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Abstract

The optimal utilisation of high resolution satellite observations in Numerical Weather
Prediction is being hindered by the mis-specification of their error correlation struc-
ture. Variational data assimilation algorithms are run under the assumption of
uncorrelated observation errors; yet the contrasting model and satellite observation
resolutions lead to errors of representativity, making this assumption unrealistic.

Using a post analysis diagnostic derived from variational data assimilation the-
ory, we quantify cross-channel correlations between IASI (infrared atmospheric sound-
ing interferometer) observations used in the Met Office incremental 4D-Var assimi-
lation scheme. Diagnosed error covariances are given for the pre-processing 1D-Var
assimilation and the main 4D-Var assimilation. Comparisons are made with the
current operational error covariances.

1 Introduction

Operational data assimilation algorithms often have a variational formulation, where
the information provided by the observations and first-guess model background is
weighted by the inverse of their respective error covariance matrices. This infor-
mation is combined in order to produce an accurate, high resolution representation
of the current state of the atmosphere for use in Numerical Weather Prediction
(NWP); this state is known as the analysis. To ensure an accurate analysis, a good
approximation of these error statistics is needed. However, the error characteristics
of remotely sensed observation types are not well known, causing forecasting accu-
racy and observation utilisation to suffer [5], [15], [9].

An incorrect specification of the error covariance matrices can be identified by
post-analysis diagnostics, such as those proposed by Hollingsworth and Lönnberg
[10]. The method described in [10] uses the statistics of the background innova-
tions, under the assumption that the background errors carry spatial correlations
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while the observation errors do not, to determine the background and observation
error variances. However, remotely sensed satellite observations are likely to carry
cross-correlations between certain channels, and this conventional method must be
modified accordingly [2].

An alternative method that takes account of observation error correlations, is a
post-analysis diagnostic proposed by Desroziers et al [7]. Their approach provides
a consistency check on the specification of the observation error covariance matrix
using the statistics of the background and analysis innovations. The paper demon-
strates the success of the method in diagnosing cross-correlations from data which
is assumed uncorrelated in the assimilation (i.e, the observation error covariance
matrix is set as diagonal) but in reality carries correlations. The work in this report
extends the technique to a larger scale problem.

Under the Met Office incremental 4D-Var assimilation scheme, the study aims
to identify cross-channel correlations between IASI (infrared atmospheric sounding
interferometer) measured brightness temperature errors, using the post-analysis di-
agnostic as propsed in [7]. Statistics providing information on observation error
variances and covariances will be generated using real observations from the current
Met Office operational data base (MetDB).

In Section 2, variational data assimilation theory is introduced and the proposed
diagnostic is derived. The nature of IASI measurements and the processing they
are subject to, is discussed in Section 3. Section 4 is concerned with the applica-
tion of the diagnostics discussed in Section 2, to IASI measurements from the Met
Office operational data base. Results on the calculation of inter-channel IASI ob-
servation error covariances for two processing systems are given in Sections 5 and 6.
Conclusions and further discussion are given in Section 7.

2 Diagnostics

In 3D-Var data assimilation, observations and background estimates of atmospheric
state variables are combined to produce an optimal analysis state, xa. The back-
ground state, xb, and observation vector, y, are approximations to the true state of
the atmosphere, xt,

y = Hxt + ǫo,

xt = xb + ǫb,

where ǫo and ǫb are the observation and background errors, respectively, and H

is the possibily nonlinear observation operator (or forward model) converting from
state space to measurement space. The background and observation error covariance
matrices are given by B = E[ǫb(ǫb)T ] and R = E[ǫo(ǫo)T ], respectively. We assume
that the observation and background errors are unbiased and uncorrelated,

E
[

ǫb
]

= E [ǫo] = 0, (1)

E

[

ǫb (ǫo)T
]

= E

[

ǫo
(

ǫb
)T
]

= 0. (2)
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The optimal analysis state, xa, is given by the solution to the cost function

J(x) =
1

2
(x − xb)

TB−1(x − xb) +
1

2
(y − Hx)TR−1(y − Hx),

which penalises distance from the background state xb and the observations y. Also
known as the best linear unbiased estimate of the analysis state, xa is given by

xa = xb + K(y − Hxb) = xb + δxa, (3)

K = BHT (HBHT + R)−1, (4)

where δxa is the analysis increment, H is the linearised version of H, and K is the
Kalman Gain matrix.

Following Desroziers [7], we can write an alternative expression for the analysis
state (3) in terms of the background state xb, the Kalman Gain matrix K and the
innovation vector do

b,
xa = xb + Kdo

b.

