FINITE ELEMENT METHODS FOR NON-SELF-ABJOINT ELLIPTIC
AND FOR HYPERBOLIE PROBLEMS: OPTIMAL APPROXIMATIONS
AND RECOVERY TECHNIQUES

K. W. MORTON

NUMERICAL ANALYSIS REPORT 7/83

Based on lectures given at the IMA Conference on 'The Mathematical Basis

of Finite Element Methods with Applications to Partial Differential Equations’,
Imperial College, London, S5th-7th January, 1983.




FINITE ELEMENT METHODS FOR NON-SELF-ADJOINT ELLIPTIC
AND FOR HYPERBOLIC PROBLEMS: OPTIMAL APPROXIMATIONS

AND RECOVERY TECHNIQUES

K. W. Morton

Dept. of Mathematics, University of Reading

1. INTRODUCT ION
In this article we shall consider the progress that has been made
in extending and developing the finite element method so that it may be
applied to much wider classes of problems than that for which it was originally
developed. Within the context of stress problems, where engineers originated

many of the early ideas, the method could be based on an extremal principle -

for the strain energy. Mathematically, such principles always lead to self-
adjoint elliptic problems: alternative principles are therefore needed for more

general problems. Some form of variational principle or weak formulation

is usually available but the way forward is less clear-cut and the results can
often be disappointing.

Just as with finite difference methods, it is not too difficult to devise
approximation schemes for quite general problems which will converge as some mesh
parameter tends to zero: one may even achieve the optimal order of convergence.
But the marvellous economy and robustness on coarse meshes, which were key
features of finite element methods in their original context, will be lost unless

rather special steps are taken to preserve the optimal approximation properties

and superconvergence properties which lay behind them.

How this may be done is the prime theme linking the three lectures on which
this article is based. We shall concentrate on essential ideas, giving

references where more details and more specific applications may be found.



Much of the author's thinking is based on work with students and colleagues
which is gratefully acknowledged and which can be only partially referenced.
To fix our notation, 1let us begin by recalling the main properties
of finite element approximations to the following self-adjoint problem for

the real scalar function u: in classical form,

Lu = f in @ (1.1a)

u=g on T du/dn = 0 on T {1.1b)

DJ
where we will assume § is a bounded, open region of IR , with boundary
composed of the two non-intersecting portions FD and PN’ and L is a second

order linear elliptic operator. In weak form, we write this:-

find ueH1

E such that

Alu,w) = (F,w) Vowe Hé i (1.2)
0

where C',°) denotes the usual L2 inner product, H; denotes elements of

the usual Sobolev space H1[Q) which satisfy the essential boundary condition

D and H; denotes the associated subspace of elements satisfying
0

the corresponding homogeneous condition; here the symmetric form A(u,w) can

Uu=g on T

be obtained formally from CLu,w) by integrating by parts and applying the

boundary conditions 9u/3n = 0 on Ty and w =0 on FD. We define the
1
energy norm, ﬂv|]A i= {Alv,v,)}? , (1.3)

its positive definiteness following from the coercivity of A(es,-), i.e.
the ellipticity of L (see below). 1In many fields of application, the basic

physical principles are best expressed in the extremal principle form:-

find u € H; to

minimise  Alv,v) - 2(F,v) over Hé. (1.4}

Variation of this expression clearly leads directly to (1.2).
Suppose now § can be precisely divided into elements, on which a finite

element basis {¢i(§)} can be constructed, and g 1is such that a conforming



trial space SE can be defined as:-

H']DSh

E E T {ulx) = z Uj¢j(5) | U=¢g on FD} s (1.5a)

together with a corresponding test space SB given by

1 h
> 8 1= V(x) = ] Viog(x) | V=0 on Tp} . (1.5b)

Then carrying out the minimisation (1.4) over SE leads to the Galerkin

approximation U to u given by:-

h
E

Ue S such that

ACUW) = (F,W) VW e s, (1.5)

Because of the conforming property, (1.2) is true with W substituted

for w so that subtracting (1.6) from the result gives

Alu-U,W) = 0 YWesS {(1.7)

That is, the error u-U is orthogonal to the test space S in the inner

oI oOT

product defined by A(*,*). Because of the symmetry of A(+,+), the optimal

approximation property of U follows immediately:-

inf
lo-ully = Ve st lu-vila . (1.8)
This is the key property of finite element methods which we wish to carry over into
more general problems: first to non-self-adjoint elliptic operators L, which
we shall do in section 2 mainly by reference to diffusion-convection problems;
and then to hyperbolic problems which we shall treat in section 4.
To appreciate the significance of (1.8), let us suppose L 1is the

Laplacian operator so that A(u,w) = CZp.Zw) and (1.8) becomes

inf
V(u-U)|2do = h v(u-V)|2dq . (1.9)
== V e SE —
0

Suppose also that the simplest conforming elements are used, that is piecewise
linear elements over triangles, with the Uj in (1.5a) corresponding to the

nodal values at the triangle vertices. Then VU is piecewise constant and (1.9)



shows that it is the best such piecewise constant approximation to Vu in

the least squares sense. For practical calculations it is very often the field
Yu rather than the potential u which is of most interest and the piecewise
constant approximation can only be at best first order accurate at most points.
However, we shall see in section 3 that a second order approximation can be
constructed from U because of the superconvergence properties implied by (1.9):
unlike the case of bilinear elements on rectangles, there are no points (such

as the centroid) of each triangle where VU 1is second order accurate and a simple
recovery procedure is needed; moreover, this construction also depends on the

arrangement of the triangles such that exactly six have each vertex in common.

2. NON-SELF-ADJCINT ELLIPTIC PROBLEMS

In weak form and for second order operators, these can be written as in

1

(1.2): find u e HE

such that

Blu,w) = (f.w) Vowe H; ) (2.1
0

where now B(e,+) 1s an unsymmetric bilinear form. The theory is simplest

if we have homogeneous boundary conditions, while of course we wish to allow

for inhomogeneous Dirichlet data in practice, as in (1.1b). Thus suppose

the boundary and the Dirichlet data are smooth enough that g 1is the restriction
to PD of a function G € H1(Q): it is sufficient, for example, that the

boundary is locally Lipschitz continuous and g € L2[FD] - see Ciarlet (1978)
0 1

or any similar text. Then (2.1) can be rewritten as: find u- ¢ HE such that
0
0 0 _ 1
Blu,w) = (*°,w) := (f,w) - B(G,w) ¥ owe He o, (2.2)
0
where u = uU + 6 and we have introduced fD which lies in the dual space
of H; » to be denoted by Hé1n Existence and uniqueness of the solution to (2.2}

0 0
results from the following lemma.



