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Abstract

The general Emden-Fowler equation is a nonlinear, second-order, ordinary differential
equation with a singularity at the boundary. Here we study a certain class of Emden-Fowler
equations with inhomogeneous boundary conditions. A particular case is the Thomas-Fermi
problem for the ionized atom.

Using an iterative procedure, the solution of the original nonlinear problem is reduced to
the solution of a sequence of linear boundary value problems converging monotonically to
the solution of the original problem. Each iteration is then solved by a finite element method
with a linear basis, thus yielding a tridiagonal linear system. Therefore this approach is
more efficient than methods previously proposed. A nonuniform grid is chosen in such a
way that there are more grid points near the singularity. Numerical results are obtained
and compared with known results.
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Chapter 1

Introduction

In many physical phenomena described by partial differential equations involving the Lapla-
cian and Dirichlet boundary conditions, it is possible to reduce the problem to a differen-
tial equation with one independent space variable (ODE) or a partial differential equation
(PDE) in exactly two variables (one space, one time) using the property of radial symme-
try. As pointed out by Mooney [21], in this case the dependency of the solution u on the
‘radial’ space variable r appears in terms of the form »” + %u' . This occurs, for example, in
the case of nonlinear reaction-diffusion equations (see [20, 21] and [15] for references to this
application) and in other physical applications. However, if we have a boundary condition
at r = 0, the differential form u" + %u’ will have a singularity when b # 0. In order to
analyse this case, we consider the nonlinear ODE

W 2 g f(r)g() = 0
where f and g are continuous functions, or the equivalent equation
() +r°f(r)g(w)=0,  r>0. (1.1)
By a Liouville transformation, equation (1.1) can be reduced to the form
v'(2) + Mz, y(z)) = 0. (1.2)

If f, g are power functions, then A is a product of powers of z and y. The equation (1.1) is
then called the Emden-Fowler equation and can be written in the form

y'(z) = caPyi(z) (¢, constant). (1.3)
More precisely, Emden and Fowler studied the particular form of (1.2),
y"(z) + 2P|y|?sign (y) = 0 (1.4)

for some constant p. Equation (1.4) is said to be superlinear if ¢ > 1 and sublinear if
¢ < 1. Properties of the equation in these two cases differ. Results concerning the existence
and uniqueness of the solution of some boundary value problems (BVPs) for the equation
(1.3) have been the object of study by several authors. Interesting surveys concerning the
historical development of this problem can be found in [26] and in [19]. The former has an
excellent bibliography on applications in mechanics, physics and on the study of chemically
reacting systems.



We are particularly interested in the problem

d%y
pri zPy?, z € (0,1), (1.5)
where p, ¢ are real numbers with —2 < p < 0 and ¢ > 1, with boundary conditions

y(0) =1, y(1) = 0. (1.6)

Clearly equation (1.5) has a singularity at the endpoint 2 = 0. When p = —1/2 and
q = 3/2, the equation becomes
y'(z) = a7y, (1.7)

and is called the Thomas-Fermi equation. Equation (1.7) was studied independently by
Thomas [25] and Fermi [11] and describes, as a statistical model, the completely degenerate
state of the electrons in an atom. The related Thomas-Fermi Theory is an active subject
of research. The three sets of boundary values of physical interest are (cf. [19]):

a) neutral atom

y(0) =1, ay'(a) = y(a) (1.8)
b) isolated neutral atom
y(0) =1, lim y(z) =10 (1.9)
¢) ionized atom
y(0) = 1, y(a) = 0. (1.10)

In the following chapters we study in more detail the Emden-Fowler equation (1.5) with
inhomogeneous boundary conditions (1.6). Our aim is to use the Finite Element Method
with a linear basis and a nonuniform grid to solve the problem (1.5),(1.6) and discuss the
results obtained. Firstly, in Chapter 2, a review of the literature is presented. In the two
following chapters, Chapters 3 and 4, the methods and theory are developed. In particular,
in Chapter 3 we present the work of Mooney (see [22], [20] and [21]) on the use of a Picard
method and a Newton method applied to (1.5),(1.6). In Chapter 4 we apply the Finite
Element Method with a nonuniform grid combined with a Picard iterative method. In
Chapter 5 the sources of error are discussed and some known results concerning the error
are presented. In the last chapter, Chapter 6, some numerical results are presented as well
as some conclusions.



Chapter 2

A review of the literature

Here we summarise some of the studies related to the Thomas-Fermi equation (1.7) and the
more general Emden-Fowler equations (1.5). Our aim is to show how these equations arose
and present some essential results, mainly the more recent ones. An interesting survey
on these equations is given in [26] and some history is also given in [19]. In the following
we give a summary of the history of the subject, which can be found in more detail, for
example, in [26] and [19].

The study of the Emden-Fowler Equation

% (a:”%%) +2°u? =0, 2z >0, (2.1)
where p, 0, ¢ are real numbers with ¢ > 0 (see [26]), arose in relation to theories concerning
gaseous dynamics in astrophysics, around the turn of the century. When studying stellar
structure, researchers were concerned at that time with the equilibrium configuration of
the mass of spherical clouds of gas. Assuming that the gaseous cloud is under convective
equilibrium (as first proposed by Lord Kelvin in 1862), Lane (1869-70) studied the governing
equation

1 d [ ,du q
. — = > :
i (az da:>+u 0,z>0 (2.2)

in the cases ¢ = 1.5 and ¢ = 2.5. This equation is known as the Lane-Emden equation
(cf. [26]). The study of stellar configurations governed by (2.2) culminated in a treatise
by Emden in 1907. The mathematical foundations for the study of this equation and also
for the more general equation (2.1) was carried out by Fowler in a series of four papers
during 1914-1931. The first serious investigation concerning the generalized Emden-Fowler
equation

d du

2 <a0(m)%) +ar(@)ud =0, 3 > 0 (2.3)

where ag(z) is positive and absolutely continuous and a;(z) is nonnegative for z > 0, was
made by Atkinson (see [26] for references).

The Thomas-Fermi equation, arose with the work of Thomas [25] and Fermi [11]. In
1926 Thomas used Adam’s method of numerical integration of the differential equation to
obtain approximate solutions to problem (1.7),(1.9), while Fermi, in 1927, used graphical
methods. Fermi obtained the approximation for small z of

; 4
y(z) =1 — 1.58z + §m3/2 W
(see [19]). In 1930 Baker [4] improved this result to
yla) =1+ by + ()3;1:"5/2 + 4t /);L.:ul"'/2 + o (2.1)



with b, = —1.588558. At about the same time, Sommerfeld developed the approximate
solution to (1.7),(1.9) given by

y(w) = y1(.'17) (1 + [yl(a})]’\l/3))\2/3

where Aq,\; are zeros of the polynomial A2 +7A—6,A; > 0 > X and y1(z) = 14 (see [19]).
This approximation is quite accurate for large = but underestimates the solution near the
origin.

Since all three boundary value problems, (1.7) with boundary conditions (1.8)-(1.10),
have the same boundary condition at zero, much computational use has been made of the
series expansion (2.4) where the value of by, the slope of y at the origin, falls into three
classes:

e by > —1.588... corresponding to (1.8);
e by = —1.588... corresponding to (1.9);
e by < —1.588... corresponding to (1.10).

The numerical value —1.5880710 given by Bender and Orszag in 1978 is correct to seven
decimal places (see [23] for references).

Hille (1970) answered questions concerning the convergence of the series (2.4). Ramnath
(1970) used a technique known as multiple scales to obtain an approximate solution for
(1.7),(1.9)(see [19]). The studies of Reid (1972) and Reid and Depuy (1973) apply to more
generalized Emden equations (see references in [26] and [19]).

More recently we have the following studies:

¢ Csavinszky [9], who used an approximate analytical solution based on a variational
principle to study the equation (1.7) with boundary conditions (1.9) and (1.10).