The innovation vector do
b is the difference between the observations y and their

background counterparts Hxb, and can be described in terms of the observations
and background errors,

do
b = y − Hxb = Hxt + ǫo − Hxb

≈ ǫo + H(xt − xb)

≈ ǫo + Hǫb. (5)

Similarly, the analysis innovation vector is given by the differences between the
observations y and their analysis counterparts Hxa,

do
a = y − Hxa = y − H(xb + Kdo

b)

≈ y − Hxb − HKdo
b

≈ (I − HK)do
b

≈ R(HBHT + R)−1do
b. (6)

By taking the expectation of the cross product of the analysis and background
innovations, and using the assumpion of uncorrelated errors (2), we find a statistical
approximation for the observation error covariances,

E
[

do
a(d

o
b)

T
]

≈ E
[

R(HBHT + R)−1do
b(d

o
b)

T
]

≈ R(HBHT + R)−1
E
[

(ǫo + Hǫb)(ǫo + Hǫb)T
]

≈ R(HBHT + R)−1
(

E
[

ǫo(ǫo)T
]

+ HE
[

ǫb(ǫb)T
]

HT
)

≈ R(HBHT + R)−1R(HBHT + R)

≈ R. (7)

The relation (7) should be satisfied provided the matrix R(HBHT + R)−1 is
consistent with the exact observation and background error covariances. This diag-
nostic can be used as a consistency check to ensure the observation error covariances
are correctly specified in the analysis. Similar diagnostics can be generated to check
the background error covariances in observation space, HBHT , the analysis errors
covariances, HAHT where A = (B−1+HTR−1H)−1, and the sum of the observation
and background error covariances, R + HBHT [7].
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3 Processing

3.1 IASI measurements

IASI data is an important component of the global observing system used in NWP,
and is used successfully in conjunction with other satellite radiance observations
(e.g. AMSU-B microwave sounding of temperature and water vapour), and other
observation types (e.g. radiosondes and satellite winds). The IASI instrument is an
infrared Fourier transform spectrometer that measures the infrared radiation emitted
by the earth’s surface and atmosphere [3]. The first IASI instrument was launched
on the MetOp-A satellite in 2006 as part of the EUMETSAT European Polar Sys-
tem (EPS). It’s spectral interval of 645-2760cm−1 is divided into three bands and
sampled by 8461 channels at a resolution of 0.5cm−1. Band one, from 645-1210cm−1,
is used primarily for temperature and ozone sounding, band two (1210-2000cm−1)
for water vapour sounding and the retrival of N2O and CH4 column amounts, and
band three (2000-2760cm−1) for temperature sounding and the retrival of N2O and
CO column amounts.

IASI measurements of radiances, r, are expressed as black-body equivalent bright-
ness temperatures, T , through Planck’s function

r =
2hν3c

exp{hcν
kT

} − 1
,

where k is Boltzmann’s constant, h is Planck’s constant, c is the speed of light and
ν is the wavenumber. Any processing IASI observations are subject to is performed
with respect to their equivalent brightness temperatures.

Brightness temperature measurement errors can be attributed to three sources:
forward model error, instrument noise, and representativity error. The former two
are likely to be independent with channel selection, but the latter may be correlated
for certain channel pairs. However, the current assumption in NWP is that all ob-
servation errors are independent, i.e, R is a diagonal matrix.

Instrument manufacturers provide the error associated with an instrument read-
ing from a black body at 280K; known as the neδt value. Although the error in
the measured radiance value is assumed invariant under scene temperature (average
brightness temperature), the corresponding brightness temperature is not. There-
fore for each channel used in the assimilation, the mean brightness temperature
measurement must be calculated and the neδt value adjusted accordingly. The con-
verted neδt value will be the error associated with an instrument reading at the
channel wavelength, from a black body at the mean brightness temperature. Reg-
ular calibrations at different wavelengths ensure that instrument noise for different
channels is uncorrelated.

The forward model error includes errors associated with discretization of the
radiative transfer equation and mis-representation of the gaseous contributors in
certain channels. Again these errors are likely to be uncorrelated between channels.
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Representativity error is present when the observations can resolve spatial scales
or features that the model cannot. If observations are used at a higher spatial
frequency than the model resolution, then they will be affected by correlated repre-
sentativity error because the model will be unable to represent the finer scale spatial
structure given by the observations. Operationally, no observations are assimilated
at a higher density than the model resolution and data thinning procedures such as
superobbing [1] are used to compensate for the loss of information. Also if the model
resolution is too large to represent a small scale physical feature as represented in
the observation, then correlated representativity errors will be present. For example,
the forecast model may be unable to represent accurately a complex humidity struc-
ture at its current resolution, leading to correlations in the errors between channels
sensitive to water vapour.

Any pre-processing the observations are subject to will generate errors. For ex-
ample, if we eliminate all observations affected by clouds and some residual cloud
passes through the quality control, then one of the assimilation assumptions is vio-
lated and the cloudy observations will contaminate all the channels which are influ-
enced by the cloud.

3.2 1D-Var retrievals

In any assimilation procedure, we wish to only assimilate observations that provide
useful information about the state variables. Those which are affected by signifi-
cant errors or unmodelled parameters, such as cloud, may provide very little useful
information or even cause problems with convergence rates. Therefore before IASI
observations are passed to the incremental 4D-Var assimilation, they are subject to
pre-screening and quality control.