Lax-Milgram Lemma. Suppose B(-,+) 1is a bilinear form on H1(Q) X H1(Q],

where H'(2) 1is equipped with the norm |- | g, and it is

(1) continuous, i.e. 3 a constant K such that

1
[Blv,w)| < K[IvllB [ w ”B Vou,w < HEO ; (2.3a)
and (ii) coercive, i.e. 3 a constant o > 0 such that
Blu,u) 2 aful2 Ve Héo : (2.3b)

Then there exists a unique solution u0 € H; to (2.2) forevery {0 € Hé1.
0 ' 0
.|

(Note that if , is taken from the symmetric part of B(-,-), i.e.

B
2Cu.w)B = B(u,w) + B(w,u) and ||u||% = Cu.u)B, then o =1 and K measures

the asymmetry of B(*,<).)

Although we no longér have an extremal principle from which the Galerkin
approximation can be derived, such an approximation can be defined directly from
(2.1) or (2.2). The latter actually allows a larger class of g to be treated

than that based on (1.5a). Thus we replace this definition by
HY 5 sl = U =6+ V|V e s (2.4)

and then have the discrete problem:- find U € SE such that

BIU,W) = (,W) Ywesh (2.5)

and, just as with (1.7), we have

Blu-U,W) = 0 VW e sg. (2.8)

Unfortunately, instead of (1.8) all we can now prove from (2.3) is the

following: for any V e SN U-v  in (2.8),

E’ setting W

a||u-U||% < B(u-U,u-U) = B(u-U,u-V)

skluuly oyl .

Hence we have

inf
[hrU"Bs(KM]\IGSE lu-vig . (2.7)
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This means that, while the Same order of convergence in the norm || .

] is
) . ] ') B

obtained as in the self-adjoint case, the constant in the asymptotic rate

may be greatly increased: moreover, the crucial Superconvergence properties

are lost.

Diffusion-convection problems

These form an important class of practical problems which illustrate

the difficulties. They are of the following form:
= Ve(aVu - bu) = f in @ (2.8a)

u=g on T., du/3n = 0 on PN. (2.8b)

Here a 1is a (positive) diffusion coefficient and b a convective velocity
field which we shall assume is incompressible (i.e. Veb = 0). The corresponding

bilinear form is
Blu,w) := (aVu, ww) + ¥+ (bul,w) (2.9)

and to ensure its coercivity we assume that PD includes all points of

the boundary on which b*n < 0, so that u 1is prescribed on the inflow boundary.

Indeed, it is easy to see that

B(u,v) = (avu,vu) + ;] (ben)u2ds Y oue H; . (2.10)
r 0
) N
Thus, if aecP(2) and belH (Q)1%, B(+,+) clearly satisfies all the hypotheses

of the Lax-Milgram Lemma.

Suppose we introduce the symmetric farm

B, (u,w) i= (aVu,vw) (2.11)
with associated norm |° B’ and let U; be the best fit to u in this nomm
/]
from the trial space' SE : that is,
h
~]* = .
Bq(u U7, W) 1] Y W e SD" (2.12)

Then for the Galerkin approximation U given by (2.5) we have, comparing

(2.10) with (2.113},



lu-U]3 <Blu-U,u-U) = Blu-U,u-U})
t]
= B,(u-U,u-u) + (b-¥(u-U),u-U%)
1
< + mgx (lo[/a) | a®Cu-up)f 3 .

lu-ulg €lu-usld
B, 118,

From the Aubin-Nitsche duality argument (see earlier chapter on self-adjoint

problems) it is easy to deduce that there exists a constant K, independent

of b, such that

1
la®tu-u)| =< Kh||u—u;||B1 ;
where h is the largest diameter of any element. It therefore follows

that

||u—u||B1 S [1+ k" (|b|/a)]||u—u:|<||B1

This is sharper than (2.7), showing the dependence on element size through

the important dimensionless parameter, the mesh Péclet number bh/a.

A useful simple test problem in one dimension is:

-au''+ bu' = f on (0,1)

u(0) = 0, ul1) =1,

where a and b are positive constants. For f = 0, the solution is

easily seen to be
ulx) = (272 - 17062 - 1

piecewise linear elements on a uniform mesh of size h give the Galerkin

equations for j = 1.2,...,J-1 with Jh =1

-§2U, + (bh/ala U, = 0,
J 07

where we have used the usual finite difference notation GzUj 2= U, - 2Uj

AOUj 2= %[Uj+,I = Uj_1); these have the solution

4, = (uj-1)/(ué-1]. - (2+bh/a)/(2-bh/a).

J 0 u0

(2.13)

(2.14)

(2.15)

(2.16a)

(2.16b)

(2.17)

(2.18)

U,
-

(2.18)



Clearly, the approximation for bh/a > 2 exhibits oscillations which bear

no relation to the exponential solution (2.17) and the error bound (2.15)

is seen to be quite realistic, the K in this case being calculated as 1/w.
These spurious oscillations are a well-known result of the central

differences yielded by the Galerkin method in (2.18). 1In difference methods

they are overcome by using upwind differencing, replacing AOUj by

A___Uj HE UJ.—UJ._1 or by a weighted average of the two. The best-known scheme

is that due to Allen & Southwell (13855) which with the average [1-£]AO + EA_

Can be written as
-[1+%€(bh/a]]62Uj + (bh/a]AOUj = 03 (2.20)

for the choice 1

£ = coth (ibh/a) - (ibh/a)_ (2.21)

we obtain the so-called exponentially-fitted scheme which gives exact nodal

values for this model problems.

Petrov-Galerkin methaods

The first finite element methods to overcome the deficiencies of

the Galerkin method followed similar lines and used different
weight functions from the trial functions ¢j with a view to generating these

Upwind difierence schemes. In general, for a Petrov-Galerkin method we introduce

a test space Tg different from but with the same dimension as the SS of

(1.56): with basis functions ¢jf53» usually over the same elements, we have

H;U ) TE 1= {V(x) =} ijjpz) | V=0 on Irpt (2.22)
Then the Galerkin method of (2.5) is generalised to find U ¢ SE such that
BCU,W) = (F,W) W e T, (2.23)
The important question is "how should Tg be chosen for a given trial space
SE?". In particular, can it be done satisfactorily without reference to the

upwind difference schemes that it might be induced to give on a regular mesh?

There is a large literature concerned with the development of Petrov-Galerkin



methods for diffusion-convection problems and most approaches make some use

of this idea: see, for example, the conference proceedings Hughes (1978). We
shall however follow Barrett & Morton (1980, 1881) and Morton (1982) in basing
our approach on symmetrizing the bilinear form B(-,-).

