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Abstract

A 1-D transonic flow model exhibiting multiple steady-states is used
as a test problem to compare the results gained from explicit and implicit
formulations of a high-resolution TVD scheme using a selection of flux
limiters. It is shown how implicit schemes can converge to falsely stable
steady solutions, i.e. stable solutions of the discretized equation which
correspond to unstable solutions of the original ODE. It is also shown
how the choice of flux limiter can affect convergence with certain limiters
prone to suffer from residual plateauing whereby the residual error in the
numerical solution decreases only so far before levelling off. A dynamics
of discretization approach is used to study the effect the choice of limiter
has on the dynamics of the scheme. It is shown how spurious asymptotic
behaviour can be introduced which can cause fragmentation and shrinkage
of the numerical basins of attraction. Finally, two methods for preventing
residual plateauing are discussed, these are limiter-freezing and limiter-
switching. A dynamical study puts the reliability of the limiter-freezing
method into question.



1 Introduction

The need for accurate and efficient numerical schemes for the solution of sys-
tems of hyperbolic conservation laws, such as those arising in aerodynamics, has
stimulated a great deal of research in recent years [15, 20]. One of the main stum-
bling blocks in the numerical solution of such problems is the inability of classi-
cal schemes to accurately reproduce features such as discontinuities, or shocks.
Whereas first order schemes lead to the smearing out of such features, traditional
second order schemes tend to suffer from overshoot and spurious oscillations in
the vicinity of the shocks. This has lead to the development of high resolution
Total Variation Diminishing (TVD) schemes, designed to produce oscillation free
solutions whilst maintaining second order accuracy.

Although originally developed for time-dependent equations these schemes
have found some success in application to steady-state problems. This often
involves pseudo time-dependent techniques such as the method of lines, which uses
spacial discretization to form a system of ODE equations in (artificial) time which
are solved using either high order explicit schemes or (usually linearized) implicit
schemes. It has been noted however that the devices used to achieve oscillation-
free solutions, such as Flux Limiters [15], can sometimes serve to hinder, and even
prevent, convergence to the steady-state. This leads to the phenomenon known as
residual plateauing whereby the residual decreases only so far before levelling out
[20, 21]. It is occasionally possible to remedy the effects of residual plateauing
through the use of empirical techniques such as limiter freezing, whereby the
value of the limiter function is fixed once plateauing occurs. Though sometimes
adopted in practice this type of approach is at best a rather ad hoc solution and
has yet to be put on any firm theoretical footing.

It has been widely shown [5, 9, 10, 17, 22, 23, 24, 25| that the dynamics of
numerical discretizations can differ significantly from the dynamics of the original
differential equations, the former possessing spurious asymptotic solutions, such
as steady-states, periodic solutions and chaos, which are not admitted by latter.
In addition, these spurious solutions, which can be either stable or unstable,
can occur below as well as above the linear stability limit of the scheme. As
described in [5, 17, 25] the basins of attraction of the spurious asymptotes, i.e. the
domain of initial points whose solution curves all approach the same asymptotic
state, can cause a dramatic distortion, shrinkage and segmentation of the basins
of the true solution. The effect of this dependence on initial conditions is to
allow the possibility of physically reasonable initial data leading, not only to
divergent or non-convergent solutions, but also to plausible, yet spurious, steady-
state solutions.

Yee & Sweby [25] demonstrated how the choice of implicit solver affected the
dynamical behaviour of a selection of implicit schemes. It is the aim of this report
to provide a similar analysis highlighting the effect the choice of flux limiter has on
the dynamics of a TVD scheme applied to a simple one-dimensional scalar steady-
state problem, in particular using a dynamical systems approach to investigate
the barriers to convergence raised by certain limiters and a possible remedy.