¢ Wong [26], who presented a survey on the generalized Emden-Fowler equation which
includes an excellent bibliography on its applications.

o Luning and Perry [19], who transformed (1.7) with boundary conditions (1.10) into an
eigenvalue problem and then derived an iterative scheme based on eigenpairs of linear
self-adjoint integral operators of Hilbert-Schmidt type, which is shown to converge
to a solution. This iteration can be used to obtain a uniform approximation to the
solution of problem (1.7) with boundary conditions (1.9).

e Mooney [22, 20, 21], who studied problem (1.5),(1.6) using two iterative schemes
based on the Picard and Newton algorithms previously used by him to study problem
(1.7),(1.10). These iterative schemes, which were shown to converge monotonically,
were solved using a central finite difference method and an extrapolation algorithm.
The Newton scheme was shown to converge faster than the Picard scheme which has
only first-order convergence.

e Anderson and Arthurs [2] and Burrows and Core [6], who presented a variational
approach, based on the theory of variational principles, to solve problem (1.7),(1.9)
using different choices of trial functions.

e Chan and Du [7] and Chan and Hon [8], who derived analytical solutions to each
iteration of the Picard and Newton schemes applied by Mooney [20] to solve problem
(1.7),(L.10), using modificd Bessel funtions of the first and second kind, respectively.
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¢ Kwong {15}, who studied the uniqueness of a more general boundary value problem
that includes the class of Emden-Fowler equations, which is of the form

Y1)+ a1 () f(y(t)) =0, —co<a<t<b< (2.5)

with some boundary conditions, where a; : (a¢,b) — R and f : R — R are
continuous functions.

¢ Lima [17], who derived an asymptotic expansion for the Picard iterations (the iterative
scheme proposed by Mooney) near the origin for the problem (1.5),(1.6) for certain
values of p and g. These results were used to obtain expansions for the error of the
approximate solution obtained combining the Picard method and a finite difference
scheme. Acceleration of convergence with the E-algorithm of Brezinsky (see [17] for
references) was used.

¢ Lemos and Lima [16, 18], who used the iterative schemes proposed by Mooney [21], to
solve problem (1.5),(1.6) but introduced a transformation of the independent variable
leading to a new equation with a solution regular in the new variable. The equation
obtained at each iteration was solved numerically using both a finite difference method
and a finite element method with a cubic B-spline basis.

¢ Al-Zanaidi, Grossman and Voller [1] who applied a monotone discretization technique
based on piecewise simplifications of the nonlinearity to generate enclosures for the
problem (1.7),(1.9). This technique had been applied before by Grossmann [13] to
the problem (1.7),(1.10).

¢ Hon [14], who used a decomposition method based on Green’s function and Adomian’s
algorithm to construct a sequence of functions approximating problem (1.7),(1.10).

In the following chapters we will present methods to study problems (1.5),(1.6) and
(1.7),(1.10), which are based on [20, 21, 18, 16] and which consist in applying the finite
element method to solve each linear boundary value problem corresponding to each iteration
of a Picard scheme.



Chapter 3

Using Picard and Newton schemes
to solve the Emden-Fowler
equations

In this chapter we show how to apply two iterative procedures, the Picard method and the
Newton method, to solve problem (1.5),(1.6). Thus, the solution of the nonlinear boundary
value problem (1.5),(1.6) is reduced to the solution of a sequence of linear boundary value
problems.

Firstly, in Section 3.1, the work of Mooney [20, 21] is summarised, defining Picard
iterates and Newton iterates for problem (1.5),(1.6). Secondly, in Section 3.2, a transfor-
mation of variables is applied to problem (1.5),(1.6) and the resulting transformed Picard
and Newton iterative methods are presented.

3.1 Two iterative procedures: Picard and Newton schemes

Our aim is to present two iterative schemes developed by Mooney [20, 21] to solve problem
(1.5),(1.6), which correspond to modifications of the Picard and Newton iterative meth-
ods, as well as some existence and uniqueness results. Under certain assumptions on the
nonlinear term, Mooney has shown that the Picard and the Newton iterates converge mono-
tonically to the unique solution of problem (1.5),(1.6). The case of homogeneous boundary
conditions will be analysed firstly and then we show how to obtain similar iterative schemes
for the case of inhomogeneous boundary conditions.

In [20] Mooney applies to the Thomas-Fermi problem (1.7),(1.10) iterative procedures for
general boundary value problems developed previously in [22]. Similar iterative procedures
were applied later by Mooney [21] to the Emden-Fowler problem (1.5),(1.6).

Firstly, Mooney showed that problem (1.5),(1.6) can be transformed into the form

Lu(z) = [f(z,u(z)), z €(0,1)
u(0) = u(l)=0 (3.1)
where L is a second-order self-adjoint operator defined by
d du
Lu(z) = == <(L](’L)E> + ag(a)u(z), (3.2)

with aq(z) € C'(0,1) and ag(z) € C°(0,1), ao(z) > 0, for all z € (0,1). It is assumed that
the nonlinear term [ satislies the following conditions:



f(z,¢) € CY(D) where (3.3)
D = {(z,¢(z)): 2 € (0,1),4(z) € C*0,1) and ¢(z)>0,Vz € (0,1)}

f(z,0) > 0,z € (0,1) (3.4)
(iii)
%(m,u) >0,Vz € (0,1) and ¢(z) >0 (monotonocity condition) (3.5)
u=¢
(iv)
0 0
8—£(w,u) . > a—ﬁ(m,u) — ,V2 € (0,1) and ¢>9% >0

(convezity condition). (3.6)

The Picard method corresponds to obtaining a sequence of iterations {u(")(ac)}, v >0,
defined by

Lo (z) = f(z,vM(2)), z € (0,1)
w0y = W) =0, (3.7)
v =0,1,..., where u(®)(z) is a given function defined on [0,1]. A sequence of Newton

iterates {v(”)(m)}, v > 0, is defined by

Ev(u+1)(x) _ f(a:,’u(")(él?)) + (,v(v+1)(x) . v('/)(x)) 8_f . T € (0, 1)
ou (w,u:’u(”))

o0y = D) = o, (3.8)
v =0,1,..., where v(®(z) is a given function defined on [0,1]. Note that the Newton
iterative scheme involves greater differentiability requirements for f than the Picard scheme,
but because both schemes were used the conditions (3.3)-(3.6) have been assumed.

In order to establish algorithms for the sequence of linear boundary value problems that
can be used to solve the problem (1.5),(1.6), we first transform the problem (1.5),(1.6) to
one with homogeneous boundary conditions on the interval [0, 1], i.e.

—u'(z) = 2P[(1-2)—u(z))
u(0) = u(l) =0 (3.9)
with a solution u(z) given by
u(z) = (1 - 2) - y(a), @ € [0, 1] (3.10)

The right-hand side of the equation in this problem does not satisfy the condition (3.5).

Hence to permit the application of existence and uniqueness results (see [20, 21]) a term
AzPu(ax), A > ¢ > 0, is added to both sides of (3.9) yielding

—u(2)+ AePu(z) = 2P[(1-2z)—uw(2))? + AzPu(e)
wW(0) = wu(l) = 0 (3.11)

with a solution u(z) given hy (3.10).
bn this way we obtain two iterative procedures for solving the modified equation (3.11):



a) Picard

2, (v+1)
2 (z) = 2?1 -2) ~ (@) + 2ul(a)
wt0) = wtD(1) = 0 (3.12)
with v = 0,1,..., which converges monotonically upwards from u(o)(w) = 0 and

downwards from u(®(z) = 1 — z to the solution of the transformed general Emden
problem (3.11);

b) Newton
2,v(u 1) g—1
SB[ 2) - o)) o) =
= 2P [(1 —z)— v(”)(m)]q + qaP [(1 —z)— v(")(x)]q_l v ()
v+ (0) = v+ (1) = 0 (3.13)

with v = 0,1,..., which converges monotonically upwards from v(o)(:v) = 0 to the
solution of the transformed general Emden problem (3.11).

Mooney [21] showed that the iterative scheme (3.12) has fastest convergence with A = gq.