IASI has the potential to provide observations in 8461 channels, but only obser-
vations from a subset of 314 are used. These 314 channels are chosen based on their
information content (degrees of freedom of signal) using the automatic channel se-
lection algorithm of Rodgers [13], with some manual intervention to ensure a robust
selection. Further details on channel selection are given [4]. Before the observations
from the pre-determined 314 channels are assimilated in 4D-Var, they are passed
through the Observation Processing System (OPS).

IASI measured brightness temperatures are fed into the OPS and processed
using a code specifically written for satellite measurements. This code, known as
the SatRad code, implements a 1D-Var assimilation on the bias-corrected brightness
temperature measurements, y, and an accurate first-guess model-profile from a short
range forecast, xb. The solution is the state vector x that minimises the cost function,

J(x) =
1

2
(x − xb)

TB−1(x − xb) +
1

2
(y − Hx)TR−1(y − Hx),

where H is the observation operator transforming from state space to measure-
ment space, B is the background error covariance matrix and R is the observation
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Incremental 4D-Var assimilation

Figure 1: Path of IASI observations

error covariance matrix. The observation operator H is comprised of a Radiative
Transfer for TIROS Operational Vertical Sounder (RTTOV) radiative transfer model
[14]; it accurately predicts brightness temperatures given first-guess model fields of
temperature and humidity on 43 fixed pressure levels between 0.1 and 1013hPa, as
well as surface air temperature, skin temperature and surface humidity.

The OPS has two main functions: the first is quality control on the brightness
temperature measurements, and the second is providing updated first-guess model
fields. The assimilation performs a local analysis of the model state at the location
of every satellite observation; an observation is suitable for 4D-Var assimilation if
its 1D-Var analysis generates a good convergence and a suitable a posteriori cost
[16]. Each observation has an associated cost which is scaled to be ideally 1, and
if the distribution of the costs about 1 was plotted, the quality control procedure
would be equivalent to eliminating those observations whose costs lie in the tails of
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the distribution.

Unsuitably high costs and slow convergence are caused by inconsistencies be-
tween the background and the observations; for example, if the background assumes
a clear sky but the observation is affected by cloud. If we consider the prior and
likelihood distributions of the background and the observations, then the 1D-Var
assimilation finds the solution with maximum probability that satisfies both the
background and the observation distribution. If the distributions are highly over-
lapping, then the solution state will exist with a high probability; if the distributions
have a small overlap then the solution state is improbable, convergence to it will
be slow, and its cost will be high. Identifying and eliminating these observations in
1D-Var enables a stable and fast convergence in 4D-Var.

The 1D-Var assimilation also provides estimates of the atmospheric variables not
represented in 4D-Var. The control vector in 4D-Var is comprised of a subset of the
full state vector variables, and those variables, such as skin temperature, which are
not included are unmodifiable. It is therefore crucial to the success of the assimila-
tion that these variables are accurately specified prior to the 4D-Var assimilation.
For example, radiance observations provide information on all atmospheric variables
and a poorly specified skin temperature is unchangeable, so therefore the control
vector variables will be fit incorrectly to the observations. The full state vector
is used in the 1D-Var assimilation, and the analysis values of those variables not
present in the control vector are passed to 4D-Var. A schematic of the path of IASI
observations is shown in Figure 1.

When the 1D-Var assimilation is performed in the OPS, the forward model is
separately fitted to each individual column of observations, so the position of the
observations, and hence any resolution conflicts, is already determined. Therefore, it
can be argued that the representativity errors will appear in the background matrix
B, and so correlations in representativity error within the observation error covari-
ance matrix R will be low. Hence, from the OPS diagnostics (7) we expect any error
correlations to be mainly attributed to instrument noise and forward model error.

3.3 Incremental 4D-Var assimilation

The Observation Processing System produces a quality controlled subset of bright-
ness temperature measurements suitable for assimilation in the Met Office incre-
mental 4D-Var assimilation system [12]. As with the 1D-Var procedure, 4D-Var
assimilation aims to minimise a cost function penalising distance from the solution
state to the observations, yo

i , and the first-guess background profile,xb,

J(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n
∑

i=0

(Hi(xi) − yo
i )

TR−1

i (Hi(xi) − yo
i ), (8)

subject to a nonlinear model

xi = M(ti, t0, x0).
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The background and observation error covariance matrices are given by B and Ri,
respectively, and the forward model is given by Hi.

The solution to the full cost function is expensive to solve, and hence an incre-
mental approximation to the problem is considered instead [11]. The incremental
4D-Var algorithm approximates the solution of the full nonlinear cost function by
performing a series of minimisations of the approximate quadratic cost functions.
The algorithm generates an optimal analysis increment, which is used to update
the solution state at the start of the assimilation time window. From this starting
state, the nonlinear model is run over the time window to generate a forecast. The
forecast model fields are outputed at the model grid points at pre-determined times,
and can be interpolated in time and space to the observation locations.

In the 4D-Var assimilation, all observation information is fitted to the resolution
provided by the model, and so correlated representivity errors are expected to be
wholly contained in R.