The test problem, described in Section 2.1, arises from a paper by Embid,
Goodman and Majda [4] on multiple steady-states for 1-D transonic flow prob-
lems. In order to provide a description of the problem and its solution, both



analytical and numerical, many of the results from the Embid paper are repro-
duced in Section 2. This includes highlighting phenomena such as convergence to
falsely stable steady-state (whereby physically unstable solutions of the differen-
tial equation can be made stable by the numerical discretization) and also serves
to describe the solutions obtained from a variety of classical first- and second-
order schemes.

After a brief introduction to TVD schemes, Section 3 goes on to apply both
explicit and implicit formulations to the scalar test problem, comparing results
gained from a selection of typical flux limiter functions. It is shown how the choice
of limiter can affect convergence, even to the point of preventing convergence
altogether resulting in residual plateauing.

Section 4 provides a closer analysis of the differences in the behaviour of the
various limiters. The test problem is reduced to a two-dimensional dynamical
system allowing the schemes to be analysed in a dynamics of discretization con-
text, using bifurcation and basins of attraction diagrams to describe the evolution
of the solution for the two grid points lying either side of the shock.

Finally Section 5 describes two techniques, limiter freezing and limiter switch-
ing, used to combat the effects of residual plateauing. Results for the scalar
test problem indicate significant improvements in the convergence of particular
schemes using these techniques; a dynamics of discretization analysis, however,
puts the effectiveness of the limiter freezing method into question.



2 Multiple Steady-states

The problem under consideration is the scalar equation
u+ (3u?) =g(@u, 0<z<l. (2.1)

u(0,t) = uo, u(l,t) = uy.

It was put forward by Embid, Goodman and Majda [4] as a suitable 1-D test
case for investigating multiple steady states for transonic flow calculations. After
proving that multiple steady states exist for this problem, the paper went on
to show how implicit numerical schemes, which are commonly used in steady-
state applications because they allow large time-steps, can converge to physically
unstable steady states.

Transonic flow problems are such that their solutions contain discontinuities
(shocks) where the solution jumps from super- to sub-sonic flow (or vice versa).
Any steady-state solution of equation (2.1), with boundary conditions of opposite
sign, will therefore contain such a shock. The Rankine-Hugoniot jump condition
for an admissible shock is given by

_fW) - fw) _[f]

I ) (22)

where s is the shock speed and u' , u” are the left and right branches of the
solution either side of the shock. For equation (2.1) f = 1u? and the jump
condition reduces to

B ul + u’

T2

For steady-state problems the shock is stationary, so the shock speed s=0. The
solution will therefore contain a shock at points where

8

p(z) = 1(u!(2) + v (2)) =0. (2.3)

It is possible to construct the left and right branches of the solution of equation
(2.1) by noting that for a steady-state solution u; = 0. Rewriting (1u?)_ as uu,
it can be observed that ' and u" must satisfy the ODE

T

us = 9(),
giving
u'(z) = wuo+ G(z)
u'(z) = w+G(z)— Gy
where

G(e) = [ ols)ds, Gi= [ " 9(s)ds.

Putting these expressions for u' and u” into equation (2.3) it can be seen that
shocks will occur at points = x;, where the z; are roots of

p(z) = §(uo + u1 — G1) + G(z) = 0.
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The steady solution of equation (2.1) is therefore
u!(z) when z < z;,
@) = { u’'(z) when z > z;, 2:4)

which can be shown to satisfy the entropy condition, u'(z) > u’(z), for all z
provided ug, u; and G; satisfy the condition

ug > uy — (4.

This implies that if p(z) has multiple distinct roots then there will be multiple
entropy-satisfying steady-state solutions. Furthermore, for a problem with fixed
boundary conditions, it is possible to choose the source term, g(z), to give an
arbitrarily large number of entropy satisfying steady solutions.

Both stable and (physically) unstable steady-state solutions can occur which
can lead to problems when the equation is solved numerically. It has been noted
for a variety of schemes and problems [5, 10, 17, 22, 23, 24, 25] that the stability
of the solutions gained from discretized equations can differ from those of the
original DE, causing possible convergence to unstable solutions of the underlying
differential equation. Such solutions are called ‘falsely stable solutions’ of the
discretized equations, or ‘physically unstable solutions’ of the DE.

