx,

=

∫ xj+1(t)

xj−1(t)

∂α

∂t
dx +

[

αẋ
]j+1

j−1

=

∫ xj+1(t)

xj−1(t)

∂α

∂t
+

∂

∂x
(αv) dx.

Hence the terms under the integral are equal to one side of the PDE (3.9), so

can be replaced by the source term,

Θ̇j =

∫ xj+1

xj−1

[

∂α

∂t
+

∂

∂x
(αv)

]

dx

=

∫ xj+1

xj−1

S(α, C).

We update Θj at the new time by using an explicit time stepping scheme.

We then use the new value for Θ and find the updated solution by same the

mid-point approximation as in Method A applied to (5.13),

(xj+1 − xj−1)αj = Θj
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giving

αj =
Θj

xj+1 − xj−1
.

The detailed algorithm for steps (3) to (5) for Method B is

Preliminary: Set up an initial Θj , and initial α. Calculate the initial values for Θj by

using the initial conditions.

3(a): Define the mesh velocity as

ẋj = v(xj , t) where j = 1, 2, .., N.

3(b): Find Θ̇j =
∫ j+1
j−1 S(α, C) dx.

4(a): Update the mesh nodes using an explicit time-stepping scheme

4(b): Update the Θj(t) value using an explicit scheme.

5: Find the updated solution using

αj =
Θj

xj+1 − xj−1
(j = 1, 2, ..., N − 1).

A one-sided approximation is used for j = 0, N .

We now gives details of Method C.

5.3.3 Method C

As stated in equation (3.14), the velocity of the boundary xN (t) moves at a rate

equal to the velocity of the cells at the boundary. For the third moving mesh

method, we will move all of the nodes proportional to the boundary movement,

ẋj =
xj(t)

xN (t)
ẋN .

Once the mesh velocity is defined as above, the new mesh can be determined

by an explicit time-stepping scheme. It is worth noting that this mapping is

equivalent to the numerical mapping in [4], (see Chapter 7).

As with Method B we recover α on the new mesh by defining

Θj =

∫ xj+1(t)

xj−1(t)
α dx.
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Differentiating Θj with respect to time, using Leibnitz integral rule,

Θ̇i =
d

dt

∫ xj+1

xj−1

α dx

=

∫ xj+1

xj−1

∂α

∂t
dx + [αẋ]j+1

j−1

=

∫ xj+1

xj−1

S(α, C) dx +
[

α(ẋ − v)
]xj+1

xj−1

.

Note that there is an extra term in Θ̇j compared to that of Method B, as

for this method ẋ 6= v. We update Θ at the new time by using an explicit

time stepping scheme. As with Method B, we find the updated solution by the

mid-point approximation,

(xj+1 − xj−1)αj = Θj

giving

αj =
Θj

xj+1 − xj−1
.

(This method is conservative and different to the non-conservative method used

in [4], (see Chapter 6)). The detailed algorithm for steps (3) to (5) for Method

C is

Preliminary: Set up an initial Θj , and initial α. Calculate the initial values for Θj by

using the initial conditions. Set up an initial Θ,

3(a) Define the mesh velocity as

ẋj =
xj

xN
ẋN where j = 1, 2, .., N.

3(b) Find Θ̇ =
∫ xj+1

xj−1
S(α, C) dx +

[

α(ẋ − v)
]xj+1

xj−1

.

4(a) Update the mesh nodes using an explicit time-stepping scheme

4(b) Update the Θ(t) value using an explicit scheme.

5 Find the updated solution using

αj =
Θj

xj+1 − xj−1
(j = 1, 2, ..., N − 1).

A one-sided approximation is used for j = 0, N .
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Chapter 6

Breward et al.’s Method

In [4] the same tumour growth problem is solved by mapping the variable x(t)

to a fixed domain ξ ∈ [0, 1] by the transformation ξ = x(t)
ℓ(t) and τ = t, where

ℓ = xN (t). Using the chain rule of Chapter 4.1, the transformed problem reads

∂α

∂τ
−

ξ

ℓ

dℓ

dτ

∂α

∂ξ
+

1

ℓ

∂

∂ξ
(αv) =

(1 + s1)C

1 + s1C
α(1 − α) −

s2 + s3C

1 + s4C
α, (6.1)

ℓ
∂

∂ξ

(

αζ(α)
)

+
kℓ2αv

1 − α
= µ

∂

∂ξ

(

α
∂v

∂ξ

)

, (6.2)

∂2C

∂ξ2
=

Qℓ2αC

1 + Q1C
, (6.3)

with initial and boundary conditions

ℓ = 1, α = α0 at τ = 0, (6.4)

∂C

∂ξ
= v = 0 at ξ = 0, (6.5)

µ
∂v

∂ξ
= ℓζ(α), C = 1 at ξ = 1, (6.6)

dℓ

dτ
= v at ξ = 1, (6.7)

where k and µ have the same definition as before, and the pressure difference

between the two phases χ(α) is defined in the special case Σ̂c = r = 1 and
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q = 2, as

χ(α) = ζ(α) =

{

0 0 ≤ α < αmin

α−α∗

(1−α)2
αmin ≤ α < 1.