4 Application of diagnostics to IASI observations

The objective of this paper is to use the background and analysis increment statis-
tics generated from the assimilation of IASI data, to provide a consistency check
on the observation error covariances used in the assimilation. We will generate the
post-analysis diagnostic (7) in two stages: firstly using the analysis output from the
OPS and then using the analysis output from the incremental 4D-Var assimilation.
The suitability of our diagnostics (derived from 3D-Var assimilation theory) for 4D-
Var assimilation is shown in Appendix B.

As previously mentioned, before satellite radiances are assimilated into 4D-Var,
they are passed through the OPS for quality control. Within the OPS, a 1D-Var
assimilation is performed on the equivalent brightness temperatures and a first-
guess background, producing an analysis retrieval. The first set of statistics will be
generated using the background, do

b, and analysis, do
a, innovations from the 1D-Var

assimilation.

The initial OPS run analyses those atmospheric quantities not present in the
4D-Var state vector, and passes them to 4D-Var with a quality controlled set of
brightness temperatures; these are used to produce an optimal analysis increment.
Along with the forecast value at the start of the time window, the increment is run
through the Unified Model (UM) [6] over the time window to generate an analysis
trajectory. Using the same observation set, the analysis fields can be passed back
through OPS (the second OPS run), only this time as the background input. This
allows us to use the background innovations generated by OPS as the do

a innovation
statistics for the 4D-Var assimilation (see Figure 2).

Clearly we only want to generate our statistics from those observations that are
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ŷo ⊂ y, x̂b
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Figure 2: Assimilation process

deemed suitable to process in the Var system, i.e, those that pass the OPS quality
control. These are easily identifiable since OPS assigns all observations a quality
control flag value: 0 if the observation is passed to Var, 1 if the observation was
accepted by Var but spatially thinned out, and > 1 if the observation was rejected.
However, the observations passed to Var in the second OPS run will not be the same
as those passed in the initial run, because the backgrounds are different. To ensure
that the same observations are used to generate the do

b innovations in the initial
OPS run and the do

a innovations in the second OPS run, we match observations
using their latitude and longitude values.

All assimilations will be performed using only clear sky, sea surface IASI obser-
vations. Observations will be from both day and night time, with the exception
of daytime observations from shortwave channels which will be eliminated. We are
interested in the correlations between channels used in (i) the 1D-Var assimilation
in OPS (183 channels), (ii) the 4D-Var assimilation (139 channels).

For each channel i, we compute the observation error covariance with channel j

by averaging the product of the background and analysis innovations over the total
number of observations used in the assimilation N ,
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R(i, j) =
1

N

N
∑

k=1

{(do
a)i (d

o
b)j}k −

(

1

N

N
∑

k=1

{(do
a)i}k

)(

1

N

N
∑

k=1

{(do
b)j}k

)

=
1

N

N
∑

k=1

{yo
i − ya

i }k{y
o
j − yb

j}k

−

(

1

N

N
∑

k=1

{yo
i − ya

i }k

)(

1

N

N
∑

k=1

{yo
j − yb

j}k

)

, (9)

where yo
i is the brightness temperature value in channel i, and ya

i and yb
i are the

analysis and background counterparts, respectively. We subtract the mean innova-
tion values to ensure our diagnostic is unbiased.

This diagnostic is only an approximation of the observation error covariance
matrix, and by construction may not be symmetric. Since an error covariance ma-
trix is required to be symmetric positive definite, we can consider the symmetric
component of our diagnosed matrix

Rsym =
1

2
(R + RT ). (10)

5 Results: OPS

The computations (9) are performed on the analyses produced by the 1D-Var as-
similation of data from the 17th July 2008 at 00z, 06z, 12z and 18z, within the
Observation Processing System. The total number of observations used to produce
the statistics was 27,854; 9,131 of which were suitable for use in the 4D-Var assim-
ilation and 18,723 were thinned out. Figure 3 shows the global location of all the
observations used in the OPS, and the size of their background innovations for (a)
channel 1 (sensitive to temperature) and (b) channel 279 (sensitive to water vapour).

Figure 4 (a) shows the operational observation error variances used in the 1D-
Var assimilation (black line), the error variances diagnosed by (7) (red line), and the
instrument noise squared (blue line), for all the 183 channels used in the OPS. The
channels numbers correspond to the index of the MetDB channel used in OPS, i.e,
MetDB channel number 1 has OPS channel index 0 (the first channel used in OPS)
and MetDB channel 280 has OPS channel index 182 (the last channel to be used in
OPS). Figure 4 (b) shows a typical IASI spectrum for all 314 channels; the chan-
nels used in OPS are highlighed by the red asterisks (the full list of corresponding
channel numbers and indices can be found in Appendix A).