In the next section this effect is investigated, following the work of Embid et
al [4], using a particular test problem and a variety of schemes.

2.1 The Scalar Test Problem

The test problem presented in [4] for the study of the behaviour of numerical
schemes in multiple steady-state applications was

u+ (3u?) =6z -3, (0<z<1), (2.5)

Ug = ]., U1 = —-0.1.

Here p(z) has two distinct roots, z; = 0.18 and z, = 0.82, so there are two
entropy-satisfying steady solutions. One has a standing shock at z = z; and can
be shown to be stable, the other has a standing shock at z = z, which can be

shown to be unstable (see [4] for details). On either side of the shock the solution
follows the solution curves

u'(z)

u'(2)

3z(r—1)+1 A

3z(z—1)—-0.1 =z >z, (2:6)

for y =1,2.

Equation (2.5) was solved numerically using three methods, the first order im-
plicit upwind scheme of Engquist & Osher, its second order counterpart, and the
second order explicit MacCormack scheme. All three schemes use time stepping
as a relaxation method for solving the steady-state equation.



a)

b)

The First Order Implicit E-O Upwind Scheme

The upwind differencing of Engquist & Osher [2, 3] is combined with back-

wards implicit Euler time differencing to give
w"th = —AD* f(up™) + Atg(z)up*,

where,
Duf( ) = fk—+1 it fI;F - fk_ - flj-—u
and ) is the mesh ratio &t A

For convex f, as in the test problem (2.5),
flj- - f(ma’x(uk, ﬁ))a
fi = f(min(ug,)),

where # is the sonic value satisfying f'(z) = 0.

The implicit equations are solved using linearization, whereby
S¥ = ~ADf(uf*) + Atg(e)ui™

is expanded as

Sptt = Sp+ J(up) [up™ — ],

and where J(u}) is the Jacobian 3—85‘,-.

Hence the linearized implicit scheme takes the form

(I = J(up)). [upt™ — up] = —AD*f(up) + Atg(z)u}

(2.7)

(2.8)

(2.9)
(2.10)

(2.11)

This gives a three point scheme which can be used at all interior grid points,
with points on the boundary being specified by the boundary conditions.

The Second Order Upwind Scheme

Second order upwind differencing is combined with backward implicit Euler

time differencing to give
WP = uf — AD™ () + Atg(au
where
D™ f(uy) = D™ fr + D™ f,
++ p- Lo - 3 -
D™ = —ifee 20 — Efk ;

3
D__flj- =i %flj—2_2flj-—1+§f:-7

(2.12)

(2.13)

(2.14)

(2.15)

and where fif and f; are as defined in (2.9) and (2.10) for the first order

scheme,



As with the first order scheme linearization is used to solve the implicit
equations. In order to avoid inverting the pentadiagonal Jacobian, J', re-
sulting from the 5-point scheme (2.12), Embid et al recommend using a
tridiagonal Jacobian, M, which is a linear combination of the first order
Jacobian J, from (2.11), and the tridiagonal restriction of J’, denoted J”
(obtained by setting the outer diagonal elements of J' to zero). That is

Mw) =wJ"+ (1 —w)J, (2.16)

where w is a parameter chosen to maximise the bound on A . Embid et al
report that this choice of Jacobian gives a much larger stability bound on A
than simply using the first order Jacobian J (equivalent to setting w = 0).
Since this is a 5-point scheme it cannot be used at grid points adjacent to
the boundaries, at these points first order upwind differencing is used.

c) The Second Order Explicit MacCormack Scheme

The second order MacCormack scheme, adapted to include the source term
in equation (2.1), is given by

optt = uf = AD¥f(up) + Atg(e)uf,
Wit = uf =32 [D7f(0pt) + DY f(u)]
+1Atg(z) [uf + vt (2.17)

where D+fk = fk+1 - fk and D_fk = fk — fk—l-

This i1s a 2-step predictor-corrector method with forward differencing in
the predictor and backward differencing in the corrector. In order to pre-
serve accuracy at the right boundary the value v™*! is used instead of the
boundary condition u(1,t) = u;.