To compare the results from the moving mesh method to those in [4] we have

replicated their results. Using the above set of equations we postulate the

algorithm

Preliminary: Obtain an initial C, v, ℓ and α

(1) Find C using the finite difference method of Step 1 on (6.3)

(2) Find v using the finite difference method of Step 2 on (6.2)

(3) Find α at the new time level by explicitly time-stepping (6.1)

(4) Find the tumour radius at the new time level by explicitly time-stepping

ℓ̇ = vN

When comparing this to the algorithm in Chapter 4.3, we see that Steps 1

and 2 are essentially the same. However for this algorithm we then go straight

to calculating the solution α on the transformed mesh, and then update the

tumour radius. By contrast, with the moving mesh methods A, B and C of the

previous section, after finding C and v, the nodes’ positions were calculated

(including the final node which represents the tumour radius), and then the

integral of the solution is recovered via
∫

α dx, (see Chapter 4.1). Another

distinction between Breward et al.’s method and the moving mesh method is

between non-conservative and conservative formulations.

6.1 Algorithm for numerically solving the transformed

problem

Finding the concentration C

Let us discretise (6.3),

Cj−1 − 2Cj + Cj+1 = w(Cj)

where w(Cj) =
Qℓ2αjCj

1+Q1Cj
(∆ξ)2 for j = 1, 2, ..., N − 2. Note that as the mesh is

equally spaced, the differences in ξj can be taken to be 1
N

. At the boundaries we
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have C−1 = C1 and CN = 1, from (6.5) and (6.6) respectively. To correspond

with these conditions, the above equation for the special cases j = 0 and j =

N − 1 are

−2C0 + 2C1 =
Qℓ2αjC0

1+Q1C0
(∆ξ)2 = w(C0)

CN−2 − 2CN−1 =
Qℓ2αjCN−1

1+Q1CN−1
(∆ξ)2 − 1 = w(CN−1)

As in Chapter 5.1, we write the non-linear system as

TC = w(C)

where

C is a vector of C0 to CN−1, j = 0, 1, ..., N − 1,

w(C) is a vector of w(Cj), j = 0, 1, ..., N − 1,

and

T is a tridiagonal matrix of the Cj coefficients,

T =





















−2 2 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −2





















.

The sub-algorithm for calculating C is the same as in Chapter 5, namely

Preliminary: Make an initial guess for C.

1(a): Use Cp to find w(Cp);

1(b): Find the residual, Rp = TCp − w(Cp).

1(c): Calculate the Jacobian of Rp,

Jp =
∂Rp

∂Cp
= T −

{

∂wp
i

∂Cp
j

}
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where i, j = 0, 1, ..., N − 1 and

{

∂w
p
i

∂C
p
j

}

is the diagonal matrix

∂wi

∂Cj
=

















Qℓ2α0

(1+Q1C0)2
(∆ξ)2 0 · · · 0

0 Qℓ2α1

(1+Q1C1)2
(∆ξ)2

. . .
...

...
. . .

. . . 0

0 · · · 0
Qℓ2αN−1

(1+Q1CN−1)2
(∆ξ)2

















.

1(d): Find Hp = (Jp)−1Rp.

1(e): Set Cp+1 = Cp − Hp.

1(f): With the new approximation Cp+1, return to (a) and repeat until (e)

converges, as measured by ‖Cp+1 − Cp‖2 < 1 × 10−6.

In step (c) the entries to the diagonal matrix
∂w

p
i

∂C
p
j

contain an extra factor of

ℓ2(∆ξ)2 when compared to Chapter 5, to accommodate the different w(Cj).

Finding the velocity v

We find the velocity in the same manner as in Chapter 5.2. We discretise

(6.2) and rearrange so that

Al
jvj−1 + Ad

jvj + Au
j vj+1 = b(αj) (j = 2, ..., N − 1). (6.8)

where Al
j =

(αj+αj−1)µ
2(∆ξ)2

, Ad
j = −

(

−
(αj+αj−1)µ

2(∆ξ)2
−

(αj+αj+1)µ
2(∆ξ)2

−
kℓ2αj

1−αj

)

,

Au
j =

(αj+αj+1)µ
2(∆ξ)2

for j = 1, 2, ..., N − 1 and

b(αj) = ℓ
4∆ξ

(αj + αj+1)ζ
(

1
2(αj + αj+1)

)

− ℓ
4∆ξ

(αj + αj−1)ζ
(

1
2(αj + αj−1)

)

.

As with the moving mesh equations, v0 = 0. For the case when j = N we

take the average of the boundary condition (6.6) and substitute it into the

discrete form of (6.2) to get

Al
NvN−1 + Ad

NvN = b(αN ),

where Al
N = 2µαN

(∆ξ)2
, Ad

N = −2µαN

(∆ξ)2
−kℓ2αNvN

1−αN
and b(αN ) =

−ℓαN+1(ζ(αN )−ζ(αN−1))
∆ξ

.

Note that we are assuming that the boundary conditions are imposed in this

way in [4].
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Let Al
j , Ad

j and Au
j (j = 1, 2, ..., N) be the respective entries to the lower,

main and upper diagonals of matrix A, and b(αj) = b(α) (j = 1, 2, ..., N).

Hence Step 2, finding the cell velocity v, is determined by solving

Av = b(α).

As intended we have calculated C and v on a fixed mesh in the same way as

we calculated them on a moving mesh. For the fixed mesh there is no mesh

velocity to define, but we still need to compute the change in the tumour radius.

