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Abstract

In this paper, a nonparametric estimator is proposed for estimating the L1-median for multi-

variate conditional distribution when the covariates take values in an infinite dimensional space.

The multivariate case is more appropriate to predict the components of a vector of random

variables simultaneously rather than predicting each of them separately. While estimating the

conditional L1-median function using the well-known Nadarya-Waston estimator, we establish

the strong consistency of this estimator as well as the asymptotic normality. We also present

some simulations and provide how to built conditional confidence ellipsoids for the multivariate

L1-median regression in practice. Some numerical study in chemiometrical real data are car-

ried out to compare the multivariate L1-median regression with the vector of marginal median

regression when the covariate X is a curve as well as X is a random vector.

Keywords: almost sure convergence, confidence ellipsoid, functional data, kernel estimation, small

balls probability, multivariate conditional L1-median, multivariate conditional distribution.

1 Introduction

In statistics, researchers are often interested in how a variable response Y may be concomitant

with an explanatory variable X. Studying the relationship between Y given a new value of the

explanatory variable X is an important task in non-parametric statistics. For instance, regression

function provides the mean value that takes Y given X = x. Some other characteristics of the con-

ditional distribution, such as conditional median, conditional quantiles, conditional mode, maybe

∗corresponding author

1



quite interesting in practice. Furthermore, it is widely acknowledged that quantiles are more robust

to outliers than regression function.

Conditional quantiles are widely studied when the explanatory variable X lies within a finite

dimensional space. There are many references on this topic (see Gannoun et al. (2003a)).

During the last decade, thanks to progress of computing tools, there is an increasing number of

examples coming from different fields of applied sciences for which the data are curves. For instance,

some random variables can be observed at several different times. This kind of variables, known as

functional variables (of time for instance) in the literature, allows us to consider the data as curves.

The books by Bosq (2000) and Ramsay and Silverman (2005)) propose an interesting description

of the available procedures dealing with functional observations whereas Ferraty and Vieu (2006)

present a completely non-parametric point of view. These functional approaches mainly rely on

generalizing multivariate statistical procedures in functional spaces and have been proved to be

useful in various areas such as chemiomertrics (Hastie and Mallows (1993) and Quintela-del Ŕıo

and Francisco-Fernández (2011)), economy (Kneip and Utikal (2001)), climatology (Besse et al.

(2000)), biology (Kirkpatrick and Heckman (1989)), Geoscience (Quintela-del Rı́o and Francisco-

Fernández (2011)) or hydrology (Chebana and Ouarda (2011)). These functional approaches are

generally more appropriate than longitudinal data models or time series analysis when there are,

for each curve, many measurement points (Rice (2004)).

In the univariate case (i.e. Y ∈ R and X is a functional covariable), among the lot of papers

dealing with the nonparametric estimation of conditional quantiles, one may cite papers by Cardot

et al. (2005) which introduced univariate quantile regression with functional covariate and Ferraty

et al. (2005) estimates conditional quantile by inverting the conditional cumulative distribution

function. Ezzahrioui and Ould-Säıd (2008) establish the almost complete convergence and the

asymptotic normality in the setting of independent and identically distributed (i.i.d.) data as well

as under α-mixing condition. Dabo-Niang and Laksaci (2012) stated the convergence in Lp-norm.

In the same framework, Laksaci et al. (2009) estimated the conditional quantile nonparametrically,

by adapting the L1-norm method. Recently Quintela-del Rı́o and Vieu (2011) have used the same

approach proposed by Ferraty et al. (2005) to predict future stratospheric ozone concentrations

and to estimate return levels of extreme values of tropospheric ozone.

Over the past decades, researchers have shown increasing interest in studying multivariate lo-

cation parameters such as multivariate quantiles in order to find suitable analogs of univariate

quantiles that used to construct descriptive statistics and robust estimations of location. In con-

trast to the univariate case, the order of observations Yi laying in Rd (with d ≥ 2) is not total.

Consequently, several quantiles-type multivariate definitions have been formulated. The pioneer pa-

per of Haldane (1948) considered a multivariate extension of the median defined as an M -estimator

(also called spatial or L1-median). The reader is referred to Serfling (2002) for historical reviews

and comparisons. Chaudhuri (1996) and Koltchinskii (1997) defined the geometric quantile as an
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extension of multivariate quantiles based on norm minimization and on the geometry of multivariate

data clouds.

In contrast, relative little attention has been paid to the multivariate conditional quantiles

(Y ∈ Rd and X ∈ Rs) and their large sample properties. Cadre (2001) defined the conditional

L1-median and provided its uniform consistency on a compact subsets of Rs. Recently, De Gooijer

et al. (2006) have introduced a multivariate conditional quantile notion, which extends the definition

of unconditional quantiles by Abdous and Theodorescu (1992), to predict tails from bivariate time

series. Cheng and De Gooijer (2007) have generalized the notion of geometric quantiles, defined

by Chaudhuri (1996), to the conditional setting. They have established a Bahadur-type linear

representation of the u-th geometric conditional estimator as well as the asymptotic normality in

the i.i.d. case.

The purpose of this paper is to add some new results to the non-parametric estimation of the

conditional L1-median when Y is a random vector with values in Rd while the covariable X take its

values in some infinite dimensional space F . As far as we know, this problem has not been studied in

literature before and the results obtained here are believed to be novel. Moreover, our motivation for

studying this type of robust estimator is due to its interest in some practical applications. Note also

that, it would be better to predict all components of a vector of random variables simultaneously in

order to take into account the correlation between them rather than predicting each of component

separately. For instance, in EDF (French electricity company) the estimation of the minimum

and the maximum of the electricity power demand represents an important research issue for both

economic and security reasons. Because an underestimation of the maximum consumed quantity

of electricity (especially in winter) may require importation of electricity from other European

countries with high prices, while an over estimation of this maximum quantitiy may induce a

negative effect on the electricity distribution network. The estimation of the minimum power

demand is also an important task for the same reasons. Notice that the minimum and the maximum

of the electricity power demand are strongly correlated. Thus, it is more appropriate to predict

these variables simultaneously rather than predicting each of them separately. On the other hand,

weather variables, like temperature curves, can play a key role to explain the minimum and the

maximum of power demand. Due to its robust properties, the conditional L1-median may be used

to solve this prediction problem using a temperature curve as covariate.

The paper is organized as follows. Section 2 outlines notations and the form of the new esti-

mator. Section 3 presents the main results concerning the asymptotic behavior of the estimator,

including consistency, asymptotic normality and evaluation of the bias term. An estimation of the

conditional confidence region is then deduced. Section 4 is devoted to a simulation study giving an

example of the estimated confidence region. An application to chemiometrical real data is proposed

in Section 5, where we compare three approaches: L1-median regression, the vector of marginal

conditional median and non-functional multivariate median to predict a random vector. The proofs
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of the results in Section 3 are relegated to the Appendix.

2 Notations and definitions

Let us consider a random pair (X,Y ) where X and Y are two random variables defined on the same

probability space (Ω,A,P). We suppose that Y is Rd-valued and X is a functional random variable

(f.r.v.) takes its values in some infinite dimensional vector space (F , d(·, ·)) equipped with a semi-

metric d(·, ·). Let x be a fixed point in F and F (.|x) be the conditional cumulative distribution

function (cond. c.d.f) of Y given X = x. The conditional L1-median, µ : F −→ Rd, of Y given

X = x, is defined as the miminizer over u of

arg min
u∈Rd

E[(‖Y − u‖ − ‖Y ‖) | X = x] = arg min
u∈Rd

∫
(‖y − u‖ − ‖y‖) dF (y | x). (1)

The general definition (1) does not assume the existence of the first order moment of ‖Y ‖. However,
when Y has a finite expectation, µ(x) becomes a minimizer over u of E[‖Y − u‖ | X = x]. Notice

that the existence and the uniqueness of µ(x) is guaranteed, for d ≥ 2, provided that the condi-

tional distribution function F (·|x) is not supported on a single straight line (see theorem 2.17 of

Kemperman (1987). Hence, uniqueness holds whenever Y has an absolutely continuous conditional

distribution on Rd with d ≥ 2.

Without loss of generality, we suppose in the sequel, that E‖Y ‖ < ∞. Therefore for any fixed

x ∈ F , the conditional L1-median µ(x) may be viewed as a minimizer of the function Gx : Rd '−→ R
defined, for all u ∈ Rd, by

Gx(u) := E[‖Y − u‖ | X = x], (2)

which is assumed to be differentiable and uniformly bounded with respect to u.