2.2 Computation and Results

The three schemes listed above were used to solve equation (2.5) which has two
entropy satisfying steady solutions, one with a stable standing shock at z; = 0.18
and one with an unstable standing shock at z, = 0.82.

In all the results that follow the region 0 < z < 1 was discretised using 40
grid points, so that Az = 0.025. Where appropriate each scheme was run using
a high Courant number, ¢ = a@pqe-A, whilst still maintaining stability. For this
problem the fastest wave speed, amqz, occurs at the left boundary where a = L.

Initial conditions were chosen to follow the solution branches

u(z) = { u'(z) z < o,

u'(z) x> o,

for some choice of initial jump position zo. The steady solutions were then cal-
culated by marching in time until the convergence criterion

2
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U}:H < 10718

_U’Z



was satisfied.

Accuracy of the numerical approximations. Figures 2.1, 2.2 and 2.3
show the results of taking initial conditions with a jump at z¢ = z, for the first
order, second order and MacCormack schemes respectively. The solid lines repre-
sent the solution branches u/(z) and u”(z), and the dots represent the computed
solution. The mark on the x-axis indicates the value of zy chosen for the initial
jump location.

——— Brxact solution with shock at x=0.18
——— Exact solution with shock at x=0,82

¢60¢¢ Nunerical solution
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Figure 2.1: E-O upwind scheme,
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Figure 2.2: 2nd order upwind Figure 2.3: Explicit MacCormack
scheme, ¢=300 scheme, ¢=0.25

All three schemes converge to the stable shock solution at z;. The first order
scheme, calculated with Courant number ¢ = 300, displays low accuracy but,
being monotone, does not produce numerical oscillations around the shock. The
second order scheme, calculated using ¢ = 300 and w = 0.045, demonstrates a
higher degree of accuracy over the majority of the region, but produces a single
point of overshoot either side of the shock. This behaviour is characteristic of the
scheme. The explicit MacCormack scheme, with ¢ = 1, displays much greater
accuracy compared with the implicit schemes but suffers from severe oscillations
around the shock. Embid et al report that this is a particularly severe test of the
scheme since no artificial damping was used.

The relatively low accuracy of both implicit upwind schemes is due in part to



the proximity of the right boundary value, v = —0.1, to the sonic point, u = 0.
If the solution is calculated numerically for 0 < z < 0.9 the influence of the sonic
point is removed and the two schemes display much more accurate results (see

Figures 2.4 and 2.5).
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Figure 2.4: E-O upwind scheme, Figure 2.5: 2nd order upwind
¢=300,0<2<0.9 scheme, ¢c=300, 0 < z < 0.9

Convergence to falsely stable steady solutions. If initial data is chosen
with a jump at or near the unstable shock at z; = 0.82, the implicit schemes can
be shown to converge to the physically unstable steady state. Figure 2.6 shows
the result of using the first order scheme with ¢ = 24 and with an initial jump at
zo = 0.82. Although the accuracy is very low the scheme has converged to the
physically unstable solution.

Systematic numerical experiments were performed by taking initial data with
a jump at

Ig = d.’IJ]_ + (1 - d)(l?g, (218)
for some parameter, d.