Finding the solution α

Finally, to obtain α on the fixed mesh, we discretise (6.1) explicitly in time,

with a central difference approximation in space,

αi+1
j − αi

j

∆t
−

ξvN

ℓ

αi
j+1 − αi

j−1

2∆ξ
+

vi
j+1α

i
j+1 − vi

j−1α
i
j−1

2ℓ∆ξ

=
(1 + s1)α

i
j(1 − αi

j)C
i
j

1 + s1Ci
j

−
s2 + s3C

i
j

1 + s4Ci
j

αi
j ,

⇒ αi+1
j =

(

ξvN

ℓ

(αi
j+1 − αi

j−1)

2∆ξ
−

vi
j+1α

i
j+1 − vi

j−1α
i
j−1

2ℓ∆ξ

+
(1 + s1)α

i
j(1 − αi

j)C
i
j

1 + s1Ci
j

−
s2 + s3C

i
j

1 + s4Ci
j

αi
j

)

αi
j , (6.9)

(j = 0, 1, ..., N).

A one-sided approximation to αξ is used at the boundaries. This scheme is

non-conservative (see Chapter 4.1). We are assuming that the α are updated

in this way in [4].

Finding the tumour radius

By (6.7) the tumour radius ℓ grows at the same rate as the cell velocity at

the boundary vN . We find the tumour radius at the new time level by using

the explicit Euler time-stepping scheme,

ℓ(i+1) = ℓ(i) + ∆t vN .
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6.2 Numerical Results for Breward et al.’s Method

It is important to remark that the numerical algorithm specified in this chap-

ter is a surmise based upon the transformed problem given in [4]. However,

solving the transformed problem using this numerical process, we successfully

generate plots which replicate those shown in [4]. We can therefore be reason-

ably confident in our preliminary calculations in Chapter 4 where we find the

concentration C and cell velocity v using finite differences.

The numerical results given in [4] focus on the qualitative nature of the

solution of the model equations. Most of the figures concentrate on varying

the viscosity and drag effects, µ and k. As that is not our primary aim here

we concentrate on Figure 3 and Figure 8 from [4]. These two figures portray

three different plots each, for two different sets of parameter values. Each figure

shows,

• the volume fraction of cells in space (α against x) evolving over time,

• the cell velocity in space (v against x) evolving over time,

• the tumour radius over time.

In Figure 3 of [4] the parameter values exclude the effects of cellular attraction

(α∗ = αmin). The following description is taken from [4]. Initially the tumour

cell volume fraction α increases toward the centre of the tumour. The tumour

can relieve the stress at its outer boundary by expanding outwards and, thus,

reducing the volume fraction there. Following this early phase, the tumour be-

comes sufficiently large that cells at the centre to start to die, so that a central

necrotic core forms. The system then settles to a steady, travelling-wave solu-

tion, in which cells close to the edge of tumour move outwards (to relieve their

stress), whilst cells nearer to the tumour centre move inwards. The plot of the

tumour radius over time confirms that the system indeed settles to a steady,

travelling-wave profile, after an initial period of growth, the speed with which

the leading edge of the tumour advances is approximately constant.

In comparison to the parameter values used to produce Figure 3, the param-

eter values for Figure 8 have smaller µ and k (viscosity and drag), and more

importantly αmin < α∗. Physically, this means that the cells sense each other

using their filopodia and are attracted toward each other. As with Figure 3,

α initially increases over the whole region (most notably at the centre of the
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tumour), before decreasing at the centre only. When αmin = 0.6, the tumour

radius reaches a steady state before a necrotic core is established.

6.2.1 Convergence

We expect that as we take more nodes (N increases), the solution should con-

verge. We choose the following set of parameters from [4]

Q = 0.5, Q1 = 0, p = 1, q = 2, Σ̂c = 1,

s1 = s4 = 10, s2 = s3 = 0.5,

k = 1, µ = 1, α0 = αmin = α∗ = 0.8.

This set of parameter values was used in [4] to create figure 3 from the paper.

For the purpose of investigating convergence, we take the solution at the arbi-

trary time t = 4 for various N , and calculate the relative error in the L2 norm

of the solution and the tumour radius to examine convergence. We have used

central differences to approximate α, so the solution should be up to second

order in ∆ξ. And we use an explicit Euler time-step, so the solution is first

order in time. To keep the contributions to the truncation error in balance, the

time step is quartered as the number of nodes doubles.

There are two different variables that we test for convergence. The first is

α(t), the solution of (6.1), the second is the tumour radius ℓ(t).

There is no exact solution to the problem, so we investigate whether a Cauchy

convergence criterion is satisfied, where we compare the solution generated from

N = 5, 10, 20, 40 with the solution from N = 80.

The solution is represented as a vector of length N + 1,

α =



















α0

...

αj

...

αN



















.

To enable comparison between solutions for different numbers of nodes, the

solution vector α was reduced to a standard size of six by taking the mN
5

(m = 0, 1, ..., 5) entries only.
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NOTATION: For the purpose of discussing convergence, the notation αN rep-

resents the solution vector α at t = 4, calculated with N nodes. Similarly ℓN

is ℓ at t = 4, calculated with N nodes.

We define the relative error of αN and ℓN as

rel.err.(α)N =

√

√

√

√

∑N
j=0(α

N
j − α80

j )2
∑N

j=0(α
80
j )2

rel.err.(ℓ)N =

∣

∣ℓN − ℓ80
∣

∣

ℓ80

respectively. Let us assume that the relative error is proportional to the order

of convergence p by

rel. err.N ∝
1

Np

for large N . Then

rel.err.2N

rel.err.N
=

Np

(2N)p
=

1

2p
.

Hence the order of convergence is

p =
− ln(rel.err.2N/rel.err.N )

ln 2
. (6.10)

So, we can find the order of convergence by taking a ratio of consecutive relative

errors, at t = 4.