Suppose BS(°,-] is a symmetric bilinear form giving an inner product

on Hé with respect to which B(.,:) satisfies the
0

hypotheses (2.3a) and (2.3b) of the Lax-Milgram Lemma. Then, for any

and norm °“
B
S

fixed w, B(u,w) is a bounded linear functional of u and by the Riesz

Representation Theorem can be written BS[U,RW] where Rw 1s an element of

H; : indeed, by the linearity of B(-,+) and (2.3), R 1is a linear operator
0

on Hé and we can write
Q

Blu,w) = BS[u,Rw) Yu, w € H; . (2.24)
0

Effectively, R 1is a symmetrizer for B(.,<). Note too that the coercivity

condition (2.3b) ensures that R 4s invertible on Hé . Now for the Petrov-
0

Galerkin approximation given by (2.23) we have, corresponding to (2.8),

B(u-U,W) = 0 VW € TB (2.25)

which by (2.24) we can now write as
Be (u-U,RW) = O woe T (2.26)

The extent to which this leads to the optimal approximation property

of (1.7) and (1.8) is then given by the following theorem.

Theorem (Morton, 1982). Suppose the test space TB has the same

dimension as Sh and that there exists a constant Ael0,1) such that

0
i”ﬁ lv-rullg = lvlg W e sg. (2.27)
WeT S S
0
" . . 0 h 0 -1
Then there exists a unique solution U e S0 to (2.23) for every f ¢ HE
0
and the error between U0 and the solution uO of (2.2) satisfies
-1 1
fu® -0 < 1-a2y72 3™ oo ly ) (2.28)
By V e Sy B

S
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The effect of inhomogeneous Dirichlet data is dealt with as described at

the beginning of this section. The result (2.28) is also shown in the above
reference to include and be somewhat sharper than that of the Generalised
Lax-Milgram theorem of Babu¥ka & Aziz (1972).

This theorem in principle enables an error bound to be calculated for any
Petrov-Galerkin method, so long‘as sufficient knowledge of R is available
for the approximation result (2.27) to be aobtained. WNote that this result holds
for all data f and if (2.27) is sharp then so is (2.28): however for specific
data (2.28) may not be particularly sharp.

This framework also allows two alternative approaches to the task of
constructing effective Petrov-Galerkin methods. The first, conventional, approach
is to construct basis functions wi of Tg in such a way that the constant A
in (2.27) is small but also so as to have local support soc that the stiffness
matrix B[¢j,wi] resulting from their substitution in (2.23) is easily
evaluated and has small bandwidth. Note however that this matrix will be
unsymmetric and the solution of (2.23) correspondingly more difficult thanthat of the

Galerkin equations for a self-adjoint problem. The alternative approach is

based on the ideal test functions w; which are the solution of the equations

RUZ = ¢ Vo, € sg , (2.29)

i

Use of this test space would give A = 0 in (2.27) and yield the optimal

approximation to uO in the norm, i.e. that which achieves the infimum

|
Bs

on the right-hand side of (2.28): so we would have completely achieved our

original objective. Moreover, the Petrov-Galerkin equations (2.23) could then

be written for this U* € Sg as

h

0 (2.30)

By (U*,¢,) = Cf,w;) - B(G,¥}) Vo, €S

where as before G is the extension of the boundary data. These eguations
have the practical advantage of being symmetric: indeed they are the same as the

Galerkin equations for a self-adjoint problem corresponding to BS[-,-J. What
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remains is to approximate w; sufficiently well for the right-hand side
of (2.30) to be calculated to adequate accuracy. This is a linear functional

of ¢i which we will write as

F*(9,) := Cf,R'1¢i) - B(G.R'1¢il Ve, € sg . (2.31)

Suppose now that this is approximated by F[¢i], an approximation for which

we can establish the error bound
[Fev) - Fran| = 8 v lg YV € sg . (2.32)
S

Then the corresponding approximation U0 to uU is given by

0 ) h
Bg(U,9;) = F(4,) W € S (2.33)

and clearly satisfies

||u*—u0||éS = [Freue-u?) - Feo-u®| s s flus-u? |l (2.34)
5

There results, using the optimality property of U¥*, the error bound

JC-1012 s [lu@us iz + 82 . (2.35)
B B F
S S
That 1is, we have a term added to the optimal error estimate as compared with
the multiplicative factor of (2.28); and, moreover, this term can be determined
for specific data. Note that a data independent error bound may also be

obtained if required but that it will still be additive: for example, suppose

F(¢i] is computed through a linear operator T: SB > H; , approximating R-1,
0
Fle,) := (£.7¢,) - B(G,T¢,)
= Bu?,7¢,) = B.(u’,RTe,) s (2.36)
R | S i ‘
then we have
[Fw) - Fovn| = |Bgtu”s RTV - W)
: 5,0 - gh
sltz-rRM)*10 I 0l v I w e s . (2.37)
BS BS 0

where (RT)* is the adjoint of RT in the inner product BS(°.°).
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Application to diffusion-convection.

We conclude this section by cutlining the application of these ideas to the
diffusion-convection problems given by (2.8) and (2.16): more details can be
found in Barrett & Morton (1883) and the references therein. The operator in

(2.8a) can be factored to give

* =
L1L2u f, (2.38)
where
i) 1 1
L1v 1= a’vv , L2v 1= a’Vv - (b/a’)v

and L: is the formal adjoint of L1° This suggests two distinct symmetric

bilinear forms, one based on L1 and one on L2. We have already introduced
the former and called it 81(-,°J in (2.11): we now define the second choice
by

(avv,vw) + ((b%2/a)v,w) (2.39a)

B, (v,w)

(L_v,L_w) + J (ben)vwds. (2.39b)
2 2 r

Let us denote by R1 and R2 the Riesz representer in (2.24) and by A1

and A2 the smallest constant in the approximation estimate (2.27)} in these two
cases. Then a little manipulation shows that these constants are given by the
following discrete minimisation problems:

[ viBTa "By
1-p2-mne="" =L
ml vicy

m=1,2 (2.40)

where the matrices A,B,C have components given by

Ajs = BRIV R ¥,)
Byy = Bpleg R ;) = Bo,,9,)
Cjy = Bl4;.95)
T ¥ h
and Vo= Vs Vh VoS ; Vio; € Sp
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For the model problem (2.18), these have been calculated explicitly for
several test spaces and piecewise linear trial spaces by Scotney (1982).