We introduce now some further definitions and notations. Denote by At the transpose of the

matrix A, and let ‖A‖ =
√

tr(AtA) be the norm trace. Notice that for any y ∈ Rd, the function

y '−→ ‖y‖ is differentiable everywhere except at z = 0Rd , one may then define (by continuity

extension) its derivative as U(y) = y/‖y‖ when y (= 0 and U(y) = 0 whenever y = 0. For any y (= u,

define

M(y, u) = (1/‖y − u‖)(Id − U(y − u)U t(y − u)),

where Id is the d × d identity matrix. We denote by ∇uGx(u) the gradian of the function Gx(u)

and by Hx(u) its Hessian functional matrix (with respect to u). According to Koltchinskii (1997),

it is easy to see that

∇uG
x(u) = −E [U(Y − u) | X = x] and (3)

Hx(u) = E [M(Y, u) | X = x] . (4)
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Notice that Hx(u) is bounded whenever E
[
‖Y − u‖−1 | X = x

]
< ∞. According to (1) and (3), the

conditional L1-median may be then implicitly defined as a zero with respect to u of the following

equation:

∇uG
x(u) = 0. (5)

To build our estimator, let (Xi, Yi)i=1,...,n be the statistical sample of pairs which are independent

and identically distributed as (X,Y ). Let us denote by

wn,i(x) =
∆i(x)∑n
i=1∆i(x)

,

the so-called Nadaraya-Watson weights, where ∆i(x) = K (d(x,Xi)/h), with K a kernel function,

h := hn is a sequence of positive real numbers which decreases to zero as n tends to infinity.

A kernel estimator of the function Gx(u) is given by

Gx
n(u) =

n∑

i=1

wn,i(x) ‖Yi − u‖ =

∑n
i=1 ‖Yi − u‖ ∆i(x)∑n

i=1∆i(x)
:=

Gx
n,2(u)

Gx
n,1

, (6)

when the denominator is not equal to 0, where

Gx
n,j((j − 1)u) =

1

nE(∆1(x))

n∑

i=1

‖Yi − u‖j−1∆i(x), for j = 1, 2 with Gx
n,1(0) := Gx

n,1. (7)

A kernel estimate of ∇uGx(u) may be defined by

∇uG
x
n(u) := −

n∑

i=1

wn,i(x) U(Yi − u), u ∈ Rd. (8)

According to the statement (2), the estimator of the conditional L1-median, µn(x), may be

viewed as a minimizer over u of the function Gx
n(u), that is

µn(x) = arg min
u∈Rd

Gx
n(u), (9)

or as a zero with respect to u of the equation ∇uGx
n(u) = 0.

Similar to the Fact 2.1.1 in Chaudhuri (1996) and Remark 2.3 in Cheng and De Gooijer (2007), the

existence of the estimator µn(x) is guaranteed by the fact that the function u '−→
∑n

i=1wn,i(x)‖Yi−
u‖ explodes to infinity as ||u|| → ∞. On the other hand, since this function is continuous with

respect to u, then µn(x) must be a minimizer over u of
∑n

i=1wn,i(x)‖Yi − u‖. Next comes the

question of uniqueness, since Rd is equipped with the Euclidean norm that is a strictly convex

Banach space for d ≥ 2, it follows from Theorem 2.17 of Kemperman (1987) that unless all the

data points Y1, . . . , Yn fall on a straight line in Rd,
∑n

i=1wn,i(x)‖Yi − u‖ must be a strictly convex

function of u. This guarantees the uniqueness of the minimizer µn(x) in Rd, for any d ≥ 2.
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3 Main Results

3.1 Further notations and hypotheses

Let x be a given point in F and Vx a neighbourhood of x. Denote by B(x, h) the ball of center

x and radius h, namely B(x, h) = {x′ ∈ F : d(x, x′) ≤ h}. For (", u) ∈ R × Rd, denote by

Gx′
! (u) = E

[
‖Y − u‖! | X = x′

]
, for x′ ∈ F . Our hypotheses are gathered here for easy reference.

(H1) K is a nonnegative bounded kernel of class C1 over its support [0, 1] such that K(1) > 0.

The derivative K ′ exists on [0, 1] and satisfy the condition K ′(t) < 0, for all t ∈ [0, 1] and

|
∫ 1
0 (K

j)′(t)dt| < ∞ for j = 1, 2.

(H2) For x ∈ F , there exists a deterministic nonnegative bounded function g and a nonnegative

real function φ tending to zero, as its argument tends to 0, such that

(i) Fx(h) := P(X ∈ B(x, h)) = φ(r) · g(x) + o(φ(h)) as h → 0.

(ii) There exists a nondecreasing bounded function τ0 such that, uniformly in s ∈ [0, 1],
φ(hs)

φ(h)
= τ0(s) + o(1), as h ↓ 0 and, for j ≥ 1,

∫ 1
0 (K

j(t))′τ0(t)dt < ∞.

(H3) (i) For x ∈ F , |Gx(u)−Gx′
(u)| ≤ c1dβ(x, x′) uniformly in u, for some β > 0 and a constant

c1 > 0, whenever x′ ∈ Vx,

(ii) For x′ ∈ F , the Hessian matrix Hx′
(u) is continuous in Vx:

supx′∈B(x,h) ‖Hx(u)−Hx′
(u)‖ = o(1).

(iii) For some integer m ≥ 2, Gx
−m(µ(x)) < ∞ and Gx′

−m(µ(x)) is continuous in Vx.

(iv) For some integer m ≥ 1 and any (k, j), 1 ≤ k ≤ d, 1 ≤ j ≤ d, E
[
Mm

k,j(Y, µ) | X)
]
< ∞

and

sup
{x′:d(x,x′)≤h}

∣∣E
(
Mm

k,j(Y, µ) | x′)
)
− E

(
Mm

k,j(Y, µ) | x)
)∣∣ = o(1).

(H4) (i) For each x′ ∈ F , supuG
x′
m(u) < ∞ and Gx′

m(u) is continuous in Vx uniformly in u:

sup
u∈Rd

sup
{x′:d(x,x′)≤h}

|Gx′
m(u)−Gx

m(u)| = o(1).

(ii) For some δ > 0 and " ∈ Rd, the real function W x′
i+jδ(µ) := E

[
|"tU(Y − µ)|i+jδ | X = x′

]

(i = 1, 2 and j = 0, 1) is continuous in Vx.

(H5) For any i ≥ 1, E [U(Y − µ) | d(x,X) = v] =: ψ(v)), where v ∈ R and ψ : R → Rd is a

differentiable function such that ∇ψ(0) (= 0.

Remark 3.1 Notice that, since d(·, ·) is a semi-metric, we have ψ(0) = E [U(Y − µ) | X = x]. As

a consequence, it follows from the definition of µ that ψ(0) = 0.
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Comments on the Hypotheses

The above conditions are fairly mild. Condition (H1) is standard in the context of functional

non-parametric estimation. Contrarily to the real and vectorial cases (for which we generally

suppose the strict positivity of the explanatory variable’s density, the concentration hypothesis

(H2)-(i) acts directly on the distribution of the functional random variable rather than on its density

function. The idea of writing the small ball probability Fx(h) as a product of two independent

functions g(x) and φ(h) was adopted by Masry (2005) who reformulated the Gasser et al. (1998)

one. This assumption has been used by many authors where g(x) is interpreted as a probability

density, while φ(h) may be interpreted as a volume parameter. In the case of finite-dimensional

space, that is F = Rd, it can be seen that Fx(h) = C(d)hdg(x) + o(hd), where C(d) is the volume

of the unit ball in Rd. Furthermore, in infinite dimensions, there exist many examples fulfilling

the decomposition mentioned in assumption (H2)-(i) (see Ferraty et al. (2007) and Ezzahrioui and

Ould-Säıd (2008) for more details). The function τ0(·), introduced in assumption (H2)-(ii), plays a

determinant role in asymptotic properties, in particular when we give the order of the conditional

bias and the asymptotic variance term.

Conditions (H3) and (H4) are mild smoothness assumptions on the functionals G(·)(u) and

H(·)(u) and continuity assumptions on certain second-order moments. A similar assumption to

(H3)-(iii) has been supposed in Cheng and De Gooijer (2007) (see condition 6 in their paper).

Condition (H5) is used to evaluate the bias term.

3.2 Almost sure consistency

The following result states the almost surely (a.s.) convergence (with rate) of the functional esti-

mator Gx
n(u). This result plays an instumental role to prove the almost sure consistency of µn(x)

for a fixed x ∈ F .

Proposition 3.1 Assumes that conditions (H1)-(H2), (H3)(i) and (H4)(i) hold true and

(i)
log n

nφ(h)
→ 0 and (ii)

nφ(h)h2β

log n
→ 0 as n → ∞, where β is is given in (H3), (10)

lim||u||→∞||u||Gx(u) < ∞. (11)

Then, we have

sup
u∈Rd

|Gx
n(u)−Gx(u)| = Oa.s(h

β) +Oa.s

(√
log n

nφ(h)

)
.

Notice that the condition (11) is standard when we deal with the uniform consistency of the

density function on the whole space (see, for instance, Corollary 2.2 of Bosq (1996)).

Here then, we give our first result of the conditional L1-median estimator µn(x).
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Theorem 3.2 Assume (H1)-(H2), (H3)(i) and (H4)(i) and condition (10) hold true. Then, we

have

lim
n→∞

µn(x) = µ(x) a.s. (12)

3.3 Asymptotic normality

To state the asymptotic normality of our estimator, some notations are required. Let us first denote

by

G̃x
n(u) =

∑n
i=1 ‖Yi − u‖∆i(x)

n E(∆1(x))
and ∇uG̃

x
n(u) = −

∑n
i=1 U(Yi − u)∆i(x)

nE(∆1(x))
.