N ∆t rel.err.(α) p(α) rel.err.(ℓ) p(ℓ)

5 0.020 8.025 × 10−4 7.319 × 10−3

10 0.005 3.164 × 10−4 1.3 3.668 × 10−3 1.0

20 0.0013 1.242 × 10−4 1.3 1.643 × 10−3 1.2

40 3.125 × 10−4 3.963 × 10−5 1.6 5.623 × 10−4 1.5

The table above shows that, as expected, the relative error for both α and ℓ

decreases as the number of nodes increases, and ℓ has a slightly smaller error.

We would expect the ratio of errors to converge as N increases and is compared

to N >> 80, hence the order of convergence could be determined. From the

table above, we can only assess that the order of convergence is larger than one
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for both α and ℓ. Nonetheless, we can be reasonably confident that the solution

and the tumour boundary converges.
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Chapter 7

Numerical results for moving

mesh methods

In this section we use the moving mesh methods described earlier to present nu-

merical simulations of the non-dimensionalised model, equations (3.9) to (3.14),

in several parameter regimes. Our aims are to compare the three different mov-

ing mesh methods, and also to compare the results with existing mesh numerical

simulations in [4].

Firstly, we investigate the order of convergence for the three different mov-

ing meshes. We also present plots showing how the different moving meshes

advance over time. Finally, we compare our moving mesh results with the nu-

merical results in [4]. To do this we show how the volume fraction of cells α,

the cell velocity v and the tumour radius xN evolve over time, for two different

sets of parameter values.

Concerning the time-stepping process, the results here are generated from either

the explicit Euler time-stepping scheme or a built-in adaptive Matlab solver.

Several different Matlab ODE solvers were investigated before settling upon

ODE23 with a specified maximum time step, to ensure that the nodes remain

ordered and the plots remain stable. Although other Matlab ODE solvers such

as ODE45 and ODE15s were successful, ODE23 proved to be sufficient and

requires less computation (indicating that the problem is not particularly stiff).

It is worth noting that all three moving mesh methods, combined with either

the Euler explicit time-stepping scheme or ODE23, have a manageable compu-

tation time for N ≤ 80.
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The results given here are the non-dimensionalised values. To convert back

to the dimensionalised values, scale back to the non-dimensionalised variables

shown in Chapter 3.2.

7.1 Convergence

As with the method in Chapter 6, we would expect that as we take more nodes

(N increases), the solution should converge. We choose the same parameters

as in Chapter 6.2.1.

Again, we take the solution α at t = 4 for various N . As the mesh xj varies in

time, we also require the xj to converge. By this we mean that as more nodes

are used, the mesh settles to particular position. For example, it would be

desirable if at time t every other node of a mesh for N = 80 lined up with the

mesh N = 40. The mesh is represented as a vector of nodes of length N +1. To

compare coarser meshes with finer meshes, the different vectors of nodes are all

reduced to be of length six. This is done in the same manner that the solution

vector was reduced in Chapter 6.2.1: by taking the mN
5 (m = 0, 1, ..., 5) entries

only. The various solution vectors αN are also defined in this fashion. Using

the same notation from Chapter 6, the relative errors of α and x for N nodes

are taken to be

rel. error(α)N =

√

√

√

√

∑N
j=0(α

N
j − α80

j )2
∑N

j=0(α
80
j )2

rel. error(x)N =

√

√

√

√

∑N
j=0(x

N
j − x80

j )2
∑N

j=0(x
80
j )2

,

for N = 5, 10, 20, 40, and compared with the solution from N = 80. To find the

order of convergence we use the result (6.10)

p =
− ln(rel.err.2N/rel.err.N )

ln 2
.

The first three tables below presents the results for all three methods using

ODE23. The maximum time step size was halved as N doubled because ODE23

is second order in time, and the mid-point rule (which is used to recover α) is

second order in space. As before, we wish to keep the contributions to the

truncation error in balance, hence ∆t and ∆x decrease at the same rate.

The last three tables present the results when the explicit Euler time-
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stepping scheme was used. In this case as the number of nodes doubled, the

time-step was quartered. This decision was made as the solution α is recovered

using a mid-point approximation, which is second order in space, and the ex-

plicit Euler time-stepping scheme is first order in time.

We would expect the solutions to converge quicker where using the ODE23

solver because this uses an approximation based upon Runge-Kutta 2 and 3,

which have a higher order of accuracy than Euler time-stepping. However, we

should be careful to note that the timesteps are considerably larger when using

ODE23.

Table 7.1: Relative errors for α and x with rates of convergence for Method A
using Matlab function ODE23.

N Max. ∆t rel.err.(α) p(α) rel.err.(x) p(x)

5 0.02 2.262 × 10−3 5.087 × 10−2

10 0.01 1.042 × 10−3 1.1 2.323 × 10−2 1.1

20 0.005 4.512 × 10−4 1.2 9.918 × 10−3 1.2

40 0.0025 1.534 × 10−4 1.6 3.300 × 10−3 1.2

Table 7.2: Relative errors for α and x with rates of convergence for Method B
using Matlab function ODE23.

N Max. ∆t rel.err.(α) p(α) rel.err.(x) p(x)

5 0.02 4.052 × 10−4 2.099 × 10−3

10 0.01 1.199 × 10−4 1.8 4.837 × 10−4 2.1

20 0.005 3.267 × 10−5 1.9 1.267 × 10−4 1.9

40 0.0025 8.130 × 10−6 2.0 2.596 × 10−5 2.3

Table 7.3: Relative errors for α and x with rates of convergence for Method C
using Matlab function ODE23.