The results indicated three ranges of Courant number. For ¢ < ¢; the nu-
merical solution converged to the physically stable steady solution, leading to
non-convergence. For values of ¢ in the range ¢; < ¢ < ¢; the time integration
became unstable. Finally, for ¢ > ¢; the numerical solution converged to the
physically unstable steady solution. Table 2.1 gives experimental values of ¢; and
¢; using the first order scheme with a range of d values.

d|{00 01 02 03 04
¢ | 105 12,5 18.0 25.0 59.5
c; [21.0 23.5 30.5 38.0 60.0

Table 2.1: Courant ranges for the convergence of the 1st order E-O scheme

The second order scheme displays similar behaviour. Figure 2.7 shows the
result of taking ¢ = 300, w = 0.045 and initial jump z¢ = 0.82. These falsely
stable solutions are approximations to exact entropy satisfying but physically
unstable solutions of equation (2.5).
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Figure 2.6: E-O upwind scheme, Figure 2.7: 2nd order upwind
c=24 scheme, ¢c=300

The results in this section illustrated how three standard schemes perform for
a simple 1-D transonic flow test problem possessing multiple steady-states. It was
shown how implicit schemes, although advantageous in steady-state applications
because they allow large time-steps to be taken, can converge to physically un-
stable steady solutions of the differential equation for certain values of Courant
number and initial conditions. In addition it was illustrated how conventional
higher order schemes produce solutions with spurious oscillations in the neigh-
bourhood of shocks.

In the following section a particular class of schemes will be considered which
give second order accurate solutions but without producing spurious oscillations.
These are Total Variation Diminishing, or TVD, schemes. These schemes will be
applied to the test problem (2.5) and their bevaviour analysed as they approach
steady-state.



3 TVD Schemes

Total Variation Diminishing (TVD) schemes are designed to maintain high reso-
lution solutions whilst avoiding the spurious oscillations produced by more con-
ventional high order schemes. They are based on an important property of scalar
conservation laws, that the total variation of any solution

TV=/|ux|d:c

does not increase in time (Lax, 1973).
The total variation (TV) of a numerical solution of a scalar conservation law

is given by
TV(u) = Z | k1 — ugl . (3.1)
k
If the total variation is such that it satisfies the relation
TV(u""’l) <TV(u™) (3.2)

then the scheme is said to be total variation diminishing [6, 7]. This property en-
sures that no new local maxima and minima are produced (which would increase
the total variation) and hence that no spurious oscillations can occur.

An important class of TVD schemes are E-schemes [13, 18] which can be
shown to be entropy satisfying and at most first order accurate. In fact no second
or higher order accurate constant coefficient scheme can be TVD. In order to
acheive second order accuracy whilst maintaining TVD it is therefore necessary
to use schemes which depend on the solution at each time-step, i.e. schemes with
nonlinear coeflicients. One method of acheiving this is to take a first order E-
scheme and make it second order accurate by adding an anti-diffusive flux term,
which is constrained in some nonlinear way, in order to maintain TVD. This
approach, called the Flux Limiter method [14, 15], gives the TVD scheme the
following form:

uptt = uf — MAZRY, ( 1**order E-scheme )
2

— MA_ {¢(T:)a:+%(Afk+%)+ - ¢(rl:+1)a;+%(Afk+%)_} (3-3)

e

limited a,nti-di;fusive flux term

where, for time accurate problems,

k+% = %(1 + |’U::+%|),
+ _ A(Afk+%)i

(Afuap)t == My — Fluenn)) s (Afipy)™ = (hiy — F(w)
[ai_;(Afk-%)i

af+%(Afk+%)i

#(r) 1is the flux limiter designed to maintain TVD.

+1
} is a solution monitor, and

10
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Figure 3.1 Figure 3.2

The limiter ¢(r) can be chosen in many ways, but must lie within a specified
region in order to preserve the TVD property (Figure 3.1). As a further constraint
the shaded area in Figure 3.2 describes the region within which #(r) must lie to
ensure second order accuracy [15].

Some examples of flux limiters are

¢1(r) = max(0,min(r, 1)) — Roe’s minmod limiter, (3.4)

¢2(r) = max(0, min(2r, 1), min(r, 2)) — Roe’s superbee limiter, (3.5)

vi(r) = : i ::: — van Leer’s limiter, (3.6)
2

dva(r) = I::::z — van Albada’s limiter, (3.7

all of which lie within the second order TVD region (Figure 3.2).