Set µ(x) =: µ = (µ1, . . . , µd)t and µn(x) =: µn = (µn,1, . . . , µn,d)t. We have by the definition of µn

that

∇uG
x
n(µn) = −

∑n
i=1 U(Yi − µn)∆i(x)∑n

i=1∆i(x)
= 0. (13)

Obviously the equation (13) is satisfied when the numerator is null. Then, we can say also that

∇uG̃
x
n(µn) = −

∑n
i=1 U(Yi − µn)∆i(x)

n E(∆1(x))
= 0. (14)

Thereafter, one may write

∇uG̃
x
n(µn)−∇uG̃

x
n(µ) = −∇uG̃

x
n(µ). (15)

For each j ∈ {1, . . . , d}, Taylor’s expansion applied to the real-valued function
∂G̃x

n

∂uj
implies the

existence of ξn(j) = (ξn,1(j), . . . , ξn,d(j))t such that






∂G̃x
n

∂uj
(µn)−

∂G̃x
n

∂uj
(µ) =

d∑

k=1

∂2G̃x
n

∂uj∂uk
(ξn(j))(µn,k − µk),

|ξn,k(j)− µk| ≤ |µn,k(j)− µk|.

Define the d× d matrix H̃x
n(ξn(j)) = (H̃x

n,k,j(ξn(j)))1≤k,j≤d by setting

H̃x
n,k,j(ξn(j)) =

∂2G̃x
n

∂uj∂uk
(ξn(j)),

where, for all u ∈ Rd and x ∈ F ,

H̃x
n,k,j(u) =

n∑

i=1

1

‖Yi − u‖

[
δk,j −

(Y j
i − uj)(Y k

i − uk)

‖Yi − u‖2

]
× ∆i(x)

n E(∆1(x))

=

∑n
i=1Mk,j(Yi, u)∆i(x)

n E(∆1(x))
,
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with δk,j = 1 if k = j and zero otherwise and Mk,j(Yi, u) = [δk,j −
(Y j

i −uj)(Y k
i −uk)

‖Yi−u‖2 ]/‖Yi − u‖ is the

(k, j)-th element of the matrix M(Yi, u). Equation (15) can be then rewritten as

H̃x
n(ξn(j)) (µn − µ) = −∇uG̃

x
n(µ). (16)

Equation (16) plays a key role to give the conditional bias and the asymptotic distribution of the

conditional L1-median estimator µn.

Proposition 3.2 Under assumptions (H1)-(H3) and (H4)(i) and condition (10)(i), we have

‖H̃x
n(ξn(j))−Hx(µ)‖ = oP(1), as n → ∞.

Using Remark 4 and Lemma 5.3 of Chaudhuri (1992), we know that both the matrix Hx(µ) itself

and its inverse matrix exist whenever d ≥ 2. It follows from this result combined with (16) that,

for n large enough, µn − µ = −[Hx(µ)]−1∇uG̃x
n(µ) + oP(1). One may then write, for large n that

√
nφ(h) (µn − µ) =

√
nφ(h) [Hx(µ)]−1

[
−
(
∇uG̃

x
n(µ)− E

[
∇uG̃

x
n(µ)

])
− B̃n(x)

]
+ oP(1), (17)

where B̃n(x) = E
[
∇uG̃x

n(µ)
]
.

The following proposition gives the order of the conditional bias term Bn(x) = − [Hx(µ)]−1 B̃n(x).

Proposition 3.3 Under assumptions (H1), (H2) and (H5), and the fact that

g(x) > 0 and |
∫ 1
0 (sK(s))′τ0(s)ds| < ∞, we have:

Bn(x) =
h [Hx(µ)]−1∇ψ(0)

M1

[∫ 1

0
(sK(s))′τ0(s)ds−K(1) + oa.s.(1)

]
,

where for j = 1, 2, Mj = Kj(1)−
∫ 1
0 (K

j)′τ0(z)dz.

The Theorem below gives the asymptotic normality of our estimator.

Theorem 3.3 Suppose assumptions (H1)-(H5) and condition (10)(i) hold.

If (nφ(h))δ/2 → ∞, for some δ > 0, then:

(i)
√
nφ(h) (µn(x)− µ(x)− Bn(x))

D−→ Nd (0,Γx(µ)) ,

where

Γx(µ) =
M2

M2
1 g(x)

[Hx(µ)]−1Σx(µ) [Hx(µ)]−1

and

Σx(µ) = E
{
U(Y − µ) U t(Y − µ)| X = x

}
.
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(ii) If in addition we impose the following stronger conditions on the bandwidth hn:

√
nφ(h)h −→ 0 as n → ∞,

one gets √
nφ(h) (µn(x)− µ(x))

D−→ Nd (0,Γ
x(µ)) .

Remark 3.4 . (i) Notice that the constants M1 and M2 are strictly positive. Indeed making use

of the condition (H1) and the fact that the function τ0(·) is nondecreasing, it suffices to perform a

simple integration by parts. Also, from the point that the conditional distribution Y given X = x

is absolutely continuous, we know that Σx(µ) is definite positive matrix.

(ii) Whenever F = Rs, s ≥ 1, and if the probability density of the random variable X, say gs(·), is
of class C1, then φ(h) = V (s)hs, where V (s) is the volume of the unit ball of Rs. In such case, the

asymptotic variance expression takes the form

Γx(µ) =
1

sgs(x)

∫ 1
0 K2(u)us−1du

(∫ 1
0 K(u)us−1du

)2 × [Hx(µ)]−1Σx(µ) [Hx(µ)]−1 .

In such case the central limit theorem has the form given in the above theorem with convergence

rate (nhsn)
1/2. Notice that in the finite dimensional case, the function φ(h) could decrease to zero

as h → 0 exponentially fast and the convergence rate becomes effectively (nφ(h))1/2. This fact may

be used to solve the problem of the curse of dimensionality (see Masry (2005), for details). As an

example, consider in an infinite dimensional space setting, the random process defined by

Xt = θt+Wt, 0 ≤ t ≤ 1,

where θ is a N (0, 1)-random variable independent of the Winer process W = {Wt : 0 ≤ t ≤ 1}.
It is well-known (see Lipster and Shiryayev (1972)) that the distribution νX of X is absolutely

continuous with respect to the Wiener measure νX , which admets a Radon-Nikodym density f(x).

In this case, hypothesis (H2)(i) is satisfied with φ(h) = 4
π exp(− π2

8h2 ) (see Läıb and Louani (2011)

for details). The convergence rate in Theorem 3.3 being O(n
1−2α

2 ) (with 0 < α < 1/2) by taking

hn := h =
π

2
√
2

1

log nα
.

Observe now in Theorem 3.3 that the limiting variance contains the unknown function g(x),

therefore the normalization depends on the function φ which is not identifiable explicitly. To make

this result operational in practice, we have to estimate the quantities Σ, H and τ0.

For this purpose, we estimate the conditional variance matrix Σx(µ) of ∇uG̃x
n(µ) by

Σx
n(µn) =

n∑

i=1

wn,i(x) U(Yi − µn) U t(Yi − µn),

10



and the matrix Hx(µ) by

Hx
n(µn) =

n∑

i=1

wn,i(x)M(Yi, µn).

Making use of the decomposition of Fx(u) in (H2)(i), one may estimate τ0(u) by

τn(u) =
Fx,n(uh)

Fx,n(u)
, where Fx,n(u) =

1

n

n∑

i=1

1l{d(x,Xi)≤u}.

Subsequently, for a given kernel K, the quantities M1 and M2 are estimated by M1,n and M2,n

respectively replacing τ0 by τn in their respective expressions.

Corollary 3.5 below, which is a slight modification of Theorem 3.3, allows to obtain usefull form

of our results in practice.

Corollary 3.5 Assume that conditions of Theorem 3.3 hold true, K ′ and (K2)′ are integrable

functions. If in addition we suppose that

nFx(h) → ∞ and hβ(nFx(h))1/2 → 0, as n → ∞,

where β is specified in the condition (H3), then, for any x ∈ F such that g(x) > 0, we have

M1,n√
M2,n

√
nFx,n(h) [Σx

n(µn)]
−1/2Hx

n(µn) (µn(x)− µ(x))
D−→ N (0, Id).

3.4 Building Conditional confidence region of µ(x)

From Corollary 3.5, we can easily see that

(µn(x)− µ(x))t [Γx
n(µn)]

−1 (µn(x)− µ(x))
D−→ χ2

d,

where

[Γx
n(µn)]

−1 =
M2

1,nnFx,n(h)

M2,n
Hx

n(µn) [Σ
x
n(µn)]

−1Hx
n(µn).

Then, the asymptotic 100(1− α)% (α ∈ (0, 1)) conditional confidence region for µ(x) is given by

(µn(x)− µ(x))t [Γx
n(µn)]

−1 (µn(x)− µ(x)) ≤ χ2
d(α), (18)

where χ2
d(α) denotes the 100(1 − α)-th percentile of a chi-squared distribution with d degrees of

freedom.

4 Numerical study

This section is divided in two parts, in the first one we are interesting in the estimation of conditional

confidence ellipsoid of the multivariate L1-median regression. The second part is devoted to an

application to chemiometrical real data and it consists in predicting a three-dimensional vector.