Symmetrization with B1(',°)

In one dimension with constant . a, the best plecewise linear fit in the norm

B 1s exact at the nodes. Thus it is natural to analyse methods based on
1

finite difference arguments under the norm. The Riesz representer R

s

1
1
for the model problem (2.16) can be written explicitly as
x —
(wa][xJ = wlx) + [b/aJJ (wlt) - wldt, (2.41)
’ 0
where w = J w(tldt, which shows its non-local character. For the same problem
0
the earliest upwind test functions were those due to Christie et al. (1876) and
Heinrich et al. (1977): if ¢i(x] are the piecewise linear basis functions,
typical of such test functions are
wi(x] 1= ¢i[xJ + aoi[x] (2.42a)
where
3lx-x, _, ) (x,~x)/(x,~x,_,)? X, . S XS X,
ci[x):= e ol i i * (2.42b)
= = = - <
3[xi+1 x) (x xi]/(xi+1 xi] X; & x & X3 1

On a uniform mesh, setting the parameter o equal to & defined in (2.21)
leads to the Allen & Southwell difference operator.

With variable coefficients local values of o are used and, in two
dimensions if bilinear elements on rectangles are used, the trial basis functions
are the product ‘functions ¢i(x)¢j[yl which are matched with product test

functions ¢i(x]¢ {(y) with the two parameters o based on the x and vy

J
components of b.

An alternative approach is that due to Hughes & Brooks (1979, 1882): their

streamline diffusion method starts from regarding the Allen & Southwell scheme

as written in (2.20) as enhancing the diffusion in the direction of the flow
vector b. Thus the scalar diffusion coefficient a of (2.8a) is replaced

by the tensor diffusivity with components

AZm = a Glm + a bz bm (2.43a)
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where ol = %(£1b1h1 + £2b2h2] (2.43b)

and b are the components of b along the sides of a rectangular element

1785
of sides h,],h2 g 61,52 are corresponding values of the parameter (2.21). If
this modified operator is used with the Galerkin method and bilinear elements,

it can be shown that it is equivalent to using a Petrov-Galerkin method with the

test functions
¥ = ¢ + (a/|b|®)beve . (2.44)

These are discontinuous and therefore non-conforming elements. So the terms

in the bilinear form corresponding to (az¢'2W) have to be evaluated element

by element and also the error analysis leading to (2.28) does not strictly apply.
Nevertheless evaluation of (2.40) for these two test functions (2.42) and (2.44)
does show how effectively these Petrov-Galerkin methods overcome the deficiencies

of the pure Galerkin method. The results obtained by Scotney (1982) are given

in Table 1.
bh/a Galerkin Heinrich et al Hughes & Brooks
2 1.1547 1.0060 1.0924
5 1.7559 1.0468 1.1508
50 14.468 1.2022 1.1547
500 144 .34 1.2344 1.1547
105 28868 1.2383 1.1547

TABLE 1 : Ratios of Petrov-Galerkin error to optimal error given by

-1
(1—A§J * - gee (2.28) and (2.40).

The optimal test space for the model problem under B1[°,°) was used by
Hemker (1977), though derived in a different way and with a local basis.
The inversion of R1 to calculate the w; of (2.29) gives rise to rather
awkward exponentials which are difficult to handle in the formulation (2.30):

but Hemker's test functions are quite simple in form (though still difficult

to evaluate), namely
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[1_e-b[x-xi_1)/é/{1_e-b(xi—xi_1]/a] Sy Pty 5N
wi(x] He (2.45)
[e-b[x-x;]/a}_ e—b(xi+1-xi]/a] [1_e-b(xi+1—x1J/a],

These again give rise to the Allen & Southwell difference approximation

to -au"™ + bu' but now sample the right-hand side - f of (2.16a) so as to

always give exact nodal values. Unfortunately it is much more difficult to extend
these test functions into two dimensions and this has not yet been satisfactorily

achieved.

Symmetrization with B_{°,°)

With its lack of dependence on b/a it is not clear that is an

|
By

appropriate norm, especially for singular perturbation problems. The alternative
bilinear form BZ('.°) defined in (2.39) has therefore been used by Barrett &

Merton (1980, 1981, 1983) in their work. For the model problem, R+ﬂ now has a

2
gsimplerfoerm than R2. Thus the solution of (2.29) can be writtem explicitly as
1 -bt/a
* = - C
wi(xJ ¢i[xl + (b/a) Ix[¢i[t] ce ldt, (2.46)

where the constant ¢ 1s such as .to ensure that w;tﬂﬂ = 0. Moreoverrit is
gpasy to use the symmetric form of the equations given by (2.30) which becomes

- -b/a
B,(U3,¢,) = (f,.¢,) - obluld) - e ~"“unl (2.47)

where

f(x) + (b/a)IF(x) - F1 , (2.48)

f2(x]

Fix) = fxf[t]dt and F is the average of F with weighting function
e-bX/a. These formulae are generalised to variable coefficients and Neumann
boundary conditions in the above references where examples of their use are
given as well as sharp error bounds of the form (2.35): see also Rheinhardt
(1982). In two dimensions it is unlikely that R;1 can be calculated

explicitly and various approximate approaches have been tried: several work

well for limited classes of problem but at the moment a direct approach to

(2.30) appears to be the most generally successful.
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A distinctive feature of the optimal piecewise linear approximations in

the

|B norm obtained by these methods is that steep boundary layers
2

appear as damped oscillations at the mesh frequency. This is because for

B tends to the L2 norm. How sub-gridscale
2

information can be recovered from these results will be discussed in the next

S
large Peclet numbers

section.

3. SUPERCDNVERGENCE AND OPTIMAL RECOVERY

As we have seen, one of the main features of a finite element approximation
is its optimal, or almost optimal, approximation property in an energy norm,
as in (1.8) or (2.28). We then have the problem of recovering from this
pointwise estimates of the solution u or its derivatives. Clearly one could
use corresponding point values of the approximation U or its derivatives.
This is seldom very efficient, for one usually has more a priori knowledge of u
than was used in constructing U - such as extra smoothness - and by using this
one can achieve much more.

As a simple starting point consider the trivial problem :-
-u"=f on (0,1 with u(0) = u(1) = 0. (3.1)

Let U(x) = X Uj¢j(x] be the piecewise linear Galerkin approximation on
a non-uniform mesh with points Xj’ Then the Galerkin equationg (1.7}

reduce to

I1 A_ej A—Ej+1
(u'-U")¢'dx = 0, 1i.e. - =0 , (3.2)
0 . . J A_X. A_Xj+,|

because ¢3 is piecewise constant, where ej = u(xj] = Uj' It follows from
the boundary conditions that Ej = 0 Afor all j so that U has exact nodal
values: note that this requires that the integrals in CF,¢j) are evaluated
exactly. To obtain values of u at intermediate points interpolation may be
used: linear interpolation just reproduces the corrésponding values of U; but
if the smoothness of f implies continuity of higher derivatives of u, higher

order interpolation using more nodal values will give greater accuracy - or at
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least a higher order of accuracy. Interpolation theory also indicates

how the derivative of u may be recovered to any order of accuracy allowed

by its smoothness. Clearly U' itself is only first order accurate at

most points: but it will be second order accurate at the mid-point of each

interval - the simplest example of the phenomenon of superconvergence.
Another way of looking at the pointwise superconvergence of U, and indeed

that which led Hemker to the test functions (2.45), is the following. For

the problem (2.1) define the adjoint Green's function GE by

= 1
B[V,GEJ = Caé,v) Vv E HE0 , (3.3)

where GE is the delta function centred at ¢£. Then if U 1is the Petrov-

Galerkin approximation given by (2.23) and (2.25) we have

u(ED - UCE) - BLu-UGy)
= BLu-U, G, -W) WW € T (3.4)
Thus from (2.3a) we get,
lu®) - U@ sk flu-ullg ||[3£-w I, wie TE. (3.5)