N Max. ∆t rel.err.(α) p(α) rel.err.(x) p(x)

5 0.02 3.561 × 10−4 1.661 × 10−3

10 0.01 1.033 × 10−4 1.8 4.580 × 10−4 1.9

20 0.005 2.755 × 10−5 1.9 1.148 × 10−4 2.0

40 0.00025 6.749 × 10−6 2.0 2.350 × 10−5 2.3

Examining these tables we observe that when we use the explicit Euler time-

stepping scheme, we get slightly quicker convergence. This is most likely due
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Table 7.4: Relative errors for α and x with rates of convergence for Method A
using the explicit Euler time-stepping scheme.

N ∆t rel.err.(α) p(α) rel.err.(x) p(x)

5 0.02 4.368 × 10−4 1.117 × 10−3

10 0.005 1.167 × 10−4 1.9 2.423 × 10−4 2.2

20 1.25 × 10−3 2.725 × 10−5 2.1 6.549 × 10−5 1.9

40 3.125 × 10−4 5.494 × 10−5 2.3 1.361 × 10−5 2.3

Table 7.5: Relative errors for α and x with rates of convergence for Method B
using the explicit Euler time-stepping scheme.

N ∆t rel.err.(α) p(α) rel.err.(x) p(x)

5 0.02 7.534 × 10−4 2.524 × 10−3

10 0.005 2.788 × 10−4 1.4 3.142 × 10−4 3.0

20 1.25 × 10−3 1.001 × 10−4 1.5 9.662 × 10−5 1.7

40 3.125 × 10−4 3.096 × 10−5 1.7 1.931 × 10−5 2.3

]

Table 7.6: Relative errors for α and x with rates of convergence for Method C
using the explicit Euler time-stepping scheme.

N ∆t rel.err.(α) p(α) rel.err.(x) p(x)

5 0.02 6.460 × 10−4 6.727 × 10−5

10 0.005 2.438 × 10−4 1.4 1.255 × 10−5 2.4

20 1.25 × 10−3 8.942 × 10−5 1.4 3.101 × 10−6 2.0

40 3.125 × 10−4 2.804 × 10−5 1.7 6.428 × 10−7 2.3

to the smaller ∆t used.

In all six tables we note that the mesh x has a slightly higher order of

convergence than the solution α. This is possibly because α comes from a mid-

point approximation that depends on x, so the order of convergence of α cannot

be higher than that of the mesh. The difference of convergence rates between α

and x was more apparent when Euler time-stepping was implemented (Tables

8.4 to 8.6).

We see that Method A, together with ODE23 (Table 8.1), has the slow-

est convergence, whereas the same method, but with the explicit Euler time-

stepping scheme converges significantly faster (Table 8.4). Moreover, Method

A with the explicit Euler time-stepping scheme (Table 8.4) converges at a rate

very similar to that of Method B and Method C, using ODE23 (Tables 8.2

and 8.3). As with Method A, Methods B and C show little similarity in their
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convergence behaviour when comparing Euler time-stepping and using ODE23.

Yet, within a chosen time-stepping scheme, Method B and C have nearly iden-

tical convergence rates - especially when when using ODE23 (Tables 8.2 and

8.3). When comparing Methods B and C with the explicit Euler time-stepping

(Tables 8.5 and 8.6), we see that the α converge similarly, but the order of

convergence of x for Method B (Table 8.5) appears to be behaving erratically,

albeit for the small data sample obtained here. The mesh from Method C,

together with Euler’s time-stepping (Table 8.6), seems to have the highest rate

of convergence.

It appears that generally the mesh approaches an order of convergence

larger than two, whilst α may prove to be of second order convergence. However,

we cannot be sure of the order of convergence in any of the cases without having

more data, and comparing the solutions to data retrieved using N >> 80. Even

so, we can be reasonably confident that the solution and mesh converge for all

three moving mesh methods.

7.2 Comparison with Breward et al.’s method [4]

7.2.1 Comparing Figure 3 from [4]

We wish to compare our numerical methods to the mesh method used in [4]. We

generate results using the same parameters above to compare our results with

Figure 3 in [4]. All three methods were investigated, using both the explicit

Euler time-stepping scheme and ODE23. Throughout this section, we take

N = 80, ∆t = 0.0075 and run until t = 75.

Methods A and C produce very similar plots to each other, regardless of

the time-stepping approach. For this reason, only the results from Method A

are included here.

The explicit Euler time-stepping scheme and ODE23 generate very similar

solutions for α. However, due to the nature of ODE23 it is less straightforward

to produce plots for the velocity, as it is only an intermediary stage to calculate

α. For this reason, all the results presented here are generated using the explicit

Euler time-stepping scheme.

Figures 8.1, 8.3 and 8.5 are due to Method A and display the same char-

acteristics as the results in [4] for the same parameters. For α, the boundary

values remain fairly constant, and α at the centre of the tumour decreases at

a steady rate. The velocity increases rapidly as it gets closer to the boundary,

but the velocity at the boundary itself stays constant over time for t ≥ 37.5.
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Figure 7.1: Solution α for Method A using explicit Euler time-stepping - α
varying with x at different times

.

0 1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

x

α

 

 

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t = 75

Figure 7.2: Solution α for Method B using explicit Euler time-stepping - α
varying with x at different times

.