11



4.1 Simulation example

Let us consider a bi-dimensional vector Y = (Y1, Y2) ∈ R2 and X(t) is a Brownian motion trajec-

tories defined on [0, 1]. The eigenfunctions of the covariance operator of X are known to be (see

Ash and Gardner (1975)), for j = 1, 2, . . .

fj(t) =
√
2 sin{(j − 0.5)πt}, t ∈ [0, 1].

Let (f1(t))t∈[0,1] (resp. (f2(t))t∈[0,1]) be the first (resp. the second) eigenfunction corresponding to

the first (resp. second) greater eigenvalue of the covariance operator of X. It is well known that

f1(t) and f2(t) are orthogonal by construction, i.e. < f1, f2 >:=
∫ 1
0 f1(t)f2(t) = 0.

We modelize then the dependence between Y and X by the following model:

• Y 1 =
∫ 1
0 f1(t)X(t) dt+ ε

• Y 2 =
∫ 1
0 f2(t)X(t) dt+ ε

where ε is a standard normal random variable.

Figure 1: Sample of 200 simulated couples of observations (Xi,Yi)i=1,...,200. The left box contains

the covariates Xi and in the right one we present their associated vectors Yi.

We have simulated n = 200, 700 independent realizations (Xi,Yi), i = 1, . . . , n. To deal with the

Brownian random functions Xi(t), their sample were discretized by 100 points equispaced in [0, 1].

In Figure 1, we plot a 200 simulated couples (Xi,Yi)i=1,...,200 as described above. The left box

contains the covariates Xi and in the right one we present the associated vectors Yi = (Y 1
i , Y

2
i ).

We aim to assess, for a fixed curve X = x, the performance of the asymptotic conditional

confidence ellipsoid given by (18) in finite sample. For that we have first to estimate µ(x). Three

12



parameters should be fixed in this step: the kernel K, the bandwidth h and the semimetric d(·, ·)
which measure the similarity between curves.

Choice of the kernel: there are many possible density kernel functions. Specialists in non-

parametric estimation agree that the exact form of the kernel function does not greatly affect the

final estimate with regard to the choice of the bandwidth. In this section, the so-called Gaussian

kernel will be used, which is defined by K(u) = (2π)−1/2 exp(−u2/2), for u ∈ R.
Choice of the bandwidth hn: the bandwidth determines the smoothness of the estimator.

The problem of the choice of the bandwidth has been widely studies in non-parametric literature.

Recently Rachdi and Vieu (2007) have proposed a data-driven criterion for choosing this smoothing

parameter. The proposed criterion can be formulated in terms of a functional version of cross-

validation ideas. Antoniadis et al. (2009) treated the same problem in the context of time series

prediction. In the following, the bandwidth hn is selected by L1 cross-validation method:

ĥn,opt = argmin
h>0

n∑

i=1

∥∥Yi − µ̂(−i)(xi)
∥∥ . (19)

Choice of the semi-metric d(·, ·): because of the roughness of our covariate curves we chose a

semi-metric computed with the functional principal components analysis with dimension q = 2.

-3 -2 -1 0 1 2 3 4

-3
-2

-1
0

1
2

3

mu1

mu
2

Figure 2: Confidence ellipsoid of µ(x) when n = 200 (solid lines) and n = 700 (dashed lines); the

centers of the ellipses at (µ1
n(x), µ

2
n(x)) are denoted by triangle (n=200) and cross (n=700).

In Figure 2, we plot the 95% confidence ellipses of µ(x) when x = 0F . We can remark from

Figure 2 that the lengths of the major and the minor axes of the confidence ellipse decrease when

the sample size n increases. Similar results were obtained for other sample sizes n and values of

the curve x.
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4.2 Application to Chemiometrical data prediction

The purpose of this section is to apply our method based on multivariate L1-median regression to

some chemiometrical real data and to compare our results to those obtained by other definitions of

conditional median studied in literature. For that, we used a sample of spectrometric data available

on the web site: http://lib.stat.cmu.edu/datasets/tecator. We have a sample of n = 215 pieces of

meat and for each unit i, we observe one spectrometric discretized curve Xi(λ) which corresponds to

the absorbance measured at a grid of 100 wavelengths (i.e. Xi(λ) = (Xi(λ1), Xi(λ2), . . . , Xi(λ100))).

Figure (3) plots the spectrometric curves. Moreover, for each unit i, we have at hand its Moisture

content (Y 1), Fat content (Y 2) and Protein content (Y 3) obtained by analytical chemical processing.

Figure 3: The 215 spectrometric curves.

Let us denote by Y = (moisture, fat, protein)t := (Y 1, Y 2, Y 3)t the vector of specific chemical

contents of meat. Given a new spectrometric curve Xnew(λ), our purpose is to predict simultane-

ously the corresponding vector of chemical contents Ŷ using the multivariate L1-median regression.

Obtaining a spectrometric curve is less expensive (in terms of time and cost) than analytical chem-

istry needed for determining the percentage of chemical contents. So, it is an important economic

challenge to predict the hole vector Y from the spectrometric curve.

Let us consider 215 observations (X1(λ),Y1), . . . , (X215(λ),Y215) split into two samples: learn-

ing sample (160 observations) and test sample (55 observations). We compare the following three

methods, based on multivariate conditional median, to predict the vector of chemical contents Y

of the test sample. In the following three approaches, we choose the quadratic kernel K defined by:

K(u) =
3

2
(1− u2)1l[0,1].

(i) Non-functional approach (NF)
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Figure 4: The sample of 215 piece of meat.

This method is based on the definition of conditional spatial median studied by Gannoun et al.

(2003b) and Cheng and De Gooijer (2007). This approach does not consider the covariate X as

a function but a vector of dimension 100 while the response variable Y is a vector. For each

i = 1, . . . , 160 in the learning sample, the ith vector Yi is predicted as follow:

Ŷi = µ̂NF (Xi),

where

µ̂NF (Xi) = argmin
u∈R3

160∑

j=1

wNF
n,j (Xi)‖Yj − u‖,

and wNF
n,j (Xi) = K

(
Xi −Xj

hn

)/ n∑

j=1

K

(
Xi −Xj

hn

)
are the so-called Nadaraya-Watson weights.

For the choice of the bandwidth hn, Cheng and De Gooijer (2007) gave the exact expression of the

optimal bandwidth that minimizes the asymptotic mean square error. In this case hn is of the rate

n(−1/104+ε), where ε > 0 is a sufficiently small constant.

(ii) Vector Coordinate Conditional Median (VCCM)

This approach supposes that the covariate X is considered as functional. For each i = 1, . . . , 160 in

the learning sample, we predict each component of its vector response Yi by the one-dimensional

conditional median. Then we obtain the vector of coordinate conditional medians (VCCMs) defined

as

Ŷi = (µ̂1(Xi), µ̂
2(Xi), µ̂

3(Xi)),

where each component µ̂j(Xi) = (F̂ j)−1(1/2 | Xi) is the one-dimensional conditional median

estimator.
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F̂ j(· | Xi) is the conditional distribution function estimator of the component Y j given X =

Xi. Ferraty and Vieu (2006), p. 56, have proposed a Nadaraya-Watson kernel estimator of the

conditional distribution, F j(· | X = Xi), when covariate takes values in some infinite dimensional

space. This estimator is given by

F̂ j(yj | X = Xi) =
160∑

k=1

1l{Y j
k ≤yj}K(d(Xi, Xk)/hn)

/ 160∑

k=1

K(d(Xi, Xk)/hn), yj ∈ R.

To apply this approach, we used the Ferraty and Vieu’s R/routine funopare.quantile.lcv1 to esti-

mate µ̂j(Xi). The optimal bandwidth is chosen by the cross-validation method on the k nearest

neighbours (see Ferraty and Vieu (2006), p.102 for more details).

(iii) Conditional Multivariate Median (CMM)

The approach that we propose here supposes the covariate X is a curve and the response Y is a

vector. For each i = 1, . . . , 160 in the learning sample we take

Ŷi = µ̂(Xi),

where

µ̂(Xi) = argmin
u∈R3

160∑

j=1

wn,j(Xi)‖Yj − u‖. (20)

To estimate the conditional multivariate median, µ̂(Xi), we have adapted the algorithm proposed

by Vardi and Zhang (2000) to the conditional case and used the function spatial.median from

the R package ICSNP. As in the previous approach, the optimal bandwidth is chosen by the cross-

validation method on the k nearest neighbours.

A common evaluation procedure:

We have adapted, to the multivariate case, the algorithm proposed by Attouch et al. (2009)

and Ferraty and Vieu (2006), p.103) in order to get the optimal smoothing parameter hn for each

Xi in the test sample.

Step1. We compute the kernel estimator µ̂(Xj) (resp. µ̂k(Xj)), for all j by using the training sample.

Step2. For each Xi in the test sample, we set i' = argminj=1,...,160 d(Xi, Xj).

Step3. For each i = 161, . . . , 215, we take

µ̂(Xi) = µ̂(Xi') and µ̂k(Xi) = µ̂k(Xi').