Putting w((z) = (1 — z) — y®(2) in (3.12) and »(z) = (1 — z) — y(2) in (3.13) we
obtain the corresponding schemes with inhomogeneous boundary conditions converging to
the solution to (1.5),(1.6):

a) Picard
LD dapy4) (@) = 27 { [y()] ~ 2y ()}
y*+H(0) = 1, yI(1) =0 (3.14)
forv=0,..,
b) Newton
Ly — qaPly®)(2)] 1y (@) = (1 - q)e? [y ()]
y@+(0) = 1, yt+(1) =0 (3.15)
forv=0,..,

where y(®)(z) is a given function defined on [0, 1].

In both schemes, Picard and Newton, y(*)(z) converges downwards from y(®)(z) = 1—z
to the solution of the problem (1.5),(1.6), but in the case of the Picard scheme, y)(z)
converges also upwards from y(®)(z) = 0 to the solution of problem (1.5),(1.6).

We are going to study in more detail problem (3.14).

3.2 Picard and Newton schemes with variable substitution

In this section the problem (1.5),(1.6) is transformed into an equivalent problem by using
a transformation of variables. The Picard method and Newton method corresponding to
(3.10) and (3.15) arc then presented.



In order to overcome the problem of the singularity at # = 0, Lima and Lemos [18, 16]
transformed problem (1.5),(1.6) into a problem with a solution regular in the new variable.

Suppose that p is a rational number, i.e., p = —m/r, where m, r are natural numbers.
Since p > —2 then m < 2r. Introducing in (1.5) the variable substitution

ap=nt"
and multiplying both members of the equation obtained by #", we have

;15 [tZ% +(1- r)t%%] =t"myd 2 €(0,1)
y(O) = 1, y(l) =0. (3.16)
Hence, the Picard scheme (3.14) becomes
& [P + (1 B gy (D) = (@)~ M), 2 € (0,1)
yt(0) = 1, y+D(1) = 0, - (3.17)

with y© () = 0 or y©(t) =1 -t and v = 0,1,.... Similarly, the Newton scheme (3.15)
becomes

B[R 4 (1 - )R] gyt = (1 - ) [y)e, 2 € (0,1)

yt(0) = 1, y+(1) = 0, (3.18)

with yO()=1—-tand v =0,1,....

Note that by applying a general transformation of the form z = t*, § > 0 to (1.5)
and multiplying both members of the resulting equation by t?4, we obtain the following
transformed problem for general p:

L [224 1 (1 - B)t] - 10+98ye = 0, 2 (0,1)
y(0) =1, y(1) = 0. (3.19)



Chapter 4

A finite element method

Our aim here is to apply a finite element method with a piecewise linear basis function and
a nonuniform grid to solve problem (1.5), (1.6).

We can deal with our continuous problem in two different ways. One way is to apply
firstly the Picard method, transforming the problem of solving a nonlinear boundary value
problem into the problem of solving a sequence of continuous linear boundary value prob-
lems, and then to solve each problem by a finite element method. The other way is the
reverse, that is, firstly apply the finite element method to our continuous problem, obtain-
ing a discrete nonlinear problem approximating the original one, and then apply a Picard
method generating a sequence of discrete linear boundary value problems (this approach
was taken in [10], for a similar problem but without the singularity at the boundary). Con-
cerning the former, Mooney proved some results on the convergence of the Picard method
related to problem (1.5), (1.6) (see [20, 21]) and Lemos and Lima [16, 18] studied the ex-
istence and uniqueness of a weak solution of the problem after a transformation. For the
latter, some results have been proved concerning convergence of both methods combined
(e.g., see [10]) when the partial derivative with respect to the dependent variable in the
nonlinear term is bounded. But this is not the case in our problem. Therefore both ways
of combining the Picard method and the finite element method need further analysis.

In the following we concentrate on the first way; that is, we apply the finite element
method to solve each iteration of the Picard method (see Chapter 3). In order to solve each
iteration of the Picard (or Newton) scheme, that is, each linear boundary value problem,
we will use the finite element method with piecewise polynomial basis functions. Lima and
Lemos [18], dealing with a transformed equation, used the Picard method and solved each
iteration by a finite element method using a cubic B-spline basis, since, they argued, the
solution of the transformed equation is regular in the new variable. Instead, here we are
going to use the finite element method with a linear B-spline basis to solve each iteration
of the Picard scheme (3.14).

The Lax-Milgram Lemma [3] will be used in Section 4.1 to prove the existence of a
generalised solution in the case where the parameter p satisfies —1 < p < 0. Firstly, we
derive the weak form of the corresponding problem with homogeneous boundary conditions
(Section 4.1.1) and show how to apply the Lax-Milgram Lemma in this case (Section 4.1.2)
and in the case of inhomogeneous boundary conditions (Section 4.1.3). Then, in Section
4.2, we discuss the application of the finite element method.
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4.1 Existence of solution

The problem we are interested in corresponds to solving an iteration of the form

Eu(”'}'l)(;p) = g(”)((l;) (41)
w0 (0) = 1, wt)(1) =0 (4.2)
forv =0,1,..., where L is a second-order linear differential operator, g is a given function

and u(**1) is the desired solution of the boundary value problem. (Note that we introduced
a slight change in the notation of the solution of the iterative schemes given by (3.14) and
(3.15), using uw(*+1) instead of y("“"l)). More specifically, the operator £ is given by

d2u(u+1)

ﬁu(uﬂ)(“?) = g

+ Q(a)u () (4.3)
where Q(z) € L1(0,1)if -1 < p < 0.

The functions  and g depend on the iterative method chosen (see Chapter 3). Hence,
if we use the Picard scheme (3.14), then

Q(z) = AaP (4.4)
§0)(a) = —a?[ul]t + Qa)ul?. (45)

Similarly, if we use the Newton scheme (3.15), then we have

Q(z) = qzP(u)a-1 (4.6)
g(")(x) =(g- 1)mp(u(u))q_ (4.7)

Note that the function g(*)(z) given by either (4.5) or (4.7) is a function of & and of u(*)(z)
(u)(2) is the solution of the linear inhomogeneous BVP corresponding to the previous
iteration of the Picard or Newton scheme).

In the following we will consider only the case of the Picard method.

In order to present results concerning the existence of the solution to problem (4.1),(4.2),
the Lax-Milgram Lemma is used (Section 4.1.2). Although problem (4.1),(4.2) cannot be
formulated directly in terms of the Lax-Milgram Lemma because it does not have homo-
geneous boundary conditions we will show how to apply the Lemma in this case (Section
4.1.3) by studying firstly the homogeneous boundary conditions case (Section 4.1.1). The
assumptions of the Lax-Milgram Lemmma will be verified in Section 4.1.4 but only in the
case —1 < p < 0.

4.1.1 Homogeneous boundary conditions

We start by studying a problem similar to (4.1),(4.2) but with homogeneous boundary
conditions. For simplicity, we will drop the superscript notation of the iterative method
returning back to it Jater (Section 4.1.3).

Consider the problem

Ly = g(z) (4.8)
p(0)=v(1)=0 (1.9)

where £ and g are, respectively, the second-order differential operator and the given function
defined in the previous section (Picard method).
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In order to obtain the weak form of the problem (4.8)-(4.9) we multiply both sides of
the equation (4.8) by a test function ¢ € Hj(0,1) and integrate over I = (0, 1), obtaining

/01 (—v"¢ + Q(z)vg) dz = /01 g(z)ddz, ¢ € H3(0,1). (4.10)

Integrating by parts, we have

/01 (W'd + Q(z)vd) do = /O] 9(@)pde, ¢ HA0,1), (4.11)

where we have used ¢(0) = ¢(1) = 0. So, the weak formulation of problem (4.8)-(4.9) is:
find a solution v € H}(0,1) such that

/01 (v'¢' + Q(z)vg) da = /0] g(z)pdz, ¢ € H(0,1). (4.12)

In order to see how to apply the Lax-Milgram Lemma (see Section 4.1.2) we introduce
a bilinear form a(.,.) and a linear functional G(.), given by, respectively,

a(v,d) = (Lv,¢) = /Ol(v’qﬁ’ + Q(z)ve) dz (4.13)
and )
G(¢)=(9.¢) = /O 9(z)¢dz. (4.14)

Note that the bilinear form (4.13) is symmetric (a(v, ¢) = a(¢,v), Vv, ¢ € H}).
We seek a solution v satisfying

a(v,¢) = G(¢), V¢ e Hy(0,1), (4.15)

where H}(0,1) is the subset of functions in H1(0, 1) satisfying the homogeneous boundary
conditions.