In the case of (3.1), B(e,*) is symmetric and we use the Galerkin method with
piecewise linears: the crucial fact is that GE is also piecewise linear,
with a change of gradient at £. Thus if & 1is a node, Gg can be exactly
matched from Sg = TE and U(G) 1s exact. For the model problem (2.16) the
Green's function has exponential form and this led to the choice of test
functions (2.45) to obtain exact nodal values.’

In two dimensions (or for more complicated problems in one dimension)
both of these arguments break down and one cannot achieve exact nodal values:
the best piecewise linear fit in the Dirichlet norm (1.8) no longer interpolates
at the nodes; and the Green's function is no longer piecewise linear. But much

of value can be achieved, especially for the gradients or fluxes, by pointwise

sampling.
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Superconvergence of gradisnts for Poisson's equation.

For a dozen years or more use has been made of the experimentally observed
fact that for bilinear elements over rectangles the gradient has exceptional
accuracy at the centroid of each element. Subsequently in a series of papers
Zlamal (1977, 1978) and LeSaint & Zlamal (1879) have shown rigorously that
the bilinear element is superconvergent at the centroids and that similar
higher order elements are superconvergent at corresponding Gauss points:
moreover, this is true for more general self-adjoint equations and for mildly
non-rectangular guadrilaterals. Meanwhile various corresponding results have
been hypothesised for linear elements over triangles but nothing had been
established clearly until quite recently. Now in a report which has yet to be
published Levine (1883) has clearly set out the true situation. His results
provide a good illustration of the recovery problem in a relatively simple
situation: the methods of proof that he used are based on those of Zlamal so
we begin by outlining these.

Consider the approximation of Poisson’'s equation using bilinear elements
on rectangles of diameter h. Let u be the exact solution and uI its
interpolant by bilinears. Then writing a(u,w) for CZP'EW) the first

result to be established is that, for some constant &y

atu-ut,w) s cn? YW € sg , (3.5)

lulg,q Wl o

where denotes the pth Sobolev semi-norm over [L2 norm of all

15,0

pth order derivatives). This is established through use of the Bramble-Hilbert

lemma as follows: define the following linear functional for functions U of
the local co-ordinates (£,n) over the unit square S on which W is
bilinear,

F(Q) := J aE(G—GIJaEdedn ; (3.7a)
S
then it is easy to see that

[F(D)| s [:||G||?”S|la;;v"u||0,S (3.7b)



where

[ “p g denates the pth Sobolev norm over S; moreover, a little
computation enables one to show that for any quadratic polynomial over S
we have

F(q) = 0; (3.7¢)
it is then a direct result of the lemma that

|F(y] s c |'[a£w||c],S . (3.7d)

lcj|3,S
The required result (3.6) can then be obtained by scaling and summing
over all rectangles. We next use this result with W = U - uI, where U
is the Galerkin approximation satisfying (1.7), to obtain

]U—ullﬁ q = a(U-ul, u-u?) = atu-of, u-u®)

A

2 I
Ch IUIS,Q | U-u l1,9
: I _
i.e. |U-u |1‘Q < Chzluls'n . (3.8)

Thus U is an order of magnitude closer to uI than it is to u, in the energy
norm.
Suppose now that DP is a sampling operator at a point P, for instance
for the derivative ax at the centroid of a rectangular element R. Then by
a similar argument to the above, using the Bramble-Hilbert lemma and a computation

for quadratic polynomials, one can show that
|p (u-uh)| 5 Ch|ul| ; (3.9)
P 3,R

Finally, by writing DP(u—UJ = DP[u-uI] + DP[uI—UJ, using both (3.8) and

(3.8) and summing over all rectangles Rj in ® we obtain

1
2 1213 2
Liph IDPj(U WIFI* s en®lulg o (3.10)

This holds for 8x at points on the vertical bisector of each rectangle and
for By at points on the horizontal bisectors: hence it holds for the gradient

at the centroids and so confirms the superconvergence phenomenon in this £, sense.

2

For linear elements over triangles, Levine (1983) has shown both

theoretically and numerically that there are no points where the gradient is
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superconvergent. However, suppose the triangulationh is such that there are six
triangles per vertex and the triangles can be grouped in pairs to form parallelograms
with vertical diagonals and also in pairs to form parallelograms with horizontal
diagonals. Then he has proved the conjecture of Strang & Fix (1973, p. 169) that
the derivatives along the edges of the triangles are superconvergent at the
mid-points. Moreover, he has shown that the average of the normal derivative

in the two triangles either side of an edge is also superconvergent at the mid-
point. Thus the gradient can be recovered to second order accuracy at the edge
mid-points by this very simple device: averaging between the three mid-points of
a triangle will also give the gradient to second order accuracy at the centroids.
The proofs of these results follow similar lines to those of Zlamal, outlined
above, but more constructive methods than the use of the Bramble-Hilbert lemma
give sharper bounds for several of the results. Numerical experiments confirm
the practical value of the results and the’ importance of the triangulation giving
six triangles per node. The regularity of the mesh can otherwise be considerably
relaxed and there is some hope that similar results can be proved in the

supremum norm.