1Available at the website www.lsp.ups-tlse.fr/staph/npfda.
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CMM VCCM NF

Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75

Moist. 1.301 0.479 1.100 2.202 1.776 0.460 1.879 2.383 7.222 1.663 6.374 11.44

Fat 1.565 0.430 1.500 2.401 2.343 0.925 1.716 2.867 9.758 2.328 8.4 15.24

Prot. 1.125 0.300 0.800 1.437 1.313 0.518 1.182 1.806 2.446 0.787 2.329 3.394

R(Ŷ ) 2.638 1.349 2.530 3.623 3.561 1.877 2.909 3.799 12.6 3.523 10.6 19.27

Table 1: Distribution of absolute errors for Moisture, Fat and Protein and global estimation error

of the vector Y.

The used bandwidth for each curve Xi in the test sample is the one obtained for the nearest

curve in the learning sample. Because the spectrometric curves presented in Figure (3) are very

smooth, we can choose as semi-metric d(·, ·) the L2 distance between the second derivative of the

curves. This choice has been made by Attouch et al. (2009) and Ferraty et al. (2007) for the same

spectrometric curves.

Both (CMM) and (NF) methods take into account the covariance structure between variables

of of the vector Y. In fact, the correlation coefficients between Y1 = moisture, Y2 = fat and

Y3 = protein are given by ρ1,2 = −0.988, ρ1,3 = 0.814 and ρ2,3 = −0.860. As we can see moisture,

fat and protein contents in meat are strongly correlated then it will be more appropriate to predict

these variables simultaneously rather than each one separately.

To compare (CMM), (NF) and (VCCM) methods, we are based on the following criterias:

• The Absolute Error (AE) gives idea about the prediction of each component of Y

AEj
i = |Y j

i − L̂j(Xi)|, ∀i = 161, . . . , 215 and j = 1, 2, 3.

• A global criteria (R) gives idea about error made to predict the vectorYi (for i = 161, . . . , 215)

R(Ŷi) = ‖Yi − L̂(Xi)‖Eucl

where L̂ := (L̂1, L̂2, L̂3)t represents the estimator of each component of the vector Y obtained by

(VCCM), (NF) or (CMM) method.

We can conclude from table 1 that our method is more appropriate to predict meat components than

(VCCM). In fact, the (VCCM) approach predicts each component ofY separately using conditional

univariate median. This method supposes independence of the components of Y and doesn’t take

into account the correlation structure between variables. The Non-Functional approach gives the

most important prediction errors and this is because of the dimension of the covariate (100 in this

case). This problem is well-known in nonparametric estimation as curse of dimensionality. Taking

into account the functional aspect of the covariate seems to be necessary in such case.
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5 Concluding remarks

In this paper, we have introduced a kernel-based estimator for the L1-median of a multivariate con-

ditional distribution when covariates take values in an infinite-dimensional space. Prediction using

the least square estimates of regression parameters is highly sensitive to outlying points. Therefore,

there is no doubt that conditional L1-median can be used to make prediction. We have shown that

our estimator is well adapted to predict a multivariate response vector. In fact, in contrast to the

Vector Coordinate Conditional Median method, the multivariate conditional L1-median takes into

account the inter-dependance of the coordinates of the response vector. Asymptotic results, i.e.,

almost sure consistency and asymptotic normality, has been given under some regularity conditions.

Many extensions can be given to this work. For instance, the same type of theoretical results could

be obtained in a non-independence framework (e.g. mixing dependence). Furthermore, it is well

known that quantiles are very useful tools to detect outliers and to modelize the dependence of

the covariates in lower and upper tails of the response distribution. In future work, we aim to

generalize our study to the multivariate quantiles regression when covariates take values in some

infinite dimensional space.

Acknowledements

The authors thank two anonymous referees, and the associate editor for their constructive remarks

that helped to improve the manuscript.

Appendix: Proofs

In order to prove our results we have to introduce some further notations. Let

G
x
n,2(u) = E

(
Gx

n,2(u)
)
:=

1

E∆1(x)
E [‖Y1 − u‖∆1(x)] ,

and define the bias of Gx
n(u) as

Bx
n(u) = G

x
n,2(u)−Gx(u).

Consider now the following quantities

Rx
n(u) = −Bx

n(u)
(
Gx

n,1 − 1
)

and

Qx
n(u) =

(
Gx

n,2(u)−G
x
n,2(u)

)
−Gx(u)

(
Gx

n,1 − 1
)
.

It is then clear that the following decomposition holds

Gx
n(u)−Gx(u) = Bx

n(u) +
Rx

n(u) +Qx
n(u)

Gx
n,1

. (21)
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Since Gx
n,1 is independent of u, it follows from decomposition (21) that

sup
u∈Rd

|Gx
n(u)−Gx(u)| ≤ sup

u∈Rd

|Bx
n(u)|+

supu∈Rd |Rx
n(u)|+ supu∈Rd |Qx

n(u)|
Gx

n,1

. (22)

The proof of Proposition 3.1 is split up into several lemmas, given hereafter, establishing re-

spectively the convergence almost surely (a.s.) of Gx
n,1 to 1 and that of Bx

n(u), R
x
n(u) and Qx

n(u)

(with rate) to zero.

We start by the following technical lemma whose proof my be found in Ferraty et al. (2007).

Lemma 5.1 Assume that conditions (H1),(H2) hold true. For any real numbers j ≥ 1 and k ≥ 1,

as n → ∞, we have

(i)
1

φ(h)
E[∆j

1(x)] = Mjg(x) + o(1)

(ii)
1

φk(h)
(E(∆1(x)))

k = Mk
1 g

k(x) + o(1).

Lemma below gives the convergence rate of the quantity Gx
n,1.

Lemma 5.2 Under assumptions (H1)-(H2) and condition (10)(i), we have

Gx
n,1 − 1 = Oa.s

(√
log n

nφ(h)

)
.

Proof of Lemma 5.2. Let us denote by

Rx
n,1 = Gx

n,1 − 1 :=
1

n

n∑

i=1

Ln,i(x),

where Ln,i(x) = ∆'
i (x)−E(∆'

i (x)) and ∆'
i (x) =

∆i(x)
E(∆1(x))

. To apply the exponential inequality given

by Corollary A.8(i) of Ferraty and Vieu (2006) in Appendix A we have first to show that for all

m ≥ 2 there exist a positive constant Cm such that E|Lm
n,1(x)| ≤ Cma2(m−1). We have

E (|Ln,1(x)|m) ≤ C
m∑

k=0

(
m

k

)
E
[
(∆'

1(x))
k
]
[E(∆'

1(x))]
m−k .

Then using Lemma 5.1 we get E (|Ln,1(x)|m) ≤ Cmmaxk=0,1,...,m(φ(h))1−k ≤ Cm(φ(h))1−m. There-

fore, we have a2 = (φ(h))−1. Now, for all ε > 0, we have

P(|Rx
n,1| > ε) ≤ 2 exp

{
− nε2

2φ(h)(1 + ε)

}
.

The desired result follows from Borel Cantelli Lemma by choosing ε = ε0
√
log n/nφ(h) where ε0 is

a large enough positive constant.

The following lemma describes the uniform asymptotic behavior of the conditional bias term

Bx
n(u) as well as that of R

x
n(u) and Qx

n(u) with respect to u.
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Lemma 5.3 (i) Under conditions (H1)-(H2) (H3)(i), we have

sup
u∈Rd

|Bx
n(u)| = Oa.s.(h

β). (23)

(ii) If in addition that (H1)-(H2) hold true and condition (10) is satisfied, we have

sup
u∈Rd

|Rx
n(u)| = Oa.s.

(
hβ

√
log n

nφ(h)

)
(24)

Proof of Lemma 5.3. Recall that

Bx
n(u) = G

x
n,2(u)−Gx(u).

Conditioning by X and using the definition of Gx(u) and condition (H3)(i), one has

|Bx
n(u)| =

∣∣∣∣
1

E∆1(x)
E {∆1(x)E[‖Y1 − u‖ | X]}−Gx(u)

∣∣∣∣

=

∣∣∣∣
1

E∆1(x)
E
{
∆1(x)(G

X(u)−Gx(u))
}∣∣∣∣

≤ sup
x′∈B(x,h)

|Gx′
(u)−Gx(u)| = Oa.s.(h

β).

The later quantity is independent of u, this leads to supu∈Rd |Bx
n(u)| = Oa.s.(hβ).

Now, to deal with the quantity Rx
n(u), write it as Rx

n(u) = −Bx
n(u)

(
Gx

n,1 − 1
)
. Therefore

sup
u∈Rd

|Rx
n(u)| = sup

u∈Rd

|Bx
n(u)||Gx

n,1 − 1|.

The statement (24) follows from (23) combined with Lemma 5.2.

Lemma 5.4 Under assumptions (H1)-(H2), (H4)(i), conditions (10) and (11) we have

sup
u∈Rd

|Gx
n,2(u)−G

x
n,2(u)| = Oa.s.

(√
log n

nφ(h)

)
.