The plots for α and v present the travelling wave characteristics apparent in

[4]. The region of negative velocity is subtly different to the same region in [4],

where the minimum is slightly less rounded than shown in Figure 8.3. Interest-

ingly, Method C also presented rounder minima, but the method in Chapter 6

presented troughs that resembles those in [4].
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Method B appears to behave like Method A and [4] at earlier times, but

after approximately t = 45, α appears to grow at the boundary, and no longer

decreases at a regular rate at the centre of the tumour. The plots from Method

B are less smooth, despite the same number of nodes used for both methods.

There is a considerable kink in α and v for t = 45 which appears to dampen

for later times. The solution α does not drop below 0.4 at the centre of the

tumour, even for t = 100 (not shown here). The key characteristics remain even

for smaller ∆t, and also when using ODE23 - suggesting that this behaviour is

due to the numerical method. The processes of Method B and Method C are

very similar, and as Method C behaves as in Figures 8.1 and 8.3, it is reasonable

to conclude that tracking the cell velocity with the mesh nodes can result in the

mesh becoming too coarse in some areas. This is a problem that could be com-

pounded over time, especially where the cell velocities vary between positive

and negative. At this point, the nodes would be moving in opposite directions,

leaving a considerable deficit in between. Indeed if we look at Figure 8.4 for

t = 75 we see that the velocity is mostly negative, so the nodes are moving to

the left.

The differences between Method B and the results presented in [4] are

more apparent in Figure 8.4. We can see more clearly that it appears to be-

come less smooth when t is larger than 45. We see the velocity at the boundary

decreasing considerably with time. This behaviour is not seen in [4], nor in

Methods A and C.

The plots of the tumour radius (Figures 8.5 and 8.6) are consistent with [4].

As expected, the tumour is steadily growing. However, the differences from the

results from Method B are apparent in Figure 8.6 because the growth is slow-

ing down. This corresponds to Figure 8.4 where we can see that the velocity is

nearly constant for t = 75, meaning that in Method B the nodes would not be

moving much.

7.2.2 Comparing Figure 8 from [4]

To align our parameters with those used to produce Figure 8 in [4] we only

change the following values:

αmin = 0.6, µ = k = 0.25.

Again, we take N = 80 with ∆t = 0.0075 for Methods A and C, which produce

very similar plots, so only results from Method A are included here. For Method

B we take the same number of nodes N = 80, but with ∆t = 0.005. Also, as
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Figure 7.3: Velocity for Method A using explicit Euler time-stepping - v varying
with x at different times
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Figure 7.4: Velocity for Method B using explicit Euler time-stepping - v varying
with x at different times

.

the ODE solver and the explicit Euler time-stepping scheme produce similar

plots, only results from the explicit Euler time-stepping scheme are included.

We see that, as in [4] the tumour reaches a steady-state - with the tumour

growth remaining constant after t = 40 (Figure 8.11). Figure 8.9 shows that

once the steady state is reached (the cell velocity at the boundary drops to
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Figure 7.5: The tumour radius evolving over time for Method A using explicit
Euler time-stepping.
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Figure 7.6: The tumour radius evolving over time for Method B using explicit
Euler time-stepping.

zero), all cells within the region have negative velocity, i.e. the cells are moving

inwards.

This movement of cells has serious consequences when moving the mesh

as in Method B. We see in Figures 8.8, 8.10 and 8.12 that for t > 40 the

method struggles to produce believable results. As the nodes are tracking the

cell velocity, at each time level they are clustering more and more to the left,

which produces erratic results.
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Figure 7.7: Solution α for Method A using explicit Euler time-stepping - α
varying with x at different times
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Figure 7.8: Solution α for Method B using explicit Euler time-stepping - α
varying with x at different times

.

7.2.3 Examining how the nodes move

Let us define the computational space ξ ∈ [0, 1]. We examine how the mesh

moves for different approaches of defining the mesh velocity. We take the pa-

rameters that produce a steady travelling-wave profile (αmin = 0.8, k = µ = 1).

When the nodes move by conserving relative mass, Method A, the nodes remain
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Figure 7.9: Velocity for Method A using explicit Euler time-stepping - v varying
with x at different times
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Figure 7.10: Velocity for Method B using explicit Euler time-stepping - v
varying with x at different times

.

nearly equally spread with time up to t = 60, only gathering very slightly for

0.2 < ξ < 0.5. This gathering is more noticeable for longer time. We would

expect the gathering to be more prominent and start closer to ξ = 0 as time

continues, because nodes appear to always be moving out as the tumour grows,

i.e. each node only moves to the right as the tumour grows. Method C moves
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Figure 7.11: The tumour radius evolving over time for Method A using explicit
Euler time-stepping.
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Figure 7.12: The tumour radius evolving over time for Method B using explicit
Euler time-stepping.

the nodes proportional to the boundary movement, so they remain equally

spaced over time, also only moving to the right with the tumour growth. When

comparing Figures 7.13 and 7.15 it becomes apparent why they produce nearly

the same results, especially when considering t ≤ 60.
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The mesh for Method B, where the nodes move with the cell velocity,

begin by spreading out fairly equally. However, at later times when negative

velocities are introduced, the nodes gather nearer the centre of the tumour.

Indeed, it can be seen that most nodes will initially move out with the tumour

growth, but then return to the left. The node at the boundary is then signifi-

cantly apart from the others, causing an unsatisfactory coarseness at the edge.