It is interesting to note that the recovery procedures described above,
followed by interpolation, will often coincide with the use of divided
differences of the Galerkin approximation as advocated, for instance, by
Long & Morton (1977) and Thomée (18977). The analysis of the first reference,
however, though also covering quadratic elements was essentially limited to
regular meshes: that in the latter did not cover linear elements. Finally,
before leaving this topic we should notecomplementary results of Douglas,

Dupont & Wheeler (1874) and Wheeler (1974) for recovering the normal gradient
at a Dirichlet boundary, which is often of very great practical importance:
indeed, the procedure whose superconvergence is established in this reference
was proposed for calculating boundary fluxes in heat-transfer problems by

Wheeler (1973).
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Optimal recovery

In their seminal paper, Golumb & Weinberger (1958) explored many of the
basic ideas of optimal recovery which are pertinent to finite element methods:
see also Micchelli & Rivlin (1876) for a more recent survey. The general situation
is as follows: we are given the values of n 1linear data functionals
F1(u], F2[u],..., Fn[u] of an unknown function u togehter with some (non-linear)
constraint on u, such as |u|p £ K; then the problem is to define an optimaf
estimator for another linear functional F(u), that is one with a minimal a
priori error bound. As applied to finite element methods, the ideas are related
to that of the hypercircle (Synge, 1855). For consider the problem (1.2}, but
with homogeneous boundary data, for u & H1 : the Galerkin approximation U

Ba

of (1.5a), (1.6) is determined from the data functionals
= = h |
Fi[u) §= A(u.¢il <f.¢£> V¢i € S0 3 (3.11)
and it is easy to check that it coincides with the centre u of Synge's
hypercircle defined by
= - 1 N . <h
Il = inf dlvll, | VGHEU s.t. Alv,9.) = (£,6,) Vo, €5} . (3.12)
Now suppose F(u) 1s to be estimated and define y by
- 1 _ ) h
F(y) = sup {|F(v)|]|v € He s.t. |[v]| a1 Alv,9) =0 Vb, € sg} - (3.13)

0

Then F(U) 4is an optimal estimator of F(u) with

IA

[Fea) - Fad|® = [FOnd|® Cllufl 3 - (Ul Zl, (3.14)

given that the constraint on u 1is of the form || ul| A £ r. This bound is

sharp with F(U) 1lying at the centre of the range of possible values for F(u)
obtained by taking u = U + a[rz-IIUH Z]g' with Ial £ 1. It is important to note
that although § depends on F, U is guite independent of the linear functional
to be estimated.

For example, consider the one-dimensional self-adjoint problem

-{pu*)' + qu = f on (a,b)
(3.15)
with ula) = u(b) =0
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and p > 0, g2 0. Suppose we wish to estimate u(g) =: F(u) for
g€la,b). Then it is easy to check that y is the difference G(x,g) - Gh[x.gl

of the Green’s function from its best fit from Sg, We then obtain
|utg) - Ug)|? s [G(g,E) - Gh(g,gJ][||uH 2 - Ml ;], (3.16)

which is actually the same as (3.5) in this case. When the trial space is
piecewise linear, one can deduce that the nodal values are optimal sampling
points (in the sense of giving a minimal error bound) although in general
one will still obtain only first order accuracy unless stronger smoothness
hypotheses are made on u than merely the boundedness of ||u“ A this
indicates how singular was the situation of p =1, g = 0 covered by (3.2}.
This last point also shows the limitations of this framework: for it is
not clear how one can exploit any greater smoothness, that u is known to
possess, in the estimation of F(u); we shall take this up in the next sub-section
on defect correction. In the meantime let us consider the other extreme,
appropriate to the diffusion-convection problems of section 2 and the hyperbolic
problems of the next section, where the solution u may be far from smooth
and typified by |g| >> |p| in (3.15). The Galerkin approximation to (3.15)

gives the best fit from the trial space Sg = span {¢j} in the energy norm
b 1
{Ja (pu'? + gqu®)dx}?; (3.17)

in the limit p + 0 this becomes the weighted L2 norm. For the recovery
problem in this 1limit there are two natural sets of data functionals, the

moment functionals

M b

Fi(u] t= Jaqu¢idx (3.18a)
and the point functionals given by the nodal parameters of the best fit

Foew := u,. (3.18b)
1 1

Barrett, Moore & Morton (1983) consider the local recovery problem for both

types: that is, the problem corresponding to classical interpolation of

approximating u from n consecutive values of either (3.18a) or (3.18b).
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They show that for piecewise linear ¢i there exists a unique (n-1)th degree
polynomial Pn-1 with the same set of data functional values and that if

u € H'(I) then
lutx) - P, (x)| s ch”|ul ; x € I, (3.19)
n-1 n,I

where h 1is the maximal node spacing and I is the union of the support of

the basis functions ¢i which are involved. Moreover, if u € H;+1 there are
n points of superconvergence in I where an extra order of accuracy is
achieved. These results generalise and extend those given by Bramble & Schatz
(1977). As a particular case they include the following well-known result: for

n=23,9=1 and on a uniform mesh, the parabola which has the point functionals

Uj—1’ Uj and Uj+4 yields the superconvergent recovery result
1 1 g (i)
= =— < —_— :
Iu(le 2 [Uj—1 + 1DUj + Uj+1]| £ 360 h*[u ™. (3.20)

Such local recovery formulae are of great practical value in extracting the best
results from Galerkin approximations and have been used by a number of authors.

They hold also for p # 0 so long as p/q = 0(h®): thus they apply to the

norm of (2.39a) used by Barrett & Morton (1980) in the diffusion-convection

I
B2

problem, for any moderately large mesh Peclet number; these authors also used
special formulae based on exponentials rather than polynomials for recovery of
boundary layers much narrower than the mesh spacing.

Defect correction

®
For general p,q in (3.15), however, local recovery is not possible:
and direct global recaovery would often be prohibitively expensive. So consider
the following approach based on assuming that u € H?(a,b). Introduce the bilinear

form

- b
Alv,w) = J (pv" w' + gv'w')dx (3.21)
a

and the representers xi of the data functionals F? in this form:-

b -
FT[U] 1= Ia (pu'¢£ + qu¢i]dx = A(u,¢iJ = A[u,xi), (3.22)
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where we will take the ¢i as the piecewise linears. Then applying
the hypercircle result to this form, the centre of the hypercircle for the
optimal estimation problem in which the FT[u] are given is an element

~

U in the span of these representers given by

Aty - U, ¢,) Vi, (3.23a)

n
o

1
o

e Alu-Uy) vi. (3.23b)

That is, we have a Petrov-Galerkin approximation in the original bilinear
form A(e., =) which is also a Galerkin approximation in the new form A(°,°).
When p and g are constants it is clear that x{f= -¢i and hence that the

X; are natural cubic splines: thus from an error analysis of either (3.23b)

or of (3.23a) (using the theorem of (2.27) and (2.28) we find that L achieves
fourth order accuracy when u € H“(a,b).

Now solving either of the forms (3.23) directly is a completely separate
computation from calculating the piecewise linear Galerkin approximation U,
5o instead we consider the calculation of G as a recovery operation: it is
more convenient to use cubic splines even for variable p,q so we define a
natural cubic spline uc by

AlU - UC,¢iJ = Alu - u°,¢i) =0 Vi (3.24)

(3.24}
u%ca3 = U°(b) = o.

Let P be the nodal interpolatory mapping from piecewise linears to natural
(2

cubic splines. Then we define the iteration for piecewise linears U by
A(u(“*1],¢i1 - A(u[“],¢il - apu®) - % vi
(3.253}
ey = 0 - g,
with U(D] = U. The last term of (3.25) can be rewritten as

acputt .¢ ) - (.4,

which reveals its role as a 'defect’ in the calculation of the Petrov-Galerkin

approximation u® to u and (3.25) as a defect correction technique.