In the following sections, we present the Lax-Milgram Lemma and show how to apply
it to this case (Section 4.1.2) and to the inhomogeneous boundary conditions case (Section
4.1.3) leaving the proof that the hypotheses of the Lax-Milgram Lemma are satisfied until
Section 4.1.4.

4.1.2 Lax-Milgram Lemma
Firstly we recall the Lax-Milgram Lemma (for references see [3]).

Lemma 4.1 (Lax-Milgram) Let H be a Hilbert space with inner product (.,.)g and norm
luller = (ww)f®s  we k.
Suppose that « : H x H — R is a bilinear form such that:

(i) there exists a constant 3 such that

la(u, v)| < Bllullg |vlH, Yu,v € H (a is bounded); (4.16)

(i) there exists a constant p such that

a(u,u) > pllell?,  Yec Il (a ts cocrcioe). (1.17)
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Suppose also that G : H — R is a linear functional such that

(111) there exists a constant § such that

|G(w)] < |\ul|g, Yue H (G is bounded). (4.18)

Then, there exists a unique © € H such that
a(d,v) = G(v), VveH. (4.19)

Furthermore, if a(.,.) is symmetric then the functional

f(v) = %a(v,v) _G(v), VweH, (4.20)
has a minimum at 9.

Note that when a(.,.) is symmetric, a(.,.) is an inner product on H. It is the so-called
energy inner product. The corresponding norm is called the energy norm. So, we have

(u,v)g = a(u,v), Yu,v€H (4.21)
lullz = a(u,v)?, Yue H. (4.22)

Thus, (4.16) and (4.17) imply that the energy norm and the H-norm are equivalent. More-
over, the Lemma asserts the existence of a generalized solution, ¥ € H, of the problem
(4.19). If the problem has a classical solution, then that solution is 9.

In the homogeneous boundary conditions problem (4.15)) we can apply the Lax-Milgram
Lemma immediately (if the hypotheses (4.16)-(4.18) are satisfied), taking

H = Hj(0,1) (4.23)
and consequently
1
(u,v)g = (u,0)1 = / (wv + w'v')dz, (4.24)
0
1/2
lullzr = llulls = (ur )" (4.25)

The bilinear form a(.,.) and the functional G(.) are given, respectively, by (4.13) and (4.14).
In the following section we show that problem (4.1),(4.2) can be formulated so that the
Lax-Milgram Lemma is applicable.

4.1.3 Inhomogeneous boundary conditions and weak form

In the inhomogeneous boundary condition case we study a problem of the form

Lu = g(z) (4.26)
w(0) = 1, u(1) =0 (4.27)

where £ and g are, respectively, the second-order differential operator and the given function
defined by (4.3) and (4.7).
Here we seek a solution u belonging to the subset

IL(0,1) = {u € HY(0,1): u(0) = 1,u(1) = 0} (1.28)
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which is not a linear space (see [3] for more details). Therefore the Lax-Milgram Lemma
is not immediately applicable. However, for any fixed w € H}(0,1) we can write

H5(0,1) = {u € HY(0,1) 1 u = v+ w, ve HY(0,1)} (4.29)
and define the functional

ffw) = flv+w)- f(w)
= 1a(v+w,v-l—w)—G’(v-l-w)—%‘I(U’,"U)‘}‘G(w)

2
= %a(v,v) _G*(w), ve HL0,1) (4.30)
where
G*(v) = G(v) — a(w,v) = (g,v) — a(w,v). (4.31)

We can now apply the Lax-Milgram Lemma, taking H3(0,1) for the Hilbert space H,
a(.,.) for the bilinear form and G*(.) for the linear functional. Assuming that the Lax-
Milgram Lemma hypotheses are satisfied (see Section 4.1.2), there exists a unique 9 €
H$(0,1) such that

a(d,v) = G*(v), Vo€ H(0,1), (4.32)

and hence
a(d +w,v) = G(v), Vo€ H}(0,1). (4.33)

By the definition of H}(0,1) given in (4.28), it follows that there exists a unique @ €
HL(0,1) such that @ = 9 + w and

a(t,v) = G(v), Vv e H0,1). (4.34)
The function ¥ minimizes the functional f* over H}(0,1), so

min  f(u) = f(4). (4.35)

UEH}lg(O)l)

As pointed out in [3], 4 is the generalised solution of the boundary value problem with
inhomogeneous boundary conditions.

Summing up, the weak form (4.12) can be reformulated for the inhomogeneous case as:
find a solution v € H(0,1) such that

[ @6+ Qe do = [ o)~ @9 +QEus) da V€ B0, (£39)

or equivalently,
find a solution uw = v+ w € HE(0,1) such that

[ @+ Qengda= [ g6 ds voe mOD. (437)

Returning to the superscript notation corresponding to the Picard iteration method, the
weak formulation of problem (4.1)-(4.2) can be written as:
find a solution v**1) € H}(0,1) such that

1

LD g v - I . i .
J ( A llOb “)"’) do= [ i) - (W + Qe &z v6 € 0, D)
(1.38)
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where Q) and ¢ () are given, respectively, by (4.4) and (4.5), Q(z) € L1(0,1) and w
is a particular solution of our problem satisfying inhomogeneous boundary conditions. In
the integrand of the right-hand side of (4.38), the term —(w'¢' + Q(z)w¢) appears precisely
because of the inhomogeneous boundary conditions.

To guarantee the existence of a solution it remains to ensure that the hypotheses of the
Lax-Milgram Lemma are satisfied . This is the aim of the next section.

4.1.4 Lax-Milgram assumptions

It can be proved that, in our case, the conditions (i)-(iii) of the Lax-Milgram Lemma are
satisfied if —1 < p < 0 (see [16]). In this section, for simplicity, we will drop the superscript
notation corresponding to the Picard method.

Proof (i). For u, v € H}(0,1) we have

la(u,v)| = /Ol(u’v' + Q(z)uv) dz

- /01 (u'v' + wo + (Q(z) — 1uv) da

1 i
< / (v’ + uwv) dz| + ‘/ (Q(z) — Duv da (4.39)
0 0
By the Cauchy-Schwartz inequality and if the second integral converges, we have
1
la(w, v)| < ||lull ||vll: +/0 |Q(z) — 1| |uv| dz. (4.40)

The function |@Q(z) — 1| does not change sign in [0, 1] so, using a mean value theorem for
integrals and
max_|u(z)| max_ |v(z) < ||ul1 [|v 4.41
max fu(e)] max [o(2)] < [l ol m

(see [3]) we have

1
la(w,0)| < s oll + max fu(e)] max o(@)] [ [Q(x) — 1] da
1
< (1 + [la@ -1 dx) lulla lloll, (4.42)

where the integral
1
/ 1Q(z) - 1| de (4.43)
0
converges if p > —1. So there exists 8 > 0 such that
|a(u, v)| < Bllullg llvllg, Yu,v € H5(0,1).