The structure of the operational and diagnostic error variances is very similar.
The diagnosed error variance is significantly lower than the current operational vari-
ance for all channels; and in most channels, the diagnosed error variance is also lower
than the instrument noise squared. The error standard deviations used in the OPS
(square root of the variances) are comprised of the instrument noise, plus forward
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(a) (b)

Figure 3: Global location and background innovation value (degrees Kelvin) for
observations in: (a) channel 1, (b) channel 279

(a) (b)

Figure 4: (a) Operational error variances (black line), diagnosed error variances
(red line), and instrument noise squared (blue line); (b) channels used in OPS (red
crosses) on a typical IASI spectrum (black line)
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(a) (b)

Figure 5: (a) Diagnosed observation error covariances for OPS; (b) diagnosed ob-
servation error correlations for OPS

model error of 0.2 and a small error for mis-specification of trace gases, and therefore
the error variances should be greater than the instrument noise squared. In chan-
nels with OPS index 168 - 171, the instrument noise squared is greater than the
operational observation error variance. This is unusual, and suggests that different
average raw brightness temperatures may have been used in the conversion of the
neδt value for different scene temperatures. The high peaks for the OPS indexed
channels 145 - 180 correspond to error variances in channels highly sensitive to water
vapour.

Figure 5 shows the observation error covariances and correlations, respectively,
for the 183 channels used in the OPS. The error covariance plot is heavily diagonally
dominant; the diagonal values on Figure 5 correspond to the values plotted on the
red line in Figure 4, and the peaks are represented by the darker colours towards
the top of the diagonal. Small covariance values exist between some of the higher
indexed channels, which are represented by the darker colours in the top corner of
the observation error correlation plot.

The correlations are relatively weak between channels with OPS index under
120, with the exception of channel 20 (MetDB number 21). However, channel 20
is a high-peaking channel in the temperature sounding band, which is not used in
the 4D-Var assimilation because of the stratospheric ringing of its innovations. The
correlation structure in the higher OPS indexed channels is not uniformly symmetric,
suggesting that the iterative procedure for updating the error variances (as proposed
by Desroziers [7]) could be beneficial. However, the variance and covariance values
are very small, and we must be wary of the accuracy of large correlation values.
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(a) (b)

Figure 6: (a) Diagnosed observation error covariances for 4D-Var; (b) diagnosed
observation error correlations for 4D-Var

6 Results: 4D-Var

Since the observation error covariance matrix used in the OPS is comprised mainly
of instrument noise and forward model error, it is expected to contain a low level of
correlation and be diagonally dominant. However, the observation error covariance
matrix used in the 4D-Var assimilation, additionally comprises of errors of represen-
tativity, and is therefore expected to contain a higher level of correlation.

The computations described in (7) are performed on the analyses produced by
the 4D-Var assimilation of data from the 17th July 2008 at 18z. The total number
of observations used to produce the statistics was 2,073 (of the total 6,539 observa-
tions used in the OPS). The statistical results from the assimilation identify strong
correlations bewteen channels highly sensitive to water vapour. The operational
error variances used in the 4D-Var assimilation are found to be significantly larger
than those diagnosed from the computations.

Figure 6 shows the observation error covariances and correlations, respectively,
for the 139 channels used in 4D-Var. Compared to Figure 5, the variances are no-
tably larger (up to 0.8 in Var channel 263) and off-diagonal covariances are more
prevalent. There are four significant block structures of covariance centered around
the diagonal: the first for Var channels between 124-171 (index 86-108) sensitive
to surface emissivity (window channels), the latter three for Var channels 176-202
(index 109-121), 215-263 (index 122-127), and 270-280 (index 128-138), respectively,
sensitive to water vapour. The block structure implies the channels in each block
have highly correlated errors.

By examining the IASI spectrum for the channels used in Var (Figure 7) and
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Figure 7: Channels used in 4D-Var on a typical IASI spectrum: Var channel indexed
0-85 (black), 86-108 (red), 109-121 (blue), 122-127 (green), 128-138 (yellow)

the table of spectral information (Appendix A), we see that the channels that carry
significant correlations between them, have similar spectral properties. For example,
the channels between 215-263 used in Var (index 122-127) have typical brightness
temperature measurements between 217-222K, and a Q jac peak at 208.16hPa. Var
channel blocks 176-202 and 270-280 also have similar brightness temperature mea-
surements and a strong correlation structure in Figure 6.

The block structures can be seen more clearly in the observation error correlation
plot (Figure 6 (b)), which also shows bands of correlation surrounding the first, and
largest, block structure. The correlation bands are present in channels sensitive to
water vapour. Using the summed Q jac value (see Appendix A) as a measure of
the sensitivity of a channel to water vapour: channel index 60 (Var channel 98) has
a value of 0.113 and a significant band of correlation, while channel index 61 (Var
channel 99) has a value of 0.022 and a near zero correlation value with the surround-
ing channels. The largest summed Q jac values are found in the low-peaking Var
channel blocks 176-202 and 270-280 (up to 1.000 in channel 272).