Proof of Lemma 5.4. For u ∈ Rd and r > 0, let

S(u, r) = {u′ : u′ ∈ Rd, ||u′ − u|| ≤ r},

be the sphere of radius r centered at u. Let [−nγ , nγ ]d, for 1/2 < γ < 2, be an interval of Rd. Divide

[−nγ , nγ ] into kn subintervals each of length bn = [2nγ/kn] (where [t] is the integer part of t). Since

the set S(0, nγ) = {u′ : ||u′|| ≤ nγ} is compact, it can be covered by kdn bounded hypercubes of the

form

Sn,j := S(uj , bn) = {u′ : ||u′ − uj || ≤ bn}, j = 1, . . . , kdn.
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We have

sup
||u||≤nγ

|Gx
n,2(u)−G

x
n,2(u)|

≤ max
1≤j≤kdn

sup
u∈Sn,j

|Gx
n,2(u)−Gx

n,2(uj)|+ max
1≤j≤kdn

|Gx
n,2(uj)−G

x
n,2(uj)|

+ max
1≤j≤kdn

sup
u∈Sn,j

|Gx
n,2(u)−G

x
n,2(uj)| := In,1 + In,2 + In,3. (25)

Observe now that

sup
u∈Sn,j

|Gx
n,2(u)−Gx

n,2(uj)| ≤ 1

nE(∆1(x))

n∑

i=1

sup
u∈Sn,j

∣∣∣||Yi − u||− ||Yi − uj ||
∣∣∣∆i(x)

≤ 1

nE(∆1(x))

n∑

i=1

∆i(x) sup
u∈Sn,j

||u− uj || = bnG
x
n,1,

and

sup
u∈Sn,j

|Gx
n,2(u)−G

x
n,2(uj)| ≤ E

[
sup

u∈Sn,j

|Gx
n,2(u)−Gx

n,2(uj)|
]
= bn.

If we denote by αn =
√
nφ(h)/ log n the convergence rate, one gets by Lemma 5.2

αn(In,1 + In,3) = O(αnbn(1 +Gx
n,1)) = O(αnbn) = O(αnn

γ/kdn).

The choice of kdn = [αnnγ log n] implies that

αn(In,1 + In,3) = o(1). (26)

In order to evaluate the term In,2, let us denote by

∆'
i (x) =

∆i(x)

E∆1(x)
,

and

Zn,i(x) = ‖Yi − uj‖∆'
i (x)− E [‖Y1 − uj‖∆'

1(x)] .

Then, we have

Gx
n,2(uj)−G

x
n,2(uj) =

1

n

n∑

i=1

Zn,i(x).

For all m ∈ N− {0}, observe that

Zm
n,i(x) =

m∑

k=0

(
m

k

)
(‖Yi − uj‖∆'

i (x))
k (−1)m−k [E(‖Y1 − uj‖∆'

1(x))]
m−k .
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In order to apply an exponential type inequality, we have to give an upper bound for E (|Zn,1(x)|m).

It follows from the above inequality that

E (|Zn,1(x)|m) ≤ C
m∑

k=0

(
m

k

)
E
[
(‖Y1 − uj‖∆'

1(x))
k
]
[E(‖Y1 − uj‖∆'

1(x))]
m−k .

On the other hand, we have for any k ≥ 2

E
[
(‖Y1 − uj‖∆'

1(x))
k
]

= E
[
(∆'

1(x))
kE

(
‖Y1 − uj‖k | X1

)]

= E
[
(∆'

1(x))
kGX1

k (uj)
]
.

Using the first part of condition (H4)(i), which implies that Gx
k(uj) is bounded uniformly for all j,

one may write

E
[
(‖Y1 − uj‖∆'

1(x))
k
]

≤ E
[
(∆'

1(x))
k|GX1

k (uj)−Gx
k(uj)|

]
+Gx

k(uj)E((∆'
1(x))

k)

≤ E((∆'
1(x))

k)

[
max

j
sup

x′∈B(x,h)
|Gx′

k (uj)−Gx
k(uj)|+max

j
Gx

k(uj)

]

≤ C0E
[
(∆'

1(x))
k
]
,

where C0 is a positive constant. Moreover, we have E (‖Y1 − uj‖∆'
1(x)) = O(1) uniformly in j since

E [∆'
1(x)] = 1 and supu E(||Y1 − u|| |X) < ∞ in view of condition (2).

Therefore [E (‖Y1 − uj‖∆'
1(x))]

m−k = O(1).

Next, applying Lemma 5.1, one may write

E
[
(∆'

1(x))
k
]

= (φ(h))1−k

[
Mk

Mk
1

g1−k(x) + o(1)

]
.

Thus

E (|Zn,1(x)|m) ≤ Cm max
k=0,1,...,m

(φ(h))1−k

where Cm is a real positive constant depending on m. Because φ(h) tends to zero as n goes to

infinity, it comes that

E (|Zn,1(x)|m) = O
(
(φ(h))1−m

)
.

Now, applying Corollary A.8− i in Ferraty & Vieu (2006) kdn times with a2 = (φ(h))−1 we obtain,

by choosing

ε = εn = 3ε0
√
vn where vn = (a2 log n)/n = logn/(nφ(h)) −→ 0 as n → ∞,
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that

P (|In,2| ≥ ε) ≤ 2kdn exp

(
−ε20 log n

[
1

2(1 + ε0
√
vn)

])
≤ 2kdnn

−ε20 .

One may choose ε0 large enough such that

∑

n

P (|In,2| ≥ ε) < ∞.

We conclude by Borel-Cantelli lemma and (26) that

αn sup
||u||≤nγ

|Gx
n,2(u)−G

x
n,2(u)| = Oa.s(αn

√
vn) = Oa.s(1).

Next, we have

sup
u∈Rd

αn|Gx
n,2(u)−G

x
n,2(u)| ≤ sup

||u||≤nγ
αn|Gx

n,2(u)−G
x
n,2(u)|+ sup

||u||>nγ
αn|Gx

n,2(u)−G
x
n,2(u)|

= sup
||u||>nγ

αn|Gx
n,2(u)−G

x
n,2(u)|+Oa.s.(1),

in view of the above result. Now, we have

αn sup
u:||u||≥nγ

|Gx
n,2(u)−G

x
n,2(u)|

≤ αn sup
u:||u||≥nγ

|Gx
n,2(u)|+ αn sup

u:||u||≥nγ
|Gx(u)|+ αn sup

u
|Gx(u)−G

x
n,2(u)|. (27)

The last term in (27) is zero for large n, since conditioning by X, one may write

αn|G
x
n,2(u)−Gx(u)| = αn|Bx

n(u)| = Oa.s.(h
β
nαn) =a.s. (1)

in view Lemma 5.3 (i) whenever condition (10)(ii) is satisfied. For the second term in (27), we have

αn sup
||u||>nγ

Gx(u) ≤ αn

nγ
sup

||u||>nγ
||u||Gx(u) = o(1),

whenever γ > 1/2 and the condition (11) is satisfied.

Moreover, we have for any ε > 0

P
{
αn sup

u:||u||≥nγ
|Gx

n,2(u)| ≥ ε

}

≤ P




αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||>nγ/2

||Yi − u||∆i(x)|| ≥ ε/2






+ P




αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||≤nγ/2

||Yi − u||∆i(x)|| ≥ ε/2




 := Jn,1 + Jn,2.
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To treat Jn,1, denote by

An(ω) := {ω : αn sup
||u||>nγ

1

n

n∑

i=1:||Yi−u||>nγ/2

||Yi − u||∆i ≥ ε/2}.

The event An(ω) is nonempty if and only if there exists at least i0 (1 ≤ i0 ≤ n) such that

||Yi0 − u|| > nγ/2. Thus ”An(ω) (= ∅” ⊂ ∪n
i=1{ω : ||Yi − u|| ≥ nγ/2}. It follows from Markov’s

inequality, if E(||Y1 − u||) < ∞, that

P (An(ω) (= ∅) = O(n−(γ−1)) and
∑

n

P (An(ω) (= ∅) < ∞,

whenever γ > 1, which implies that Jn,1 = oa.s.(1) by Borel-Cantelli Lemma.

To deal with Jn,2, let us denote by

Bn(ω) := {ω : αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||≤nγ/2

||Yi − u||∆i(x)|| ≥ ε/2}.

Bn(ω) is nonempty if and only if there exists at least i0 (1 ≤ i0 ≤ n) such that ||Yi0−u|| ≤ nγ/2.

The later inequality implies that ||Yi0 − u||− ||u|| ≤ 0 whenever ||u|| ≥ nγ . Moreover, we have (by

triangle inequality), whenever the above conditions are hold, that

||Yi0 || ≥
∣∣∣||Yi0 − u||− ||u||

∣∣∣ = −||Yi0 − u||+ ||u|| > nγ/2.

Therefore,

”Bn(ω) (= ∅” ⊂ {∃i0 : 1 ≤ i0 ≤ 1, ||Yi0 || ≥ nγ/2}.

We conclude as above that Jn,2 = oa.s.(1) whenever E(||Y1||) > ∞ and γ > 1.

This ends the proof of Lemma 5.4.

Lemma 5.5 Under assumptions (H1)-(H2), (H4)(i) and condition (10)(i), we have

Qx
n(u) = Oa.s.

((
log n

nφ(h)

)1/2
)
. (28)

Proof of Lemma 5.5. In order to check the statement (28), recall that

Qx
n(u) =

(
Gx

n,2(u)−G
x
n,2(u)

)
−Gx(u)

(
Gx

n,1 − 1
)
.

The result follows then from Lemmas 5.2 and 5.4.

