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Abstract

Two approaches to node movement are contrasted. In the Moving Finite Element (MFE)
method for the approximate solution of PDEs, the equation residual is minimised over a
continuous Lagrangian solution and nodal speeds. In the Moving Best Fits (MBF) method the
error residual is minimised over a discontinuous Eulerian solution and nodal positions. A
comparison is drawn through an intermediate method (called here Adjustable Finite Elements
(AFE)). It is shown how to modify the AFE method to avoid singularities and how to apply

the method to time dependent problems.
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1. The MFE and MBF methods

The key constituents of the Moving Finite Element (MFE) procedure for the
approximate solution of PDEs of the form
u, =Lu (1.1)
are (in 2-D)
)] a continuous piecewise linear (CPL) representation U of u
(i)  a search for nodal velocities U, X,Y, for which
U=U+Uyx X +UyY, (1.2)
where X,Y are also CPL functions
(i)  minimisation of the L, norm of the residual U, —£U (where the definition of ZU
may involve some recovery of smoothness) over U, Xand Y .
Note particularly that
€)) U is continuous
(b) £U may be discontinuous (even after recovery)
(c) the goal is to find the speeds U, X,Y
(d) U,X,Y are found in one combined minimisation step.

(Grid displacement is achieved subsequently by a finite difference time-stepping scheme.)
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By contrast, the key elements of the MBF (Moving Best Fits) method to find best L,

fits U with adjustable nodes (free knots) to a continuous function f(x,y) are (again in 2-D)
@) a piecewise linear discontinuous (DPL) representation of the best fit U

(i)  asearch for U and the grid, defined by CPL functions XY

(i)  minimisation of the L, norm of the residual U - f(x,y) over the unknowns UJX)Y.

Note that in this method

(a) U is discontinuous (although X Y are continuous)

(b) f(X,Y) is continuous

(c) the goal is to find the solution and grid U, XY

(@ UX,)Y are found by an iteration procedure, the equations to be solved being nonlinear.

Here the obvious practical disadvantage of using a discontinuous U is offset by the capability
of avoiding the singularities inherent in the MFE method using a continuous U . The

discontinuities are in any case non-zero or small a.e. and easily smoothed to give a continuous

U.

In this report we discuss these two methods, in particular comparing them with an

intermediate method (AFE) which uses the MFE technique to generate adaptive best fits.

2.  Adjustable Finite Elements (AFE)

Consider again the problem of finding the best fit U with adjustable nodes (X,}) to the
continuous function f(x,y), but this time using an MFE-like approach. The ingredients are
() a CPL representation of U

(i)  use of displacements 6U,8X,6Y for which

U = AU +U 48X +Uy8Y @2.1)
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(iii)  minimisation of the norm of a residual which involves AU, the natural choice being

the norm of U +AU - f(X,Y),

ie. lAU -1f (X, 1)-U]. (2.2
The goal here is to find the displacement AU that approximates f(X,Y)—U, which
involves U. The method is therefore to be regarded as an updating procedure, giving
oU,o0X,0Y from known functions U, XY, and it thus has the same iterative character as the
MBF method. By running the iteration to convergence, so that the updates oU,dX,8Y are
driven to zero, a best fit U to X, Y) is found.

Each iterative step is a single combined minimsation step for 6U,8X and 6Y . Note
particularly that, in contrast to MFE, the function f(X,Y)-U to be approximated is
continuous.

The AFE method therefore holds an intermediate position between MFE and the MBF
method. It has the same equation structure as MFE (for each iteration step) but also suffers
from the same drawbacks of MFE, namely the singularities of parallelism and node overtaking,
and therefore needs either regularisation or singularity removal. On the other hand it gives a
useful prescription for obtaining best fits in two and higher dimensions (of which more later).
If it does not blow up, this MFE-like method iterates towards a best fit to  f(x,y) (with
£U,U,X and Y in MFE replaced by f(X,Y)-U,6U,8X, and Y, respectively).