In Barrett Moore & Morton (1983) it is shown that the convergence factor is
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0(h) 4if p' € Lm[a,b) and 0(h?®) if p 1is constant. Thus one or two
iterations, which we note involve only the original stiffness matrix
A[¢j.¢i) for the piecewise linears, are sufficient to obtain the full fourth

C
order accuracy of U .

4. HYPERBOLIC PROBLEMS

At first sight hyperbolic problems offer an unpromising field for the
use of finite element methods and, indeed, finite difference methods continue
their domination in practical problems with perhaps the strongest challenge
at the moment coming from spectral methods. This inauspicious prospect is
because of a lack of useful variational principles and the fact that many of
the phenomena are local in character and less suitable for global approximation.
To accentuate the difference from elliptic problems we shall exclude from our
consideration the sort of steady hyperbolic problems that occur in supersonic
gas flow. Thus we shall assume that the time t is one independent variable

and consider first order systems of the form

u, + Ll =0, (4.1)

where u = g(g,t] is a vector of unknowns, the subscript t or the operator
Bt denotes partial differentiation with respect to t and L is a (generally
non-linear) operator involving the first order spatial derivatives.

Then the first choice is whether to use finite element approximation in
time as well as space. We shall not do so but use finite differences in the
time variable. This is partly for simplicity and flexibility: but it is mainly
because with finite elements we seek approximations which are optimal in an integral

norm and this would seem to be more appropriate in just the space variables

rather than in space-time. We shall moreover concentrate on one-step methods

in time and indeed, mainly on the explicit Euler method, with which much can be
achieved: the methods derived can then be extended to implicit methods or, by

predictor-corrector or Runge-Kutta schemes, to higher order methods. We
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shall say little about boundary conditions in this sectilon.

Petrov Galerkin methods

These have been widely used to overcome the disadvantages of

pure Galerkin methods, just as with non-self-adjoint elliptic problems.

Thus at time-step n we write the approximation as

n _ n
u'(x) = z(j)gqujty (4.2)

in terms of trial space basis functions ¢j(§). Then the Petrov-Galerkin

method for (4.1) based on Euler time-stepping and test space basis functions

wiLé) has the form

n a .
(=3 * LW, vey) = 0 Vi, k (4.3)

where the vector e has a single unit component in kth position.

(K)

The Galerkin method, with wi taken as ¢i’ has advantages for small At:

if L(e) is a conservative operator, that is (L(g],g) = 0 so that the L

2

energy ||9H2 is conserved this same property is retained for |Ig||2; also
as At » 0, the Galerkin equations can be regarded as giving the best L2

fit to atg when L(g”) is known. However Galerkin methods generally

have very poor stability properties as well as poor accuracy for moderate

values of At. For example, for the linear advection equation with L(u)

replaced by adu/dx, just as for (2.16), (2.18)} we obtain a central difference
approximation scheme and with explicit time-stepping this is stable only
for At = 0(h?%).

The linear advection problem is a natural model problem for the development
of more effective test functions and most of those described in the literature
owe something to the idea of upwinding. On a uniform mesh the key parameter
is aldt/h, the CFL number (after Courant, Friedrichs and Lewy): if this has
an integral value, clearly the solution can be exactly advected on the mesh.
This is a particularly pertinent property within the framework that we have
taken, and is usually satisfied by difference methods but not by Galerkin

methods. Thus the unit CFL property was taken as a specific objective by
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Morton & Parrott (1980) in devising a variety of Petrov-Galerkin methods.
It would be inappropriate to describe their results in detail here and we
give merely a flavour. For linear ¢j in one dimension and various time-
stepping schemes they found special test functions Xg with the unit CFL

property and then for scalar problems set
wi[xl = (1 —v]¢i[x] + vxi[x) (4.4)

where v is determined from the CFL number. With the Euler scheme this
gives a method close to but more accurate than the well-known Lax-Wendroff
difference scheme: with Crank-Nicolson it gives a third order accurate scheme
and with leapfrog one of fourth order. The methods also extend to systems of
equations.

However, Morton & Stokes (1982) found that some properties were difficult
to extend into two space dimensions. While the unit CFL property could be
retained with bilinear elements on rectangles it could not be made to hold along
all the edge directions of a uniform triangular mesh when piecewise linear
elements were used. Alsoc the test functions Xi are discontinuous and in the
case of the Euler scheme do not span the unit function: thus even the
conservation of the first moment Iudx is lost. The attention of this author has
therefore shifted to the Characteristic Galerkin methods described below.

Euler Characteristic Galerkin (ECG} methods.

These make more explicit use of characteristics. Consider the scalar

conservation law in one space dimension (on the whole real line)

(4.5a)

1]
o

Btu + 8xf(u)

= (4.5b)

i
o

atu + a(ulaxu

where al(u) = 3f/3u. Then u is constant along the characteristics dx/dt = a
so that if we write u"(x) for ulx,nAt) and use a similar notation for f and

a, we have for smooth flows

un+1[y] = u"(x) where y = x + a"(x)At. (4.8)
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Thus the L2 projection of un+1 onto the trial space Sh spanned by

{4} 1is related to that of d" by

J un+1[y)¢i(y)dy - J un(x]¢i(dex

-0 -0

n+*1l n
CU -y )¢i)

00

[ dy
= J u (x][¢i[y] I ¢i[x)]dx

( n d y

= J u(x) [ a;-Jx¢i(z]dz]dx

[ y

==1 3 _u (x) [J ¢.(z)dzldx:
X i

X

— 00

that is, we have the exact relationship for the true solution

n+tt _ n n _ ~ <h
(u ue) + at(e f .¢2) 0 Vo, €S (4.7)
SIS B 1 x+a" (x)At
@i[x] B Sem—— I ¢i(szz i (4.8)
a (x)Aat “x
This form strongly suggests the following basic ECG method :-
Wt - ue.) + at(e fu™, 62) =0 - Vo, € s, (4.9

where 52 has the same form as @2 in (4.8) but with a" replaced by

a(U™). This method in effect exactly traces the evolution of u" (x) through

one time-step, as given by the relationship (4.6), and then projects this onto

Sh. However, it is implemented like a Petrov-Galerkin method, from which it is
distinguished by the fact that the time difference involves a Galerkin inner
product (and hence only symmetric equations have to be solved) while the spatial
operator is combined with a test function directly derived from the trial
function. The fact that the derivation of 52 involves only an averaging process
means that it may be very efficiently approximated. Several approximations

when the ¢j are piecewise linear are given in Morton (1982b) for the CFL

number range |aAt/h| = 1: these reproduce the results of (4.9) when a is

constant and one of them involves evaluation of only the same inner products
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used in the Galerkin method if the product approximation scheme is used

for Bxf, namely
ny, . N,y
3 FLUT) = Z(j]f(Uj]¢j . (4.10)

In the same reference, it is also shown how (4.9) extends naturally into more
space dimensions: one then has a flux vector f(u) and a characteristic velocity

vector a(u) = 3f/3u so that (4.8) is replaced by

o"(x) =

1 zfan(x]At
o J

¢, (2)d, (4.11)

la"(x)|at 7 x

integration being along the straight line between x and x + gh[i]At.