Proof (ii). We will use the inequality (see [3])

1 1
/ u?dz > 2/ u? dz. (4.44)
0 0

Then, because Q(z) > 0 and Q(z) € L1(0,1) we have

1 1
alu,u) = / <’u,'2 + Q(.I'){LQ> da > / w'da
0 0
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1 1
1 / u'?dz + 1 / uw'dz
2 Jo 2 Jo
1 1 1
/ wrdr + = / u'?dz
0 2 Jo

1 ! 2 12 1 2
5(/0 (a2 + u?2) da:) > 2 [ull, (4.45)

Therefore, there exists a constant p such that

v

v

a(u,u) > pllullly, V¥ ue Hg(0,1).
Proof (iii). For v € H}(0,1)

|G*(v)] = Al g(z)v — w'v' — Q(z)wv de

1 1
‘/ g(z)v dz| + ’/ w'v' dz
0 0

provided that these last integrals converge. The first integral of (4.46) converges if p > —1
and because |g(z)| does not change sign in [0, 1],

/01 g(z)v de

IN

+ ‘/01 Q(z)wv dz (4.46)

< max [u(z) / l9(2)| de. (4.47)

Choosing the particular solution w such that w € C1(0,1) and using the Cauchy-Schwartz
inequality, the second integral of (4.46) can be bounded in the form

1 1 3 1 3
/ w'v' dx (/ w'? dm) (/ v'? d:v)
0 0 0
1 S
(/ W dw) [o]]1. (4.48)
0

Finally, the third integral of (4.46) can be bounded by

INA

IN

‘/01 Q(z)wv dx

< max |w(z)| max |v(z)| /|Q(a:)l dz

z€[0,1] z€[0,1]

IA

max W@ ol [ 10() dz, (449)
since the integral converges when p > —1 and the particular solution w can be chosen
such that w € C1(0,1). Using (4.47), (4.48) and (4.49) in (4.46) we see that there exists a
constant § such that

|G*(0)| < é]|vl|a, Yo € Hg(0,1). (4.50)

So, in the case —1 < p < 0, there is a coercive and bounded bilinear form af(.,.) given
by (4.13) and a bounded linear functional G*(.) given by (4.31), both defined on a Hilbert
space, such that the solution of the boundary value problem is the same as the element
% € H whose existence is asserted by the Lax-Milgram Lemma. That is, o satisfies the
condition

a(d,v) = G(v), Vv e H.

Because in our case a(.,.) is symmetric, it follows that 9 € H minimizes the functional

Sf(v) = %(I,(H, v) — Gi(v), Yo e I,
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It was not proved that the conditions (4.16) and (4.18) of the Lax-Milgram Lemma hold
in the case —2 < p < —1 because a integral of the form

[ 10 - d ds, (4.51)

where ¢ is a constant and Q(z) is given by (4.4), does not converge. Nevertheless, the
integral we need to compute, i.e.,

/0 "W’ + Q(e)uv) de (4.52)

where Q(z) = AzP and u, v are the basis functions used (linear B-splines), might converge
for that choice of the parameter p. Hence, we present in Chapter 6 some numerical results
concerning case -2 < p < —1.

Next we show how to apply the finite element method.

4.2 Finite Element Method

Under the assumptions of the Lax-Milgram Lemma, we can obtain an approximate solution
of the problem (4.15) if we introduce a finite dimensional subspace of H, say Hy (N-
dimensional), and restrict our problem to this space (which is still a Hilbert space). Then
we can transform the original problem into one that corresponds to solving an algebraic
system of N linear equations. Since Hy C H is a Hilbert space, in Hy the hypotheses
(i)-(iii) of Lax-Milgram Lemma are satisfied and we have the following theorem.

Theorem 4.1 Suppose that hypotheses (i)-(iii) of the Laz-Milgram Lemma are satisfied
and that Hy is an N -dimensional subspace of H. Then there exists a unique iy € Hp
such that

a(tn,v) = G(v), Vve Hy. (4.53)

Furthermore, if a(.,.) is symmetric then

Zin f(v) = f(in), (4.54)

where f is given by (4.20).

This theorem is not constructive in the sense that it does not specify how to obtain
uy. Nevertheless, the finite dimensionality of Hy can be exploited. Since, by the Lax-
Milgram Lemma, the existence of a solution in H = H}(0,1) is guaranteed, we can use an
N-dimensional subspace of H3(0, 1) as the trial and test spaces; in our case we use the space
of continuous piecewise polynomials of degree less or equal than 1, i.e., a linear B-spline
basis. We use this type of basis function because it leads us to simple banded matrices.
In the particular case of the linear B-splines, we obtain tridiagonal matrices. (Note that
in [18], where a transformation was applied, the resulting equation is regular in the new
variable and hence the basis functions used could be cubic B-splines.)

Let Xp ¢ 0 =20 <@ < -+ < 2y =1 be a partition of I = (0,1) into intervals or
elements I}, = (24—, 2y) of size hy, = @) — @51 (k= 0,...,n) and let Hy be the vector
space of continuous piecewise linear functions on X, that vanish at 2 = 0 and 2 = 1. fHn
is a space of dimension n — 1 (N =n —1).
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Let {4(z)}}?Z] be a basis of this space Hy, where

T—Tp_y
Pe=— if xp1 <z <y
={ =T
e(2) = sty ook <2 <@ (4.55)
0 otherwise

fork=1,2,...,n—1.

x
) k Xieet

Figure 4.1: The linear B-spline ()

It was shown in Section 4.1.3 that the solution of the inhomogeneous boundary value
problem is
t=9%+w

where w is any chosen function of the set H}(0,1) and & the minimizer of the functional
f* given by (4.30). Hence we are looking for an approximate solution, 4y, of the inhomo-
geneous BVP in the form
iy = 0N +w
where 9y belongs to Hy (a N-dimensional subspace of H}(0,1)) and satisfies
min f*(on) = £ (0)-

More specifically, if Hpy is a N-dimensional subset of H}B)_(O, 1) given by

Hy={aeHE(0,1):a=5+w,0€ Hy} (4.56)

we are looking for an approximate solution, 4y € Hy of the form

n—1
ayt = o4 4 o) = 3 el pi(2) + go(z),  v=0,1,... (457
1=1

where 9o(z) is a particular solution satisfying inhomogeneous boundary conditions. We let

r—r .
oy if 2o <2<y

¢0($) =

0 otherwise .
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[ = % x x

Figure 4.2: Some linear B-splines

Then we choose v = 1; as test function and the finite dimensional formulation of (4.11)
corresponding to each iteration of the Picard scheme becomes:

find 115\';4_1) € Hg(0,1) of the form (4.57) such that

1

/01 <12§\';+1)/1/)1'-+ Q(m)ﬁg\',"l_l)@bi) dz —/0 g(:v,&g\l,')(:v))i,bidw = 0. (4.58)

Using (4.57) we may write equation (4.58) in the form

n-1 Tit1 Ti41
Z (/ + (¢f¢;’ + Q(z)i;) dw) agwl) :/ + g(x’ﬁg/}))l/)i dz
7=1 Te—1 Te—1

_ / T (ighde + Q(e)yivo) de, (4.59)

-1

and using the expressions for ¢} and g corresponding to the Picard scheme given, respec-
tively, by (4.4) and (4.5), we obtain

n—1

([

i+1
=1 =

t—1

z; n—1
(¢:¢; + )\wpd)l,%) d.’l}) a;u-}-l) :/ +1 A(Bp'lpi ( ag")w‘]) de —
Ty ]:1

Ti41 Tit1 n—1 Y q
—/ Pithode —/ Wi zf (1/}0 + Yol )wj) dz.  (4.60)
Ti—1 Ti—1 j=1

Hence, computing each iteration of the Picard scheme corresponds to solving the linear
system

Kot = g*¥) (4.61)

where
Ki; = a(i, ¥;), ,7=1,2,...,n—1, (4.62)
Gi¥ = G() - a(wi,b0),  i=1,2,..,n—1 (4.63)

and a(*+1) is the vector of unknowns. K is called the stiffness matriz. We have
Ti41 Ti41
K = / (Wipl)de + / (AePsap;) do (4.64)
Ty—1 Tyi—1
fori,7=1,2,...,n— 1 and

R n—1 o n—1 i
G’:(") = / AP, (Z agu)ll)]) da - / hy; x? (@/)0 + Z a'g-u) '(/)j) du
o 7=1 7=1 .