It is instructive to compare the AFE method with MFE and its finite difference time-
stepping mechanism. The validity of (2.1) limits the size of 6U,8X,8Y in the same way that
(1.1) is only accurate for small time steps. For larger steps, accuracy is lost in both the AFE

and the MFE methods. However, in the AFE method this does not matter since it is only the

limit that is required.
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In an implicit implementation of MFE the driving term U of (1.1) is evaluated at

the forward time (thus depending on U, X and Y) and minimisation of the norm of the

equation residual will involve the variation of this term. This is usually ignored in implicit

MFE, however.

3. The Two Step Form of MFE and AFE

Let us now look at the two methods MFE and AFE in more detail on an algebraic level.
As is well-known [1], the MFE method may be written as a two step method in which
the first step is a projection of £U into the space of DPL functions. We shall express this

step as
W = Ppp, Lu (3.1
The second step is to convert the DPL function W into nodal and solution speeds using
U-U,X-UY=W. (3.2)
c.f.(1.2). Applying (3.2) at each node j gives the set of equations
U,"(Ux)ka‘(UY)ijsz, (3.3)
one for each element k surrounding the node j. In the MFE method the values U i X j,Yj

are obtained by a weighted least squares solution of (3.3). There is no iteration in the MFE
method, although, once again, we recall that if the resulting time-dependent ODEs are to be
solved implicitly then U in (3.1) should be evaluated at the advanced time and this can
only be done through iterating on (3.1) and (3.3).

In the AFE method the corresponding form of (3.1) is

W =P f(X,V)-U=V-U, say (3.4)
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for the DPL function SW replacing W . Here V is used to denote the projection of X, Y)

and we note that the corresponding form of (3.3) is
8U, ~(U,), 8X, - (U,), oY, = &%, (3.5)
for each element k surrounding node j, which may also be solved for 6U;,0X;,6Y; bya

weighted least squares procedure. In the AFE algorithm this two step form is iterated to
convergence.
To clarify presentation we shall write A/ and N for U, and U, in future. Then
(3.5) becomes
oU; — My6X,— N,6Y, =W, . (3.6)

The MFE approach to solving the sets of equations (3.6) is to seek a least squares
solution with a matrix weight (for details see [1]). A simplified version which uses only area

A, weighting gives a local MFE method. When applied to (3.6) this procedure gives the

matrix equation

S4,  -ZAM, -Z4N, \(&U, ~3A,5W,
—SAM, EAM?  TAM,N, | &X, |=| -S4,M,W, | (.7
~SA,N, ZAM,N, SAN? \o&v, ) \-z4.N,W,

Provided that the left-hand-side matrix is non-singular, the unknowns U ,,0X ,6Y; may be

obtained quite simply, by for example Cramer’s Rule.
Likewise in the ABF method there are also two distinct steps to each iteration. In the
first step the function fX,Y) is projected into the space of DPL functions, giving V (c.f.

(3.4)). The second step is distinct from (3.5), however, and may be written

Vi + W) 8X, + ) 8Y, - £ (X,.Y)| = C, (3.8)

J2J

where C, is a constant independent of k£ and V, is the value of the discontinuous
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function V' at node j in element k. The new value of U, is then given by

Uy =V + @) 8X, + ¥y, Y, (3.9)
which may be multi-valued at node j. In practice a simple average of the U, can be used to
give a single valued U;.

We see that (3.8) has the same general form as (3.5) but with at least two important
differences, the multi-valued nature of V' and the presence of the modulus signs.
There is also a DPC version of the MBF method which differs from the DPL case in
two respects. Firstly, the projection (3.4) becomes
W =Pppcf(X,1)-U=V-U (3.10)
and is a DPC function. Secondly, the quantities ¥, and ¥V, disappear from (3.8), leaving
V. —f(X,7)|=C,. (3.11)

In future we shall write P,Q for V.,V . Then (3.8) becomes

Ve + BBX; + QY — f (X, )| = C, (3.12)

4. A Strategy for Choosing Between MBF Solutions in
1-D and 2-D

Solutions of (3.12) depend on which sign is taken for the modulus.