It is important to note that the TVD property only holds for homogeneous
hyperbolic scalar conservation laws and will not ensure non-oscillatory solutions
for problems involving source terms, such as the test problem (2.5). The use of
the TVD formulation for non-homogeneous problems however remains a sound
criterion on which to base a scheme and can still be used, provided the source

term is properly treated, to produce oscillation free solutions for certain special
cases (see Sweby [16] and Yee & LeVeque [12]).

3.1 Computation and Results

Both explicit and implicit formulations of the TVD scheme (3.3) were used to

solve the test problem (2.5). The E-scheme used in the calculations used the first

order Engquist-Osher differencing given in Section 2.1a, so that hf+ 1= fim i
2

It should be noted that for steady-state problems a should be replaced by a = 1,
giving a method of lines formulation and thus avoiding dependence of the steady
solution on the time step At. Although the scheme loses some time accuracy it
maintains spacial accuracy. The schemes therefore become

(a) Explicit Scheme
uptt = up = AAL (fi + ) + Atg(e)up

3.8
DA [0 fy) — i) B ] . )

11



(b) Linearized Implicit Scheme

JRup™ —uf]l = —MA_(fipg + ) + Atg(z)uf

—PA_ [0 (Afuy)t = BE) (D fiys)]
(3.9)

Rather than attempting to calculate the Jacobian of the 5-point limited flux
terms for the linearized implicit scheme, the first order tridiagonal Jacobian from
equation (2.11) has been used at all internal grid points.

Experiments have been carried out for both schemes using each of the flux
limiters (3.4)-(3.7), and also for first order explicit and implicit E-O schemes
(equivalent to setting ¢ = 0 in equations (3.8) and (3.9) above). Throughout this
section convergence was determined using the same criterion as in section (2.2),
namely that the numerical solution satisfies the following bound on the residual

)»

k

n+l uz S 10—15-

U

Initial conditions were taken with jumps at either zo = z; = 0.18, or 2o = x5 =
0.82, marching in time until the convergence criterion was satisfied or the number
of iterations, n, exceeded n = 2000.

3.1.1 Explicit Schemes

Table 3.1 illustrates how the convergence behaviour of the five explicit TVD
schemes is dependent upon the Courant number ¢ = a). For Courant number
¢ < ¢; the numerical solution converges to the stable steady shock at z = z;,
with the number of iterations required for convergence decreasing as ¢ — c;.
For ¢; < ¢ < ¢; the schemes do not converge within the specified iteration limit
n = 2000. For ¢ > c; the schemes are unstable. As would be expected the limited

schemes have a smaller stability range than the first order scheme on which they
are based.

scheme I c;

E-O 0.65 0.9
minmod 0.5 0.75
superbee — 0.7
van Leer 0.6 0.7
van Albada | 0.6 0.7

Table 3.1: Convergence regions for the explicit TVD schemes.

The results gained from the explicit schemes by taking ¢ = 0.4 and initial
jumps at zo = 0.18 are shown in Figures 3.3-3.7. Although the TVD schemes do
not exhibit the same accuracy as the second order upwind scheme, Figure 2.2,
or the second order explicit MacCormack scheme, Figure 2.3, nor do they suffer
from the spurious oscillations inherent in the second order schemes of Section 2.1.

12



It was found that the choice of initial conditions did not affect the final solutions
or the values of ¢; and ¢; given in the table.