Both error matrices in Figure 6 are predominantly symmetric, with the excep-
tion of the correlations between the water vapour channels in channel index blocks
109-121 and 128-138. This non-symmetric feature could be attributed to the vi-
olation of the assumption that the observation errors are correctly specified when
generating the statistics (7). Our results suggest observation errors are correlated
between certain channels, but the observation error covariance matrix used in 4D-
Var is diagonal. This emphasises the need to include a correlation structure in the
error covariance matrix.
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(a) (b)

Figure 8: (a) Diagnosed observation error covariances in temperature sounding chan-
nels; (b) diagnosed observation error correlations in temperature sounding channels

Although correlations are largest in those channels highly sensitive to water
vapour, a level of correlation is also present in the channels used in temperature
sounding. Two fainter blocks of correlation centred on the diagonal can be distin-
guished for channel indicies 0-10 (Var channels 2-42) and 11-50 (Var channels 44-88)
(Figure 8); channels 14 and 24 are highly correlated with their neighbouring channel
within these blocks. Many of the channels within these blocks are adjacent to each
other, and the differences in the data provided can be used to capture fine scale
information on the atmospheric profiles; it is therefore desirable to include any di-
agnosed correlation structure in an attempt to lower the operational error variances
and hence retain more information.

Figure 9 and 10 show some of the important off-diagonal structure in more detail.
Figure 9 compares the observation error variances used in 4D-Var with those diag-
nosed from the statistics in this report, and the first lower off-diagonal covariance
value. For all channels, the diagnosed variances are considerably less than those
being used operationally, implying an overestimation of observation error variances
in 4D-Var. However, when we look at the first off-diagonal covariance value, we can
see why this overestimation might take place. For several Var channels indexed 86
upwards, the first off-diagonal covariance value is very close in size to the diago-
nal variance value, therefore if this value, and additional off-diagonal covariances,
were to be ignored, the observations would be over-weighted in the analysis. It is
therefore necessary to inflate the error variances if we choose to ignore off-diagonal
covariances [5].

The size of the off-diagonal covariances and correlations for the three blocks
sensitive to water vapour in shown in Figure 10; these are close ups of the top right
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Figure 9: Operational error variances (black line), diagnosed error variances (red
line), and first off-diagonal error covariance (green line)

(a) (b)

Figure 10: (a) Diagnosed observation error covariances in channels highly sensitive
to water vapour; (b) diagnosed observation error correlations in channels highly
sensitive to water vapour

16



corner of the plots in Figure 6. Again we see that the sizes of the off-diagonal
covariances in the three blocks, are comparable with the diagonal variances. For
an individual channel, the summed off-diagonal contributions are large enough to
require a diagonal variance inflation if they are to be ignored. However, if we were
to include some correlation structure in the observation error covariance matrix, the
required variance inflation should be lower.

7 Conclusions

Using post analysis diagnostics derived from variational data assimilation theory,
we can obtain information on the structure of the observation error covariance ma-
trix under the assumptions of an optimal analysis. The infomation is derived using
statistics on the background and analysis innovations of IASI brightness tempera-
ture measurements from 1D- and 4D-Var assimilation. Comparisons can be made
with the current operational observation error covariances.

The application of the diagnostics to both the 1D- and 4D-Var assimilation pro-
cedures records observation error variances considerably smaller than those currently
being used operationally. The statistics from the 1D-Var assimilation identify pre-
dominantly uncorrelated errors between channels, with some weak correlation in
those channels sensitive to water vapour. However, the statistics from the 4D-Var
assimilation show large off-diagonal error covariances in channels highly sensitive to
water vapour, and additional correlation structure in channels in the temperature
sounding band. These findings suggest that correlated observation errors in IASI
data can largely be attributed to errors of representativity. Currently, all observa-
tion errors are assumed uncorrelated in the variational data assimilation performed
at the Met Office; these results highlight the inconsistentcy of this assumption for
IASI data.

Observation error correlations are shown to be significant between neighbour-
ing channels with similar spectral properties, leading to a block structure in the
error covariance and correlation matrix. A major issue with including observation
error correlation structure in data assimilation algorithms is the inversion of a non-
diagonal full observation error covariance matrix. If we could make the assumption
that error correlation structure was in the block form as demonstrated here, the
inversion problem is slightly simplified; the inverse of a matrix with a purely diag-
onal block structure is simply a block diagonal matrix of the inverses of the blocks.
Additional assumptions can be made for individual blocks, to make their inversion
suitably simple.

The diagnosed values of observation error covariances and correlations generated
here, provide a realistic starting point for future work on including observation
error correlation structure in variational data assimilation. Although the diagnosed
matrices are not entirely symmetric, the data provides us with an approximation of
the ‘true’ correlation structure, and an approximating symmetric matrix (10) can
be generated. Against this we can therefore test any approximate error correlation
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structures by examining features such as information content and analysis accuracy.
The ability to include observation error correlation structure is vital if we are to
further improve our utilisation of satellite data.

Appendix A

All the details given in this section are given by Fiona Hilton (personal communi-
cation). The tables below contain information on the 314 IASI channels stored in
the Met Office database (MetDB).