It is instructive to consider first the 1-D case for which (3.12) becomes
i+ PoX, - f(X; +8X )| =C, (4.1)

Vi + PrdX ;= f(X, +6X,)|=C, (4.2)
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since k is either L (left) or R (right). There are only two possibilities for the signs, since

either the arguments inside the two moduli have the same sign or opposite signs. In the
former case, removing the modulus signs and subtracting gives

-[PloX,; =[V,], 4.3)
where

[1=0r =00 (4.4)
irrespective of f, from which U, and U, may be calculated from (3.9) (omitting 67 ).
The procedure breaks down when [P]=0. If [P]#0 it follows from (4.3) and (3.9) that
Up,=Upg.

In the other case we remove the modulus signs but introduce a negative sign
multiplying the left hand side of (4.2). Then, by subtraction,

Vi +Vig +(P,+ PR)0X; -2f(X;+6X,)=0, 4.5)
to be solved for X . Inthe this case U, #U, in general but, from (3.9) and (4.1-4.2),

Uy —f(X;+6X,))=-(U ;- f(X;+8X;)) (4.6)
so that a simple average of the U, 's gives the new sampled value f(X;+8X,) itself.

In practice it is often convenient to freeze f(X;) in solving (4.5) for &X,.
Moreover, a useful approximate guide as to whether to choose the solution of (4.3) or (4.5)
for 6X; is also obtained by freezing, namely the signs of the frozen (or lagged) values of
Vie—-f(X,) and V- f(X,) in(4.1) and (4.2). This choice discriminates between
solutions in virtually the same way as in [2], where both node overtaking and parallelism are

avoided. If we adopt this strategy, equations (4.1) and (4.2) may be written

SV +PLoX; - f(X,))=C; 4.7)
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SJL(V[R +PR5Xj _f(Xj)) = Cj

where
s = sgnVy — £(X,)).
Another form of (4.7), (4.8) is
C;=su P8, =V~ 1 (X))
C; = s;xPr8X; =V g = £ (X))
from which
~[s;P16X, = [ - F(X )]
c.f (4.3).
A similar argument in 2-D yields the equations
C; =53 BoX, =5, 08Y, =V = f(X,, 1)

for all elements % surrounding node j, where

s = sgnlV = 1 (X, X)),

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Equations (4.13) may be solved for an averaged solution in the least squares manner of (3.7),

giving

~Z4,s, P, AP IASLPO, | 6X, |=
—SAs, 0 ZASRPQ,  TASO0F )\ &Y,
24,5,V - £ (X, 1)

7’7

—ZAksjch‘ij _f(Xj’)/j)‘ -
_ZAksijk Iij _f(Xj’I/j)‘

When 8X; and JY; have been found, U, is givenby (3.9) and C; is dispensible.

(4.15)
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5. Modification of AFE and MFE Methods

In the same way, the AFE method may be modified to remove its susceptibility to the

parallelism singularity. Writing (3.6) as
oU; - M,0X ;- N,6Y;, =V, -U,
or
VitMOX,+ N, - f(X,,Y)=U,;+0U,- f(X,,}),
c.f. (4.1)-(4.2), the same argument as in §4 leads to modification of (5.2) to
C, =5 M6X,; — 5, N, SY,; = lek _f(Xf’Y;')‘
where, as in (4.14),
sy =sgn{V ~ £ (X,.1)
and

C,=U,+8U,~ f(X,,Y)).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

The set of least squares normal equations for (5.3) are the same as equation (4.15)

with P,Q replaced by M,N. Thistime C, also needs to be calculated to obtain the CPL

function 6U,; from (5.5).

The method is still iterative in that new U, X;,Y, values are calculated and the step is

repeated, as in the original from the AFE method.

From this point it is apparently a short step to a modified MFE method in which V), is

replaced by ), the increments 6U,8X,8Y are replaced by U, X,Y, and f(X,})-U is

replaced by £U . But the MFE method is not iterative, the velocities being obtained in one

step, so there is a significant difference. An iterated MFE method would be one in which
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increments in U, X,Y were calculated rather than U, X,Y themselves. This is consistent

with an implicit time stepping approach. Rather than construct such a method, modify it in the
manner above and then superimpose time stepping on top of that, it is possible to do the time

stepping first and then apply the AFE method. The MBF method is discussed fully in [1].

6. Conclusion

We have discussed a method (AFE) intermediate between the MFE method and MBF
methods and used the latter to construct a strategy for avoiding the singularities inherent in

both the MFE and AFE methods.
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