For example, at t = 75 the final three x values are 2.21, 2.27 and 6.18.
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Figure 7.13: Method A using ODE23 - The position of the 40 nodes at different
times
.
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Figure 7.14: Method B using ODE23 - The position of the 40 nodes at different
times
.
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Figure 7.15: Method C using ODE23 - The position of the 40 nodes at different
times
.
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Chapter 8

Comparing Method C and the

mesh method in [4]

In Chapter 6 we solved the non-conservative form of the tumour growth prob-

lem, as stated in [4],

∂α

∂τ
−

ξ

ℓ

dℓ

dτ

∂α

∂ξ
+

1

ℓ

∂

∂ξ
(αv) = S(α, C).

In [4] there is no mention of the numerical process. So we solved (6.1) by

explicitly time-stepping α by Euler’s method,

αnew = αold + ∆t

(

Snew −
1

ℓold
(αoldvnew)ξ +

ℓ̇

ℓold
ξαold

ξ

)

. (8.1)

Let us compare this to the moving mesh Method C in Section 6.3.3. Here we

use the conservative form
(

d
dt

∫

α dx =
∫

S dx
)

of the PDE

∂α

∂t
+

∂

∂x
(αv) = S(α, C)

to find the integral of α with respect to space. We define Θ =
∫

α dx, thus

discretely

α =
Θ

∆x
. (8.2)

Instead of explicitly time-stepping α we explicitly time-stepped Θ, by Euler’s

method in the form

Θnew
j = Θold

j + ∆t

(

∫ xj+1

xj−1

Snew dx − [αoldvnew]j + [αoldẋ]j

)

.
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From (8.2) we can substitute Θ = α∆x into the above. This gives

αnew
j ∆xnew

j = αold
j ∆xold

j + ∆t
(

Snew∆xnew − [αoldvnew] + [αoldẋ] + [αoldẋ]
)

j
.

Hence

αnew
j = αold

j

∆xold
j

∆xnew
j

+ ∆t

(

Snew −
[αoldvnew]

∆xnew
+

[αoldẋ]

∆xnew

)

j

.

With Method C, ∆x was defined as a proportion of the moving boundary xN .

For the purpose of comparing Method C to the method in Chapter 6, we use

xN = ℓ. Therefore

∆x = ℓ∆ξ and ẋ = ℓ̇∆ξ

where ξ is the computational space [0, 1]. The equation above in terms of ξ and

ℓ is then

αnew
j = αold

j

ℓold

ℓnew
+ ∆t

(

Snew −
1

ℓnew
(αoldvnew)ξ +

ℓ̇

ℓnew
(ξαold)ξ

)

j

. (8.3)

When we compare (8.3) with (8.1) we see that the differences between the two

are subtle. In Method C, αold is multiplied by ℓold

ℓnew and the two end terms are

divided by ℓnew as opposed to ℓold. As this is nearly one for small time steps,

this is not a significant difference between the two. More notable is the last

term in Method C, which expands (using the product rule) to give

∆t
ℓ̇

ℓnew
(ξαξ + α).

Comparing this to the final term in (8.1) shows that when solving the conser-

vative form of the problem we have an additional ∆t ℓ̇α
ℓnew term.

This comparison allows us to adapt our work in Chapter 6 so as to make

the method conservative and explore the effect of the differences between (8.1)

and (8.3). Graphically, the solutions to the non-conservative form (8.3) and the

conservative form (8.1) turn out to be the same. Nonetheless, further investi-

gations may present more significant differences.
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Chapter 9

Further work

9.1 Altering the cell velocity boundary condition

Throughout this report we have not changed the model presented in [7] and [4].

Let us consider the boundary condition on the cell velocity

v = 0 at x = 0.

Possible future work could involve changing the left boundary condition to

dv

dx
= 0 at x = 0,

depending on an internal pressure. Thus v 6= 0 at the inner boundary. This

would mean that the tumour would still remain symmetrical about x = x0, but

the cells in the centre would have a velocity that depends on the viscosity µ,

drag k and the nutrient concentration C. When the necrotic core forms, i.e.

when α → 0, the region occupied by cells moves away from the origin. The

problem would be solved on the region occupied by α 6= 0.

9.2 Examining the effect of χ(α)

Let us return to χ(α) in the form shown in Section 4.2

χ(α) =

{

0 0 ≤ α < αmin,
Σ̂c|α−α∗|r−1

(1−α)q (α − α∗) αmin ≤ α < 1.

For αmin < α∗ there is discontinuity at αmin. This jump may cause inaccuracies

when numerically approximating the derivative of χ(α), used in Chapter 5.2
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since, in this section we solved the equation for the cell velocity (3.10) by

discretising in space. The right hand side of the matrix system (5.10) was a

vector of the numerical approximation of d
dx

(

αχ(α)
)

,

d

dx

(

χ(α)α
)

= αj+ 1

2

χ(αj+ 1

2

) − αj− 1

2

χ(αj− 1

2

)

=
1

2
(αj + αj+1)χ

(

1

2
(αj + αj+1)

)

−
1

2
(αj + αj−1)χ

(

1

2
(αj + αj−1)

)

.

By approximating across the whole region in this manner, we are not account-

ing for the jump in χ(α) at α = αmin. This may cause inaccuracies at this

point, which might account for the severe oscillations in Figures 7.7 to 7.10.

These figures use αmin = 0.6 and α∗ = 0.8, and show that the solution is well

behaved until near the point where α drops down to 0.6.

To assess this error in our discretisation we identify when α = αmin and use a

one-sided approximation for d
dx

(

αχ(α)
)

either side of this point, so as to not

discretise across the jump in χ(α).