The column entries are described here:

1. MetDB channel number: the channel number out of 314 stored in the MetDB

2. OPS index number: the index of the MetDB channel, out of 183, used in the
OPS (starting at 0)

3. Var index number: the index of the MetDB channel, out of 139, used in 4D-Var
(starting at 0)

4. Central wave number of the channel

5. Q jac peak (hPa): the pressure level at which the water vapour Jacobian peaks
[8]

6. Summed Q jac peak: the sum over all model pressure levels of the absolute
value of the water vapour jacobian, normalised by the maximum of the totals
for the 314 MetDB channels (out of 1)
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

1 0 648.50 0.36 0
2 1 0 654.25 0.36 0
3 2 657.00 0.45 0
4 3 1 657.50 0.45 0
5 4 658.50 2.06 0
6 5 2 659.00 1.36 0.001
7 6 659.50 1.36 0.003
8 7 660.60 1.09 0
9 8 3 660.50 0.36 0
10 9 661.25 0.29 0
11 10 662.25 2.04 0
12 11 662.75 0.87 0
13 12 663.25 0.87 0
14 13 664.50 1.66 0
15 14 665.00 0.29 0
16 15 665.50 0.70 0
17 16 666.00 1.09 0
18 17 666.50 2.06 0
19 18 667.00 0.45 0
21 19 668.50 0.70 0
22 20 669.00 0.70 0
23 21 669.50 0.56 0
24 22 670.00 0.87 0
25 23 670.75 14.81 0
26 24 671.25 0.87 0
27 25 4 672.00 1.09 0
28 26 672.50 0.45 0
29 27 673.00 2.51 0
30 28 5 673.75 0.87 0
31 29 674.50 0.22 0
32 30 6 675.25 0.56 0
33 31 676.00 1.36 0
34 32 7 676.75 1.36 0
35 33 677.50 1.09 0
36 34 678.00 0.36 0
37 35 8 678.50 0.87 0
38 36 679.25 1.36 0
39 37 9 680.00 1.36 0
40 38 680.75 0.29 0
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

41 39 681.25 1.09 0
42 40 10 681.75 0.22 0
43 41 682.50 0.45 0
44 42 11 683.25 0.17 0
45 43 684.00 0.29 0
46 44 684.50 0.87 0
47 45 12 685.00 0.70 0
48 46 685.50 0.56 0
49 47 13 686.50 0.45 0
50 48 687.25 0.87 0
51 49 14 688.00 0.87 0.002
52 50 688.75 1.36 0.001
53 51 15 689.50 1.09 0.001
54 52 16 689.75 0.87 0
55 53 17 691.00 0.17 0
56 54 18 691.50 0.70 0
57 55 19 693.00 0.87 0
58 56 20 694.50 321.50 0.001
59 57 21 696.00 269.65 0.001
60 58 22 696.50 269.65 0.001
61 59 23 697.25 339.39 0
62 60 24 697.75 269.65 0.006
63 61 25 698.25 286.60 0.002
64 62 26 699.00 416.40 0
65 63 27 699.50 396.81 0
66 64 28 700.25 321.50 0
67 65 29 700.75 339.39 0
68 66 30 701.25 436.95 0
69 67 31 702.25 321.50 0
70 68 32 702.75 358.28 0
71 69 33 703.75 303.55 0.009
72 70 34 704.50 478.54 0.003
73 71 35 705.25 339.39 0.047
74 72 36 705.50 339.39 0.053
75 73 37 706.25 436.95 0.006
76 74 38 707.00 358.28 0.016
77 75 39 707.75 416.40 0.025
78 76 40 708.25 478.54 0.004
79 77 41 709.75 457.27 0.004
80 78 42 710.25 457.27 0.004
81 79 43 711.00 610.60 0.016
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

82 80 44 711.50 610.60 0.005
83 81 45 712.00 610.60 0.005
84 82 46 713.50 358.28 0.103
85 83 47 714.75 638.60 0.022
86 84 48 715.25 610.60 0.009
87 85 49 718.25 457.27 0.004
88 86 50 718.75 457.27 0.002
89 87 51 719.50 377.05 0
90 88 720.50 0.45 0
91 89 52 721.25 543.05 0.004
92 90 53 725.50 727.44 0.038
93 91 54 726.50 759.16 0.123
94 92 55 727.00 727.44 0.026
95 93 56 728.50 696.97 0.032
96 94 57 731.00 478.54 0.478
97 95 58 731.50 610.60 0.092
98 96 59 732.25 727.44 0.113
99 97 60 733.25 727.44 0.022
100 98 61 733.75 759.16 0.096
101 99 62 734.75 727.44 0.023
102 100 63 736.25 727.44 0.022
103 101 64 737.50 727.44 0.062
104 102 65 738.00 727.44 0.048
105 103 66 738.50 759.16 0.121
106 104 67 739.00 727.44 0.076
107 105 68 739.50 727.44 0.054
108 106 69 740.00 727.44 0.175
109 107 70 740.50 416.40 0.223
110 108 71 741.25 543.05 0.008
111 109 72 742.00 696.97 0.08
112 110 73 744.25 610.60 0.426
113 111 74 745.00 610.60 0.413
114 112 75 745.75 759.16 0.215
115 113 76 746.50 759.16 0.178
116 114 77 747.25 759.16 0.237
117 115 78 748.25 610.60 0.224
118 116 79 748.75 759.16 0.344
119 117 80 751.25 759.16 0.132
120 118 81 751.75 759.16 0.288
121 119 82 752.75 727.44 0.188
122 120 83 753.25 727.44 0.188
123 121 84 754.50 610.60 0.496
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