Jxy_y Ti—1

Tyt
. l+ hab! da 16
ihiah da (4.65)
2z

SAi—]
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fori=1,2,...,n—-1.

Almost all the integrals in (4.64) and (4.65) are computed directly. The exception is the
second integral in (4.65) which is, in general, computed numerically using a sufficiently fine
composite trapezoidal rule. This integral is computed directly in the case p = -1, ¢ = 2
and in the Thomas-Fermi case p = — and ¢ = 3 (with a formula given in [12]). According
to the definition of the basis functions in subintervals, most of the integrals have to be
split in two. The integrals involving 2P are calculated according to different ranges of the
parameter p.

A tridiagonal solver is used to solve the system (4.61). In fact, since we use linear
B-splines,

Kij;=0 ifli—j|>1, foréj=1,2,...,n—-1, (4.66)

and the matrix K is tridiagonal. The matrix K is also symmetric and positive definite. In
fact, the symmetry of a(.,.) implies that the matrix K is symmetric. Moreover, both the
symmetry and coercivity properties of the bilinear form a(.,.) imply that the matrix K in
(4.61) is positive definite (see [3]).

Substituting

n—1

UN = Z ajI/}j(.'I)) (4.67)

j=1
into (4.20) and using the bilinearity of a(.,.) and the linearity of G*(.), we find that

i=1

o) = 2a (’iamu),iamw)) -6 (i %'«/Jj(w))

n—1n-1 n—1
= 333 aiea (o), ¥i(2) - 3 056" (H4())
=1 j=1 1=1
= %aTKa - ol G* = F*(a). (4.68)
Hence
v,?éif}N f(on) = argger}v F*(a). (4.69)

F* is a quadratic functional over ®Y with a positive definite Hessian matrix and thus F*
is uniquely minimized by the o that satisfies '

Ko = G* (4.70)

(see [3]).

In this chapter we have derived the weak form of the problem (4.1),(4.2) and we have
shown the existence and uniqueness of a generalised solution in the case where the param-
eter p satisfies —1 < p < 0. Furthermore, we applied the finite element method to each
iteration of a Picard scheme of the form (4.1),(4.2), yielding a linear system which is solved
by a direct method.

In the next chapter different types of error, originating from the use of numerical meth-
ods, are studied. Also presented is the type of nonuniform grid chosen.
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Chapter 5

Error

5.1 Sources of error
We now point out some sources of computational error in the approach, namely:

e the use of the Picard method combined with a finite element method;
e the use of a numerical integration rule;

o the solution of the linear system (tridiagonal solver or band matrix solver).

Using the Picard method combined with a finite element method, the original continuous
nonlinear boundary value problem is replaced by a sequence of linear discrete BVPs and a,
discretization error arises in each iteration of the Picard method (linear BVP) because the
solution is approximated by a piecewise polynomial (assuming that the integrals arising in
the finite element method are evaluated exactly and that the resulting system of discrete
equations is solved exactly).

There is also a numerical integration error that comes from evaluating the integrals
arising from the finite element method using a trapezoidal rule and the error resulting from
solving the discrete linear system of equations.

Our goal is to obtain a method where the discretization error is controlled within a given
tolerance level (reliability) and that the computational work to compute a solution within
the given tolerance is as small as possible (efficiency).

In Section 5.2 the type of grid used is presented and in Section 5.3, some of the errors
are studied in more detail, namely, the discretisation error that originates from applying
the finite element method (Section 5.3.1), the error that originates from solving the linear
system by using a direct method (Section 5.3.2) and the numerical integration error (Section
5.3.3).

5.2 Grid selection

A nonuniform grid X}, (see Section 4.2) is chosen in accordance with the transformation
used in previous work (see Section 3.2 and [16, 18] for more details), that is,

t\"” .
.1:1:<—> , Y >0, 0=0,1,...,m. (5.1)
n

This choice of grid corresponds to a nonuniform grid having more points near the singularity.
I Uhis case Ny = max | <icn fis = Iy = | — @y and liygn = Wil i, by = Iy = .
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In the next section different types of error arising when applying the finite element
method to solve each iteration of problem (3.14) are studied.

5.3 Error Analysis

By constructing asymptotic expansions of the Picard iterates (3.14) near the singularity,
Lima [17] (and also Mooney [21] for certain values of the parameters p and ¢), developed
the corresponding asymptotic expansion for the discretisation error when applying a finite
difference method. Lima [17] showed that the error expansion is O(R**?) if -2 < p < —1
or —1 < p < 0 and O(h(1 + In h)) if p = —1. Although we have applied a different
discretisation method (finite element method) we may expect similar results to hold.

5.3.1 Discretization error

QOur aim is to show some estimates of the error ey = @& — 4 corresponding to the case of
inhomogeneous boundary conditions. Here, 4y is the finite element approximation to the
exact solution % € H. Firstly we obtain some error estimates for the case of homogeneous
boundary conditions.

Now we want to estimate the error (& — 9y) where 9y € Hy (Hpy vector space of
continuous piecewise linear functions) is the finite element approximation of the exact
solution ¥ € H whose existence and uniqueness is guaranteed by Theorem 4.1.

The functional

f(0) = 3a(v,0) = G(v), veH (5.2)
can be expressed as
1
f)=f(®)+50(d0-v,0—-v), wel (5.3)
and because
i = f(# 4
Ly f(vn) = f(dn) (5.4)
we have
[a(d — b, D — on)]Y% = min [a(d — o, D — o)) /2 (5.5)
vNEHN

or, in the energy norm notation,
0 — 1 e i 0 — . 5.6
19— oz ul?émn,v 19— onllz (5.6)

Therefore, the finite element method minimizes the error (¥ — o) in the energy norm over
the subspace Hpy. Moreover,

a(b— on,vn) =0, Vuy € Hy, (5.7)

that is, oy is the orthogonal projection with respect to the energy inner product of 9 onto
Hpy. Thus
a(f),f)N) = a(f)N,f)N) (58)
and then
a(d — on, D — Dn) = a(d, D) — a(dn, DN), (5.9)
that is, the energy in the error equals the error in the energy. IPurthermore, since the left

side of (5.9) is necessarily nonnegative, we have

alon, by) < ald,d) (5.10)
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(see [24]).
We now present an estimate of the error in the space H = HE(0,1) (see [3, 24] for more
details). Since a(.,.) satisfies (4.16) and (4.17), there exist positive constants 8 and p such

that
Vo Iollir < \fa(v,0) < VB lloll, Vo€ H, (5.11)
that is, ||.||z and ||.||g are equivalent. Thus

15— onllar < C*\Ja(d — oy, 0 — dy) < C min |16 — vnllm, (5.12)
yNEHy

where C* and C' are constants.
In order to study the error in the inhomogeneous case, we apply (5.12) to the functional
f* given by (4.30), obtaining

15— dwlls < C min |15 — onl. (5.13)
vwEHN

Since % = & — w and 9y = @n — w, we obtain
i~ il < C min fla— alp, (5.14)
2€H N

where B
Hy={aeH0,1):a=0+w,b€Hy}.