As in the velocity calculation, it is necessary to use one-sided approximations

at the same point (α = αmin) when finding the solution α. This is because α is

recovered on the moving mesh by using a central difference mid-point approx-

imation, and we are avoiding discretising across the jump in χ(α). Details of

the one-sided approximations are included in Appendix A.
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Appendix A

Examining the effect of χ(α)

Let us identify the node just to the left of the point where α = αmin as the

‘marker node’, which we shall denote as xm. To account for the jump between

xm and xm+1 we use a one-sided discretisation of (3.10) at xm and xm+1.

Downwind discretisation of the velocity (3.10) at xm

1

xm − xm−1

{[

αµ
∂v

∂x
− αχ(α)

]

m

−

[

αµ
∂v

∂x
− αχ(α)

]

m−1

}

=
kαm− 1

2

1 − αm− 1

2

vm− 1

2

Again, we use a one-sided discretisation on the terms in the square brackets,

so as to not approximate a differential across xm. Also, as before, we use

αm− 1

2

≈ 1
2(αm + αm−1).

1

xm − xm−1

{

µαm

(

vm − vm−1

xm − xm−1

)

− χ(αm)αm − µαm−1

(

vm−1 − vm−2

xm−1 − xm−2

)

+ χ(αm−1)αm−1

}

=
k(αm + αm−1)

4 − 2(αm + αm−1)
(vm + vm−1)

µαm

(

vm − vm−1

xm − xm−1

)

− µαm−1

(

vm−1 − vm−2

xm−1 − xm−2

)

−
k(αm + αm−1)(xm − xm−1)

4 − 2(αm + αm−1)
(vm + vm−1)

= χ(αm)αm − χ(αm−1)αm−1.

Hence

Al
mvm−2 + Ad

mvm−1 + Au
mvm = b(αm)

where Al
m = µαm−1

xm−1−xm−2
, Ad

m = − µαm

xm−xm−1
− µαm−1

xm−1−xm−2
−k(αm+αm−1)(xm−xm−1)

4−2(αm+αm−1) ,
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Au
m = µαm

xm+xm−1
−k(αm+αm−1)(xm−xm−1)

4−2(αm+αm−1) and b(αm) = χ(αm)αm−χ(αm−1)αm−1.

Upwind discretisation of the velocity (3.10) at xm+1

1

xm+2 − xm+1

{[

αµ
∂v

∂x
− αχ(α)

]

m+2

−

[

αµ
∂v

∂x
− αχ(α)

]

m+1

}

=
kαm+ 3

2

1 − αm+ 3

2

vm+ 3

2

We use a one-sided discretisation on the terms in the square brackets, so as to

not approximate a differential across xm+1. Also, we use αm+ 3

2

≈ 1
2(αm+2 +

αm+1).

1

xm+2 − xm+1

{

µαm+2

(

vm+3 − vm+2

xm+3 − xm+2

)

− χ(αm+2)αm+2

−µαm+1

(

vm+2 − vm+1

xm+2 − xm+1

)

+ χ(αm+1)αm+1

}

=
k(αm+2 + αm+1)

4 − 2(αm+2 + αm+1)
(vm+3 + vm+2)

µαm+2

(

vm+3 − vm+2

xm+3 − xm+2

)

− µαm+1

(

vm+2 − vm+1

xm+2 − xm+1

)

−
k(αm+2 + αm+1)

4 − 2(αm+2 + αm+1)
(vm+3 + vm+2)

= χ(αm+2)αm+2 − χ(αm+1)αm+1.

Hence

Al
m+1vm+1 + Ad

m+1vm+2 + Au
m+1vm+3 = b(αm+1),

where Al
m+1 = µαm+1

xm+2−xm+1
, Ad

m+1 = − µαm+2

xm+3−xm+2
− µαm+1

xm+2−xm+1
−k(αm+2+αm+1)(xm+2−xm+1)

4−2(αm+2+αm+1) ,

Au
m+1 = µαm+2

xm+3−xm+2
−k(αm+2+αm+1)(xm+2−xm+1

4−2(αm+2+αm+1) and b(αm+1) = χ(αm+2)αm+2−

χ(αm+1)αm+1.

These one-sided approximations will affect the matrix system (5.10), so that

A =







































Ad
1 Au

1 0 · · · · · · 0

Al
2 Ad

2 Au
1 0

. . .
...

0
. . .

. . .
. . .

. . .
...

... Al
m Ad

m Au
m

. . .
...

...
. . . Al

m+1 Ad
m+1 Au

m+1

...
...

. . .
. . .

. . .
. . . 0

...
. . . 0 Al

N−1 Ad
N−1 Au

N−1

0 · · · · · · 0 Al
N Ad

N







































,
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and

b(α) =
(

b(α1) b(α2) · · · b(αm) b(αm+1) · · · b(αN−1) b(αN )
)T

v =
(

v1 v2 · · · vm vm+1 · · · vN−1 vN

)T

.

Recovering αm and αm+1 using one-sided approximations

For consistency, we recover α using a one-sided approximation at xm and xm+1.

Method A:

αm =
θ(t)

θ(0)

xm(0) − xm−1(0)

xm(t) − xm−1(t)
αm

αm+1 =
θ(t)

θ(0)

xm+2(0) − xm+1(0)

xm+2(t) − xm+1(t)
αm+1.

Methods B and C:

αm =
Θm

xm − xm−1

αm+1 =
Θm+1

xm+2 − xm+1
.

We should note that the downwind approximation at xm requires m ≥ 2, but

the position where α = αmin occurs at the right hand boundary, so intially m

is likely to be smaller than 2.
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