124 122 85 756.00 696.97 0.298
125 123 86 759.00 792.18 0.229
126 124 87 773.50 792.18 0.360
127 125 88 781.25 792.18 0.354
128 126 89 782.75 792.18 0.380
130 127 90 786.25 792.18 0.367
131 128 91 787.50 792.18 0.359
132 129 92 788.00 792.18 0.348
133 130 806.25 792.18 0.349
134 131 93 810.25 792.18 0.305
135 132 94 811.75 792.18 0.301
136 133 95 833.75 792.18 0.265
137 134 96 861.50 792.18 0.234
138 135 97 871.25 727.44 0.668
139 136 98 875.00 792.18 0.222
140 137 99 901.50 792.18 0.198
141 138 906.25 792.18 0.326
142 139 925.00 759.16 0.521
143 140 100 928.00 792.18 0.178
144 141 942.50 792.18 0.157
145 142 101 943.25 792.18 0.167
146 143 102 962.50 792.18 0.150
162 144 1091.25 696.97 0.528
163 145 103 1096.00 792.18 0.087
164 146 104 1115.75 826.58 0.088
165 147 105 1142.50 826.58 0.086
166 148 1149.50 610.60 0.694
167 149 106 1168.25 792.18 0.099
168 150 1174.50 377.05 0.896
170 151 107 1204.50 826.58 0.106
171 152 108 1206.00 727.44 0.485
176 153 109 1330.00 457.27 0.907
178 154 110 1367.00 610.60 0.947
179 155 111 1371.50 478.54 0.914
183 156 112 1380.75 610.60 0.951
184 157 113 1381.75 499.54 0.900
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MetDB channel OPS index Var index Central wave Q jac Summed
number number number number peak (hPa) Q jac

185 158 114 1382.50 610.60 0.937
186 159 115 1384.25 499.54 0.942
189 160 116 1391.75 457.27 0.901
195 161 117 1401.50 436.95 0.899
196 162 118 1402.00 457.27 0.909
200 163 119 1408.00 478.54 0.942
201 164 120 1409.25 478.54 0.925
202 165 121 1410.75 478.54 0.911
215 166 122 1436.75 208.16 0.276
221 167 123 1456.75 208.16 0.231
251 168 124 1521.25 208.16 0.299
259 169 125 1539.00 208.16 0.257
261 170 126 1540.25 208.16 0.255
263 171 127 1542.00 208.16 0.269
270 172 128 1927.25 727.44 0.979
271 173 129 1986.75 727.44 0.887
272 174 130 1987.50 610.60 1.000
273 175 131 1989.50 638.60 0.967
274 176 132 1990.00 638.60 0.984
275 177 133 1990.50 610.60 0.973
276 178 134 1994.00 638.60 0.975
277 179 135 1994.50 727.44 0.912
278 180 136 1995.00 727.44 0.822
279 181 137 1995.50 759.16 0.748
280 182 138 1996.00 759.16 0.679
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Appendix B

Consider a state vector x at time 0, whose true value is xt and whose background
estimate is xb;

xt = xb + ǫb,

where ǫb is the background error. The state vector can be evolved forward to time
i under the tangent linear model M(ti, t0) = MiMi−1 . . . M2M1, i.e, xi = M(ti, t0)x.
Consider n observations at n different times, where the observations are related to
the state vector through the forward model H,

y1 = Hx1 + ǫo
1

= HM1xt + ǫo
1

y2 = Hx2 + ǫo
2

= HM2M1xt + ǫo
2

...

yn = Hxn + ǫo
n = HMn . . . M2M1xt + ǫo

n

where y1 is an observation at time 1, y2 is an observation at time 2, etc, and ǫo
i is

the observation error for yi.

In 4D-Var assimilation, the observations, yi, are combined with the background
estimate, xb, to produce an optimal analysis xa, given by the solution of the cost
function

J(x) =
1

2
(x − xb)

T B−1(x − xb) +
1

2

n
∑

i=1

(yi − Hxi)
T R−1

i (yi − Hxi)

where Ri = E
[

ǫo
i (ǫ

o
i )

T
]

.

Assuming that the observation and background errors are uncorrelated, the above
cost function can be rewritten in matrix form

J(x) =
1

2
(x − xb)

T B−1(x − xb) +
1

2
(y − hx)T R−1(y − hx)
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where

y = (yT
1
, yT

2
, . . . , yT

n )T ,
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1
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2
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. . . MT

n HT )T ,

ǫo = ((ǫo
1
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2
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n)T )T ,
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n)T
]








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=


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R1 0 . . . 0
0 R2 . . . 0
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...
. . .
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0 0 . . . Rn











.

This is the form of the cost function in 3D-Var data assimilation, and can be
solved using the same approach, i.e, setting the cost function gradient to zero. The
solution to the 4D-Var assimilation problem can therefore be described by

xa = xb + BhT (hBhT + R)−1(y − hxb).
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