It is possible to derive other estimates of the error. A useful approximation to 4y is
the linear interpolant of @, 4y, which can be expanded in terms of the linear B-splines

{r(z)}i_o (see (4.55)) as

n
ar(z) =) alze)¥i(e), (5.15)
k=0

where 2y, k = 0,1,...,n, are the grid points. The two approximations, &) and @y agree at
every grid point z (k= 0,1,...,n) and @ is linear in between. In spite of the interpolate
4y and the finite element approximation 4y being both piecewise linear, 4y is determined
variationally while 4y is chosen only to be close to u. Hence, instead of studying the
discretization error given by ey = @ — 4y where iy € Hy directly, we study its relation
to the interpolation error ey = 4 — 4y because the latter is easier to analyse and gives a
bound on the former. We have

I — il < Clla - aglh. (5.16)

Using a nonuniform grid, as described before (see Section 4.2), and a linear B-spline
basis of the space of continuous piecewise linear functions, @7 is the interpolant of a function
@ € HE between every grid point zy, satisfying (5.15). Because of (5.16), we are interested

in obtaining estimates using Sobolev norms or seminorms. It can be shown that for any
@€ H%(0,1)

|t — dry < 7 hldly (5.17)
|t — arlo < 7 2R2|d, (5.18)

where h = hpqr (see [3, 24]). If u has less degree of regularity, e.g. if u € H(0,1), the
bounds (5.17),(5.17) on |& — ag|s (s = 0,1) deteriorate. In this case, we have

- < Cilals (5.19)
| — arlo < CHhla), (5.20)
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Since
i — arl|} = & — a5+ |2 — arl3, (5.21)

using inequality (5.16) we see that if w € H*(0,1) then

& - anlly < Crhlil (5.22)
by inequalities (5.17),(5.18), for some constant C, that is,

|12 — anlls = O(h). (5.23)

If w € H'(0,1) it follows from (5.19) and (5.20) that (5.22) must be replaced by a weaker
bound B
fla — anll < CTldls. (5.24)

So we see that high-accuracy basis functions tend to be wasted when the solution of the
boundary value problem has low regularity.
The inequality (5.22) leads to the seminorm bounds

la — iinlo < Cihldl (5.25)
i — an|1 < Crh|dls (5.26)

(see [3]). From (5.26) we can see that |4 — in|; has a bound that agrees with the bound of
(5.17) in the sense that the two bounds contain the same power of . On the other hand,
the order of h in (5.25) is lower than the one corresponding to (5.18). However, using the
Aubin-Nitsche method one can derive a bound on |&—dy|o that is O(h?) (see [3]). Applying
that method we can obtain the following bound:

i — dnlo < BR?|A2, if @€ H*(0,1) (5.27)

for some constant 3.

However, the bounds presented here do not take into account the fact that our boundary
value problem has a singularity at the boundary. Therefore, near the singularity, we should
expect a weaker bound for the error. The choice of a nonuniform grid can overcome that
problem (see [24]). This requires further analysis.

In the next section we study the error occurring when solving each linear system arising
from the use of the finite element method.

5.3.2 Linear system

In Section 4.2 we have shown that when applying the finite element method to each iteration
v of the Picard scheme (3.14) we obtain a sequence of linear systems (4.61) of the form

I(a(l/+1) = G*("), vV = O, 1, <. (5'28)

where K is an (N x N), symmetric, tridiagonal and positive definite matrix. These systems
are solved using a direct method.
In this case, the sources of error are

e rounding errors and numerical integration errors in the computation ol the matrix
and the vector;

o ronnding errors inherent to the process of solving.
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We recall a result concerning the spectral condition number of the stiffness matrix
K, cond(K). As proved in [3], if the bilinear form a(.,.) is symmetric and satisfies the
hypotheses of coerciveness and boundedness of the Lax-Milgram Lemma, then

cond(K) < C);\—N < C1N?, (5.29)
1

where C' and C; are constants and Ay, Ay are, respectively, the maximum and minimum
eigenvalues of the stiffness matrix K. Another way to write the inequality (5.29) is
cond(K) < Ch;2 .

This bound on cond(K’) is independent of the accuracy of the finite element basis func-
tions, i.e., independent of the degree of the polynomial chosen.

The perturbation properties of the system (4.61) are studied in [3], namely the effect of
a small change in G* or K on a. It is shown that the influence of perturbations in data on
the solution of the system can be significant if and only if the spectral condition number,
cond(K), is large.

The elements in the system (4.61) can be computed directly in most of the cases studied
here but a numerical integration rule has to be employed, in general, to calculate one of
the integrals of the vector G* (see Section 4.2). The choice of numerical integration rule is
discussed in the next section.

5.3.3 Numerical integration error

In Section 4.2 we pointed out the need for using a numerical integration rule to compute
one of the integrals (nonlinear term) on the right-hand side of the linear system (4.61).
The composite trapezoidal rule (with four subintervals in each element) chosen allows us
to control the error to the same level as the finite element error.

A bound for the absolute error when applying this rule is given by

2
error < % (hrjli) (5.30)

where Cinqp is a bound on the modulus of the second derivative of the integrand at a point
n € (0,1) and hpeg = hy, where h; = z; — ¢;_1, fori = 1,...,n, and z; are the grid points
chosen (see (5.1)). Since the computational effort to compute the numerical integration is
less than that of the finite element computational work (which requires the solution of a
linear system), the precision of the numerical integration rule can be increased if necessary,
so that it has an error at most of the same order as the bounds on the error obtained using
the finite element method with linear elements (see Section 5.3.1).

In the next chapter we present and discuss some numerical results obtained for different
cases of the parameters p and ¢ of problem (1.5),(1.6).
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Chapter 6

Numerical results and conclusions

We recall that to solve the nonlinear problem (1.5),(1.6) we first transformed it into a
sequence of linear boundary value problems by using a Picard method (3.14) and then
applied a finite element method with a linear B-spline basis and a nonuniform grid to each
iteration (Section 4.2). In this way we obtain a sequence of tridiagonal linear systems
(4.61) having the same matrix K. Each system can be solved by a direct method yielding
the vector a(**1), This vector allows us to compute the finite element solution 115\',’+1) (see
(4.57)) of the boundary value problem corresponding to the iteration v + 1 of the Picard
scheme.

In Section 6.1 we present some results as well as some details on the algorithm used.

Those results are discussed in Section 6.2.

6.1 Numerical results

We present results concerning the following cases:
i) p=—% and ¢ = 3 (Thomas-Fermi) ;
i) p=—land ¢g=2;
iii) p=—2 and ¢ = 2 (which required the use of the trapezoidal rule).

The case iii) corresponds to a choice of p between —2 and —1. Note that we did not prove
that the Lax-Milgram Lemma assumptions were satisfied by our problem in the cases ii)
and iii). Nevertheless, we shall present the numerical results obtained by applying the
algorithm to these cases. The results were obtained using double precision arithmetic
and an algorithm coded in Fortran. A subroutine from LINPACK was used to solve the
tridiagonal linear system.

For the stopping criterion we used the discrete Euclidean norm and both the absolute
and relative errors. For example, the absolute error in this norm is computed by

n—1 1/2
Ha,(u+1) _ Oé(v)|| - (Z ‘a(V_H)(-'Ui) — oW (zy) ? Ail?i) . v=0,1,... (6.1)
=1

where Awy =y — iy, 4= 1,---,n—1,and (1/("“),(1(") represent two sucessive solutions
of the scquence of linear systems (4.61). The tolerance used is e = 10713

In order to compare our numerical results in the cases i)-iii) to others obtained previously
([21, 17, 18]), we will use different grids (i.e. different choices of 7).
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Case i):

p:—%andq:%

In Table 6.1 we present the numerical results obtained using the modified Picard
scheme (3.14) with A = ¢ and a uniform grid (y = 1). Note that n stands for the
number of grid subintervals (finite elements). In the two first columns we recall the
numerical results obtained in [21], corresponding to a finite difference method with
n=400 (first column) and after extrapolation (column2). As we can see from Table
6.1, increasing the number of grid points and consequently decreasing the maximum
stepsize, we obtain further common digits (comparing with [21]). The stopping cri-
teiri)on (6.1) is satisfied with » = 12 in the case y(® = 0 or » = 11 in the case
y® =1—2.

Comparing the numerical results obtained when n = 400 with those in [21], we have
6 or 7 common digits. For a choice of n agreeing with [17], our results have for the
same n, more common digits than the ones given in [17].

Choosing a nonuniform grid with ¥ = 2 we could compare our results to the ones
given in [18]. When n = 400 we obtained 5-6 digits in common against 3-4 digits in
[18].