Proof of Proposition 3.1. The proof follows from Lemmas 5.2, 5.3, 5.4 and 5.5.
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Proof of Theorem 3.2.

We have from the definitions of µ(x) and µn(x) and the existence and the uniqueness of these

quantities that:

Gx(µ(x)) = inf
u∈Rd

Gx(u) and Gx
n(µn(x)) = inf

u∈Rd
Gx

n(u).

It follows then

|Gx(µ(x))−Gx(µn(x))| ≤| Gx(µ(x))−Gx
n(µn)|+ |Gx

n(µn(x))−Gx(µn(x))|

= |− (− inf
u∈Rd

Gx(u) + inf
u∈Rd

Gx
n(u))|+ |Gx

n(µn(x))−Gx(µn(x))|

= |− sup
u∈Rd

Gx(u) + sup
u∈Rd

Gx
n(u)|+ |Gx

n(µn(x))−Gx(µn(x))|

≤ sup
u∈Rd

|Gx(u)−Gx
n(u)|+ |Gx

n(µn(x))−Gx(µn(x))|

≤ 2 sup
u∈Rd

|Gx
n(u)−Gx(u)|. (29)

Moreover, since for any fixed x ∈ F , the function Gx(·) is uniformly continuous and because µ(x)

is the unique minimizer of the function Gx(·), we have then, for any ε > 0,

inf
u:‖µ(x)−u‖≥ε

Gx(u) > Gx(µ(x)), (30)

which means that there exists for every ε > 0, a number η(ε) > 0 such that Gx(u) > Gx(µ(x))+η(ε)

for every u such that ‖µ(x)− u‖ ≥ ε. This implies that the event {‖µ(x)− µn(x)‖ > ε} is included

in the event {Gx(µn(x)) > Gx(µ(x)) + η(ε)}.
Using inequality (29) we get

∑

n≥1

P (‖µn(x)− µ(x)‖ > ε) ≤
∑

n≥1

P (Gx(µn(x)) > Gx(µ(x)) + η(ε))

≤
∑

n≥1

P
(
sup
u∈Rd

|Gx
n(u)−Gx(u)| > η(ε)/2

)
< ∞,

similarly to the proof of the Proposition 3.1. The statement (12) follows then from an application

of Borel-Cantelli Lemma.

Proof of Proposition 3.2

To prove Proposition 3.2, it suffices to see that

‖H̃x
n(ξn(j))−Hx(µ)‖ ≤ ‖H̃x

n(ξn(j))− H̃x
n(µ)‖+ ‖H̃x

n(µ)−Hx(µ)‖. (31)
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Concerning the first term, observe that

‖H̃x
n(ξn(i))− H̃x

n(µ)‖ ≤ 1

n E(∆1(x))

n∑

i=1

‖M(Yi, ξn(j))−M(Yi, µ)‖ ∆i(x)

:= An + Bn, (32)

where

An :=

√
d

nE(∆1(x))

n∑

i=1

∣∣∣‖Yi − µ‖ − ‖Yi − ξn(j)‖
∣∣∣∆i(x)

‖Yi − µ‖ ‖Yi − ξn(j)‖

and

Bn :=
1

nE(∆1(x))

n∑

i=1

∆i(x)

∣∣∣
∣∣∣‖Yi − ξn(j)‖ U(Yi − µ) UT (Yi − µ)− ‖Yi − µ‖ U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣

‖Yi − µ‖ ‖Yi − ξn(j)‖
.

Using Theorem 3.2 and the triangular inequality we can easily see thatAn = oa.s.(1)× 1
nE(∆1(x))

∑n
i=1

∆i(x)
‖Yi−µ‖2 .

Combining Markov and Cauchy-Schwarz inequalities and making use of the assumption H3-(iii),

we can easily prove that 1
nE(∆1(x))

∑n
i=1

∆i(x)
‖Yi−µ‖2 = OP(1). Then we conclude that An = oP(1).

For the second term Bn of the inequality (32), we have by triangular inequality and the fact

that ‖U(Yi − θ)‖ = 1, that
∣∣∣
∣∣∣‖Yi − ξn(j)‖ U(Yi − µ) UT (Yi − µ)− ‖Yi − µ‖ U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣ ≤

∣∣∣‖Yi − ξn(j)‖ − ‖Yi − µ‖
∣∣∣+ ‖Yi − µ‖

∣∣∣
∣∣∣U(Yi − µ) UT (Yi − µ)− U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣ ≤

‖µ− ξn(j)‖+ ‖Yi − µ‖ ×
∣∣∣
∣∣∣U(Yi − µ) UT (Yi − µ)− U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣.

Since

U(Yi − µ)UT (Yi − µ)− U(Yi − ξn(j))UT (Yi − ξn(j)) = [U(Yi − µ)− U(Yi − ξn(j)) ] UT (Yi − µ)

+ U(Yi − ξn(j))
[
UT (Yi − µ)− UT (Yi − ξn(j))

]
,

and ‖U(Yi − µ)− U(Yi − ξn(j))‖ ≤ 2
‖µ− ξn(j)‖
‖Yi − ξn(j)‖

, we can conclude, by using Theorem 3.2, that

Bn = oa.s.(1)×
1

nE(∆1(x))

n∑

i=1

∆i(x)

‖Yi − µ‖2

Finally, using the same arguments as above (concerning the proof of the termAn), we get Bn = oP(1)

and this is allows us to conclude that ‖H̃x
n(ξn(i))− H̃x

n(µ)‖ = oP(1). Now we are interesting to the

second term of the right side term of (31). Write

H̃x
n(µ)−Hx(µ) = H̃x

n(µ)− E[H̃x
n(µ)]︸ ︷︷ ︸

Kn,1

+E[H̃x
n(µ)]−Hx(µ)︸ ︷︷ ︸

Kn,2

.
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We have to show that each term Kn,i (i = 1, 2) is asymptotically negligible. We have

‖Kn,1‖2 = tr(KT
n,1Kn,1) =

d∑

k=1

d∑

j=1

Z2
k,j

where (Zk,j)1≤k,j≤d is the general term of the matrix KT
n,1Kn,1 which may be can be written as

Zk,j =
1

nE(∆1(x))

n∑

i=1

[Mk,j(Yi, µ)∆i(x)− E (Mk,j(Yi, µ)∆i(x))] .

Using the assumption (H3)-(iv), Lemma 5.1 and corollary A.8 of Ferraty & Vieu (2006), we can

easily prove that for all 1 ≤ k, j ≤ d, Zk,j = oP(1).

To handle Kn,2, observe that

‖Kn,2‖ =

∥∥∥∥E
[∑n

i=1M(Yi, µ) ∆i(x)

n E(∆1(x))

]
−Hx(µ)

∥∥∥∥

≤ 1

E(∆1(x))
E
(
‖HX1(µ)−Hx(µ)‖∆1(x)

)

≤ sup
x′∈B(x,h)

‖Hx′
(µ)−Hx(µ)‖ = oa.s.(1)

in view of condition (H3)(ii).

Lemma 5.6 Under hypothesis (H1)-(H2) and (H4)(ii), and if for any δ > 0, (nφ(h))−δ/2 → 0, we

have

√
nφ(h)

(
∇uG̃

x
n(µ)− E

[
∇uG̃

x
n(µ)

])
D−→ Nd(0, Σ̃x(µ)).

where Σ̃x(µ) is the limiting covariance matrix of ∇uG̃x
n(µ)− E

[
∇uG̃x

n(µ)
]
.

Proof of Lemma 5.6. Let’s denote by

Ai =

√
φ(h)

E(∆1(x))
× U(Yi − µ) ∆i(x)

Then
√
nφ(h)

(
∇uG̃

x
n(µ)− E

[
∇uG̃

x
n(µ)

])
=

1√
n

n∑

i=1

(Ai − E(Ai)) :=
1√
n

n∑

i=1

Ãi.

From the Cramer-Wold device, Lemma 5.6 can be proved by finding the limit distribution of the

real variables sequence 1√
n

∑n
i=1 "

t Ãi, for all " ∈ Rd satisfying ‖l‖ (= 0.

Because the random variables "tÃ1, . . . , "tÃn are i.i.d. with zero mean and asymptotic variance

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

"t Ãi

)
.
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The result may be obtained by applying the Liapounov Central Theorem Limit. For this propose,

we have to prove the following Lindeberg condition:

∀δ > 0
[
n "tΣ̃x(µ)"

]−(2+δ)/2
n∑

i=1

E|"tÃi|2+δ −→ 0 as n −→ ∞.

It is easy to see that:

[
n "tΣ̃x(µ)"

]−(2+δ)/2
n∑

i=1

E|"tÃi|2+δ = n−δ/2
(
"tΣx(µ)"

)−(2+δ)/2 E|"tÃ1|2+δ.

Moreover, using Cr and Jensen inequalities, we obtain

E|"tÃ1|2+δ ≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ
E
∣∣∣"t (U(Y1 − µ))2+δ ×∆2+δ

1 (x)
∣∣∣

≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ
E





∆2+δ

1 (x) E
[∣∣"tU(Y1 − µ)

∣∣2+δ | X
]

︸ ︷︷ ︸
=WX

2+δ(µ)






≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ

[
E(∆1(x))

2+δ sup
x′∈B(x,h)

|W x′
2+δ(µ)−W x

2+δ(µ)|+W x
2+δ(µ)E(∆1(x))

2+δ

]
.