It should be noted that in principle there is no stability limit
for (4.9). Indeed, since if the terms in (4.9) are evaluated exactly the
only error is at the projection stage, the least error is committed in going
from t =0 to t=T if one large step At = T is used! This is not very
practical of course because for a system of equations the characteristics will
be curved, the simple relation (4.6) will not hold and shocks will often intervene
to destroy the basic assumption above that the solution is smooth. However,
for conventional time-steps, with CFL numbers of the order of unity, these
methods are extremely accurate,piecewise linear elements giving third order
accuracy for instance. And when they are written out in terms of nodal
values they show many relationships with high accuracy difference methods.
These relationships and a detailed analysis of the basic ECG scheme will be
given in Morton (1983b). Here we point out just one such set of links.
Suppose that in deriving (4.7) and (4.9) we used a mixed norm instead of the

L2 norm, i.e. the inner product

(u,v) + YZCaxu,axv) (4.12)

for some constant Y. Then, as for (4.8) with piecewise linear ¢j on

a uniform mesh and aAt/h € (0,1), the corresponding special test function has
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support over three intervals [xi-2'xi+1): however, if y?2 = -%-(aAt]2 its

average value over (x, ) is zero and it can therefore be approximated

i-2"%1-1

by ¢, + taAté!, which gives the same scheme if a is constant. The resulting
i i

scheme is then one of the Taylor-Galerkin schemes given by Donea (19682), which

were derived in an entirely different manner, and in turn is equivalent to the
EPG II scheme given by Morton & Parrott (1980) which was derived as indicated
above in (4.3) and (4.4). Indeed, all of Donea's schemes can be derived in a
like manner from the Characteristic-Galerkin methods.

Much more yet can be derived from the basic formulae (4.7) and (4.9).
If U" is the best fit to u" from Sh in either the L2 norm or the mixed
norm derived from (4.12) any further knowledge of u" (derived for example from
studies of the original differential equation (4.5)) can be exploited through

the recovery techniques discussed in section 3. Thus suppose this further

information is incorporated in a recovery function a" which in the L2 case

satisfies
@" - uMe) =0 vo, € s" (4.13)
Then (4.9) can be replaced by
! - u“,¢i) + At (axf[J“),ég) =0 v, € s", (4.14)

~

where ¢2 has the same form as @2 in (4.8) but with a" replaced by

a(u™). For example, if u”"  is smooth enough one can as in section 3, cf. (3.24),
recover from piecewise linears to cubic splines. More interestingly, this
enables one to use the non-conforming piecewise constant basis functions:

as is shown in Morton (1983b) for the linear advection problem with constant a,
guadratic spline recovery from piecewise constants yields through (4.14)

a formula identical to (4.9) with piecewise linears. There is in fact

a whole hierarchy of similarly related Characteristic Galerkin methods

based on splines.
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Piecewise constant ¢i are a natural choice for shock-modelling and
their use in connection with (4.13) and (4.14) has been explored in
(Morton, 1982c¢)}. Clearly the basic ECG scheme (4.9) is not defined when
u", fU™ and a(U") all have discontinuities at the cell boundaries which
we can take to be at xi+%. This is true even for smooth flows: but we can
then spread the discontinuities by a linear variation over 16h either side

of x to join constant values Gi and u. either side; then it is

i+l i+
1

easy to see that on a uniform mesh (4.13) gives

u, + %—625. = U, Vi. (4.15)

For sufficiently small 6 and if alu,

), alu.) and af(u, ,) are all
i-1 i

i+

non-negative, we also find that (4.14) reduces to

net T8 hoey . -
h(U u;jd + At [A_flu;) + T AL 6%u;l =0 vi (4.16a)
1.6, uf™t = T - cat/nda_r@d)) Vi. (4.16b)

Clearly as © > 0 it reduces to the familiar first order upwind scheme:
for O > 0 1it has a similar form in (4.16b) but from (4.16a) it is seen

to incorporate an anti-diffusive flux, as in many modern difference schemes;

in fact it can be seen from (4.15) that it is the recovery process that is
gharpening up the profiles broadened by the averaging process which is
presumed to have led to Ui'

Regions of smooth flow are recognised by characteristics not crossing,
typically that is a(ai_1l < a[ai]. On the other hand a(ﬂi_1) > a(ﬁi]
will lead to crossing of characteristics and the breakdown of (4.6) because the
mapping from y to x 1is not unique. Even if recovery by a smooth function
were appropriate in this case, (4.14) would not describe the exact evolution
of U" followed by projection: instead it gives the projection of the multi-
valued solution produced by the crossing characteristics from (4.61}. The

resulting approximation was used successfully by Morton (1982c) to model

breaking waves but of course now At must be limited if good accuracy is to be
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achieved. In fact it turns out that the same upwind formula is

obtained in the limit 6 - 0 where al(u, ,) S a(u.) or a(u, ,) > a(u.).
i-1 i i-1 i

Moreover, if f(+) is convex with a single sonic point u at which

a(u) = 0, the intermediate case in which a[ﬂi_1]a[aiJ < 0 is dealt with

very naturally through the recovery process: f[ﬂi] = f[ﬂi_1] is split into

F[ai) - f(u) and f(u) - f(ai_1] with the first contributing to the updating

of Ug and the second to that of Uz_ the scheme is then identical with

1
that of Engquist & Osher (1980).

It would not be appropriate to go into greater details on shock modelling
with the ECG scheme here: the scalar problem is dealt with fully in Morton
(1982¢c) and the use of the approximate Riemann solvers of Rée (1981) to deal
with the Euler equations of gas dynamics is described in Morton (13983a). The
important point here is to recognise the crucial role played by the recovery
process and the exploitation of the best L2 fit property of the approximation
in the understanding and development of the methods.

Thus these shock problems represent the furthest point in a consistent line
of development that we have presented, starting from the self-adjoint elliptic
problems in section 1. There the solutions were smooth and the appropriate
norms dominated by derivative terms: here the solutions are discontinuous
(and the analysis should ideally be in L1] and we have used mainly the L

2

norm. But the objective of optimal approximation is consistent throughout.
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