T4

[21] n=400

[21] extrap.

n = 50

n =100

n =200

n =400

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.849475313
0.727232837
0.619295448
0.520415347
0.427550745
0.338686752
0.252398660
0.167649343

0.083686935

0.849474382
0.727231852
0.619294515
0.520414506
0.427550017
0.338686150
0.252398194
0.167649022
0.083686767

0.849468033
0.727224475
0.619287331
0.520408029
0.427544486
0.338681676
0.252394824
0.167646774
0.083685644

0.849472801
0.727230014
0.619292725
0.520412891
0.427548638
0.338685034
0.252397353
0.167648461
0.083686487

0.849473987
0.727231394
0.619294068
0.520414103
0.427549673
0.338685871
0.252397984
0.167648882
0.083686698

0.849474283
0.727231738
0.619294404
0.520414405
0.427549931
0.338686080
0.252398141
0.167648987
0.083686750

Case ii):

Table 6.1: Numerical results obtained in the case i) - Thomas-Fermi

If we compare our results with those obtained in [17] or [18] we conclude that now
we have more accurate results with a more efficient algorithm. A visualization of
the numerical solution in the form of a graph with 100 equally spaced points in the
interval [0, 1] is displayed in Figure 6.1.

We omit the corresponding graphs for cases ii) and iii) since they are similar in shape.

p=—land ¢=2

In Table 6.2 we present the numerical results obtained using the modified Picard
scheme (3.14) with A = ¢ and a uniform grid. In the first column of Table 6.2 are
given the numerical results obtained in [17], where a finite difference method and
extrapolation were used.

If we start the Picard iteration process with y(®) = 0, the approximation of the
solution satisfying (6.1) is obtained with » = 18 whereas if we start with y(® = 1z,
the approximation of the solution satisfying (6.1) is obtained with v = 17.

The best approximation obtained (n = 400) has apparently from 4 to 6 digits in
common with the extrapolated results in [17] depending on the grid points considered.

I we choose a nonuniform grid, the results have more common digits. For example,
il y =2 and n =480 we have 4-8 digits in common.
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Figure 6.1: Numerical solution at 100 equally spaced points in the Thomas-Fermi case
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Ty

[17] extrap.

n = 60

n = 120

n = 240

n = 480

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.780152590
0.657468748
0.558348580
0.470108552
0.387580436
0.308145660
0.230342234
0.153326388
0.076623822

0.779988960
0.657355053
0.558253581
0.470029565
0.387515870
0.308094600
0.230304182
0.153301096
0.076611189

0.780085783
0.657435994
0.558321257
0.470085848
0.387561883
0.308130989
0.230331301
0.153319122
0.076620193

0.780114027
0.657459466
0.558340847
0.470102129
0.387575189
0.308141511
0.230339142
0.153324334
0.076622796

0.780122110
0.657466153
0.558346420
0.470106758
0.387578972
0.308144501
0.230341371
0.153325815
0.076623536

Case iii):

Table 6.2: Numerical results obtained in the case ii)

p:—%andq:%

In Table 6.3 we present the numerical results obtained using the modified Picard
scheme (3.14) with A = ¢ (columns 3-6) and a nonuniform grid corresponding to
v = 4. The extrapolated numerical results obtained in [18] are presented in column
1. If we start the Picard iteration process with y(® = 0 we need v = 24 iterations to
obtain a numerical solution satisfying (6.1) whereas if we start with y©® =1—2 we
only need v = 22 iterations.

The best approximation obtained (n = 400) has apparently from 5 to 6 digits in
common with the extrapolated results depending on the grid points considered, i.e.,
better than the one obtained in [17] or [18] without extrapolation.

The choice of a uniform grid (¥ = 1) does not improve the results given in the referred
papers.

As was expected the method has slower convergence in this case since p is such that
-2 <p<—L

Tn Tigures 6.2-6.4 we compare the speed of convergence of the Picard scheme with and
without added terms (respectively Mod Pic and Pic in the legend). The results on the
Picard scheme with added terms correspond to the case where A = ¢. The vertical scale
is logarithmic and corresponds to the absolute value of the logarithm of the error given
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o (18] extrap. | n = 50 n = 100 n = 200 n = 400

0.100 | 0.7043964 0.704427371 | 0.704416130 | 0.704404504 | 0.704395963
0.200 | 0.5901638 0.590270710 | 0.590165858 | 0.590167169 | 0.590165262
0.300 | 0.5016889 0.501642767 | 0.501675452 | 0.501685464 | 0.501688100
0.400 | 0.4233797 0.423406970 | 0.423390393 | 0.423377564 | 0.423379414
0.500 | 0.3498278 0.349803983 | 0.349822741 | 0.349827421 | 0.349828052
0.600 | 0.2786058 0.278579929 | 0.278598305 | 0.278603915 | 0.278605403
0.700 | 0.2084974 0.208495781 | 0.208496859 | 0.208496142 | 0.208497144
0.800 | 0.1388728 0.138866435 | 0.138871129 | 0.138871991 | 0.138872610
0.900 | 0.0694182 0.069413878 | 0.069416707 | 0.069417737 | 0.069418065

Table 6.3: Numerical results obtained in the case iii)

by (6.1). In case i), the approximate solution satisfying (6.1) is attained with v = 11
iterations of the modified Picard scheme against ¥ = 17 iterations of the Picard scheme
without added terms (A = 0) (see Figure 6.2). In case ii), as we can see from Figure 6.3, the
approximate solution of the modified Picard scheme which satisfies (6.1) is attained with
v = 17 iterations whereas for the Picard scheme without added terms the corresponding
solution is attained with v = 25 iterations. As we can see from Figure 6.4, in the case iii)
the speed of convergence of both schemes (modified Picard scheme and Picard scheme) is
slower than in the cases i) and ii). In this case, the modified Picard solution satisfying (6.1)
is attained with v = 22 iterations against » = 37 iterations for the Picard scheme without
added terms.

N=100
35
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* #  ModPic

30
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o 2 4 & 8 10 12 14 16 18
no. of iterations

Figure 6.2: Error vs. number of iterations in the Thomas-Fermi case with y(® =1 — 2

As we expected (see Section 3.1), the modified Picard scheme has faster convergence
than the unmodified Picard scheme (A = 0). The speed of convergence decreases for our

choice of decreasing values of p, the slowest speed of convergence corresponding to the case
iii).
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Figure 6.3: Error vs. number of iterations in the case ii) with v =1-2
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6.2 Conclusions

Although it is possible to analyse problem (1.7),(1.10) using a variational principle (e.g.
see [9]), here we adopted a different approach which is related to previous work {16, 18].

Our aim was to use the finite element method to solve problem (1.5), (1.6), using an
adequate choice of the grid. The choice of a nonuniform grid of the form (5.1) corresponds
to solving an equivalent transformed problem by using the finite element method with a
uniform grid, which was the approach chosen in previous work (see [16, 18]).

Comparing both approaches, we immediately conclude that the new approach is more
efficient in several ways. Firstly, in order to build the linear system we had to calculate
fewer integrals; secondly, we used linear B-splines instead of cubic B-splines, resulting in a
tridiagonal matrix (in contrast with a band matrix of width seven); thirdly, the matrix is
symmetric and positive definite (in [18, 16] the matrix was not symmetric).

The numerical results we obtained have also more digits than the ones given in [17, 18,
16]. However, in the Thomas-Fermi case, the results are as good as the ones obtained in
[21] with a choice of a nonuniform grid (y = 2), but slighty better if we use a uniform grid
(v =1). In the cases corresponding to —2 < p < —1 (cases ii) and iii) of Section 6.1), our
choice of a nonuniform grid (see Section 5.2) yields more accurate results than a uniform
grid.

We confirmed in practice that the modified Picard method (3.14) with A = ¢ results
in faster convergence (see Figures 6.2-6.4), as was proved theoretically by Mooney under
certain assumptions (see Section 3.1).

In spite of not being able to prove theoretically the convergence of the finite element
method for the case —2 < p < —1 (see Section 4.1) we nevertheless presented numerical
results showing the convergence of the method in this case.

It remains to study theoretically the convergence of the opposite strategy; that is, the
convergence of a modified Picard method applied to the discretised version of our problem
obtained after using the finite element method.
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