It follows then, by hypothesis (H4)(ii) and Lemma 5.1, that

E|"tÃ1|2+δ ≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ
W x

2+δ(µ)E(∆1(x))
2+δ

≤ c′
(φ(h))(2+δ)/2

(φ(h))(2+δ) [M2+δ
1 (g(x))2+δ + o(1)]

[
φ(h)(M(2+δ)/2g(x) + o(1))

]

= O
(
(φ(h)−δ/2)

)
.

Finally, since ("tΣ̃x(µ)")−(2+δ)/2 is finite, it comes that

[
n "tΣ̃x(µ)"

]−(2+δ)/2
n∑

i=1

E|"tÃi|2+δ = O
(
(nφ(h)−δ/2)

)
= o(1),

because nφ(h) → ∞ as n → ∞. This implies the Lindeberg condition, which completes the

proof of the Lemma.

The following Lemma gives the analytic expression of the matrix Σx(µ).
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Lemma 5.7 Under conditions (H1)-(H2) and (H4)(ii), we have

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

"t Ãi

)
=

M2

M2
1 g(x)

"tΣx(µ)".

Proof of Lemma 5.7. Since the random variables ("tÃi)i=1,...,n are i.i.d. with mean zero, it follows

that

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

"t Ãi

)
= lim

n→∞
V ar("tÃ1) = lim

n→∞
E
(
("tA1)

2
)
.

On the other hand, making use of the properties of conditional expectation one may write

E
[(
"tA1

)2]
=

φ(h)

(E∆1)2
E
[
∆1"

tU(Y1 − µ)
]2

=
φ(h)

(E∆1)2
E
[
∆2

1W
X1
2 (µ)

]

Making use of the condition (H4)(ii) and the fact that the functions W x
2 (·) is bounded, we obtain

E
{
∆2

1W
X1
2 (µ)

}
= E

(
∆2

1

)
[
W x

2 (µ) +O
(
sup
u∈Rd

|W u
2 (µ)−W x

2 (µ)|
)]

= W x
2 (µ)E

(
∆2

1

)
+ o

(
E
(
∆2

1

))
.

Using Lemma 5.1, one may see that

φ(h)

(E∆1)2
E(∆2

1) =
M2

M2
1 g(x)

+ o(1).

Therefore,

σ2(x) =
M2

M2
1 g(x)

W x
2 (µ) + o(1).

Proof of Proposition 3.3. For each x ∈ F , since (Xi, Yi)i=1,...,n are i.i.d., we have

B̃n(x) = E
[
∇uG̃

x
n(µ)

]
=

E [U(Y1 − µ)∆1(x)]

E(∆1(x))

By conditioning with respect to real variable d(x,X1) and using condition (H5), we have

B̃n(x) =
E
[
K

(
d(x,X1)

h

)
ψ(d(x,X1))

]

E
(
K

(
d(x,X1)

h

)) .

Integration with respect to the distribution of the real variable d(x,X1) shows that
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A1 := E
[
K

(
d(x,X1)

h

)
ψ(d(x,X1))

]
=

∫ 1

0
K(t)ψ(th)dF (th),

where F is the cumulative distribution function of the real random variable d(x,X). On the other

hand, Taylor series expansion of the function ψ up to the order one in the neighborhood of t = 0

gives ψ(th) = th∇ψ(0) + od(h). Let us denote by od(1) (resp. Od(1)) a d-dimensional vector where

each component equal to o(1) (resp. O(1)).

Therefore, we have

A1 = h∇ψ(0)

∫ 1

0
tK(t)dFx(th) + od(h)

∫ 1

0
K(t)dF (th)

= h∇ψ(0)

[
K(1)F (h)−

∫ 1

0
(sK(s))′F (sh)ds

]
+ od(h)

[
K(1)F (h)−

∫ 1

0
K ′(s)F (sh)ds

]
.

Using hypothesis (H2)(i)− (ii) we get

A1 = h∇ψ(0)K(1) (φ(h)g(x) + o(φ(h)))− h∇ψ(0)

∫ 1

0
(sK(s))′ (φ(sh)g(x) + o(φ(hs))) ds

+o(h)K(1) (φ(h)g(x) + o(φ(h)))− od(h)

∫ 1

0
K ′(s) (φ(sh)g(x) + o(φ(sh))) ds

= hφ(h)g(x)∇ψ(0)

[
K(1)−

∫ 1

0
(sK(s))′ (τ0(s) + o(1)) ds

]
+ hφ(h)K(1)od(1)

−od(hφ(h))

∫ 1

0
K ′(s)(τ0(s)g(x) + o(1))ds

= hφ(h)g(x)∇ψ(0)

[
K(1)−

∫ 1

0
(sK(s))′τ0(s)ds

]
+Oa.s.

d (hφ(h))

Thus, making use of the Lemma 5.1, we obtain

B̃n(x) =
h∇ψ(0)

M1

[
K(1)−

∫ 1

0
(sK(s))′τ0(s)ds+ oa.s.(1)

]

Proof of Theorem 3.3

Part (i) follows from Proposition 3.2, decomposition (17), Proposition 5.6 and Lemma 5.7.

Part (ii) follows from Proposition 3.3 combined with the condition
√
nφ(h)h −→ 0 as n → ∞.

Proof of Corollary 3.5. Let us denote by

T x(µ) = [Σx(µ)]−1/2Hx(µ), T x
n (µn) = [Σx

n(µn)]
−1/2Hx

n(µn)

and

V x
n (µn) =

M1,n√
M2,n

√
nFx,n(h) T x

n (µn) (µn − µ) .
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Write

V x
n (µn) =

M1,n
√
M2

M1
√
M2,n

√
nFx,n(h) (nφ(h)g(x))

−1 T x
n (µn) [T x(µ)]−1 × M1√

M2

√
nφ(h)g(x) T x(µ) (µn − µ)

:= V x
n,1 × V x

n,2. (33)

Making use of Theorem 3.3 part (ii), the term V x
n,2 converges in distribution to N (0, Id).

Now to get the result of the corollary it suffices to show that the first term V x
n,1 converges to 1

in probability. Following the same arguments as in Läıb & Louani (2010) combined with H1),(H2),

one gets

M1,n
√
M2

M1
√

M2,n

√
nFx,n(h) (nφ(h)g(x))

−1 P−→ 1, M1,n
P−→ M1 and M2,n

P−→ M2, as n → ∞.

Now, we have to establish the consistency of T x
n (µn). To do that, we will study separately the

consistency of each term of T x
n (µn). Let us start by Hx

n(µn). For this, write

Hx
n(µn)−Hx(µ) =

H̃x
n(µn)

Gx
n,1

−Hx(µ)

=
H̃x

n(µn)−H(µ)

Gx
n,1

+
Hx(µ)(1−Gx

n,1)

Gx
n,1

.

According to Theorem 3.2, Proposition 3.2, Lemma 5.2 and the fact that the matrix Hx(µ) is

bounded, we can conclude that Hx
n(µn) converges, in probability, to Hx(µ).

The second term Σx
n(µn), can be treated similarly. Finally, this leads to the convergence in

probability of T x
n (µn) to T x(µ).
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Läıb, N. and Louani, D. (2011). Rates of strong consistencies of the regression function estimator

for functional stationary ergodic data. J. Statist. Plann. Inference, 141(1), 359–372.

Lipster, R. and Shiryayev, A. (1972). On the absolute continuity of measures corresponding to

processes of diffusion type relative to awiener measure. Izv. Akad. Nauk. Ser. Mat., 36.

33



Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic

normality. Stochastic Process. Appl., 115(1), 155–177.

Quintela-del Rı́o, A. and Francisco-Fernández, M. (2011). Nonparametric functional data estimation

applied to ozone data: Prediction and extreme value analysis. Chemosphere, 82.

Quintela-del Ŕıo, A., F. F. and Vieu, P. (2011). Analysis of time of occurrence of earthquakes: a

functional data approach. Math. Geosci., 43, 695–719.

Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing

parameter selection. J. Statist. Plann. Inference, 137(9), 2784–2801.

Ramsay, J. O. and Silverman, B. W. (2005). Functional data analysis. Springer Series in Statistics.

Springer, New York, second edition.

Rice, J. A. (2004). Functional and longitudinal data analysis: perspectives on smoothing. Statist.

Sinica, 14(3), 631–647.

Serfling, R. (2002). Quantile functions for multivariate analysis: approaches and applications.

Statist. Neerlandica, 56(2), 214–232. Special issue: Frontier research in theoretical statistics,

2000 (Eindhoven).

Vardi, Y. and Zhang, C. (2000). The multivariate l1-median and associated data depth. The

Proceedings of the National Academy of Sciences USA (PNAS), 97, 1423–1426.

34


	Cover_12_22.pdf
	Chaouch_Laib
	Introduction 
	Notations and definitions
	Main Results
	Further notations and hypotheses
	Almost sure consistency
	Asymptotic normality
	Building Conditional confidence region of (x)

	Numerical study
	Simulation example
	Application to Chemiometrical data prediction

	Concluding remarks