The most striking feature of the table is that the explicit superbee scheme
does not converge for any value of ¢. Some insight into the cause for this can be
gained by considering the behaviour of the residual r™ = |u"*! —u"| as a function
of the iteration number n, as illustrated in Figures 3.3-3.7. In the case of the
superbee limited scheme, Figure 3.4, the residual drops initially but then levels off,
oscillating around r = 1x1073. This effect, often refered to as residual plateauing,
is the cause of the non-convergence of the schemes for ¢; < ¢ < ¢;. In some cases
the residual does not level off completely, but decreases at a very gradual rate,
resulting in very slow convergence. It is believed that this behaviour can be
aggravated by the use of the nonlinear limiter functions used in the schemes.

log10(res)

L B T S sy (s ey

w“illII|IIIIflllr|l||l|l|ll||lll||||l|llrl]
00 0.25 05 075 1.0 0 100 200 300 400 500 600 700 800
X n

Figure 3.3: 1st order explicit E-O scheme, ¢=0.4

10"

log10(res)

10"

L . e e s sy w"Tr]‘lllllr|i||||l|||[|l||(|1||11||r||1|||
00 0.25 05 075 10 0 500 1000 1500 2000
X n

Figure 3.4: Explicit TVD superbee scheme, c=0.4
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log10(res)
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Figure 3.5: Explicit TVD minmod scheme, ¢=0.4
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Figure 3.6: Explicit TVD van Leer scheme, c=0.4

log10(res)

&
rrrr®s | rrrr1rfrrrr1r 1 rrrrt

00 025 05 075 10
X

10

L L L 0 LY LA

0 100 200 300 400 500 600 700 80O
n

Figure 3.7: Explicit TVD van Albada scheme, c=0.4

3.1.2 Implicit Schemes

Unlike the explicit schemes, the choice of initial jump position zo can affect
the numerical solution of the implicit schemes for certain values of ¢, causing
convergence to falsely stable steady-states.

14
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effect on convergence of different initial jump positions, like that described in
Table 2.1, was not performed. However tests were made with two initial jump
positions, £o = z; and zg = x,. Results for these two cases are described below.
Experiments were performed with Courant numbers in the range ¢ < ¢ < 300.

a) o = z;. Figures 3.8-3.12 illustrate the accuracy of the limited TVD
schemes for ¢ = 300 with initial jump position zo = 0.18, together with graphs of
the residual, r(n) = |u™*! — u"|. The first order E-O sceme and the second order
minmod and van Albada schemes all converged within the specified number of
iterations, with the second order TVD schemes displaying the greater accuracy.

The superbee and van Leer schemes however have not converged for ¢ = 300,
as can be seen by the plateauing of the residuals in Figures 3.9 and 3.11. Ex-
periments have shown that the superbee limited scheme gives fastest convergence
when ¢ = 5, with the number of iterations slowly increasing as c increases until
n > 2000 when ¢ = 300. The behaviour of the van Leer scheme is more abrupt,
with the scheme going from fastest convergence for ¢ = 5.5, to non-convergence
for ¢ = 6. It is worth noting that these two schemes do eventually recover, but
only for very large values of c.

log10(res)

S 4 e A S e e By e e i L e e e e e ey T
00 0.25 05 0.75 10 0 10 20 30 40 5 6 70 60 9 100
X n

Figure 3.8: 1st order implicit E-O scheme, c=300
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Figure 3.9: Implicit TVD superbee scheme, c=300
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Figure 3.12: Implicit TVD van Albada scheme, c=300

b) zo = z,. With an initial jump located at or near the unstable shock
at o = 0.82 the implicit schemes demonstrate similar behaviour to that of the
implicit schemes in Section 2, i.e. for certain values of Courant number the
schemes converge to the falsely stable steady solution.

In Section 2 it was noted that for ¢ < 11 the first order E-O scheme converges
to the physically stable solution which has a shock at z = z; (Figure 2.1). For
11 < ¢ < 22.5 the time integration became unstable, causing non-convergence.
For ¢ > 22.5 the E-O scheme converges to the falsely stable solution with a shock
at z, (Figure 2.6). Since all of the flux limiter scheme being discussed are based

16



on the first order E-O scheme they all exhibit similar instabilities, i.e. the solution
blows up for ¢ in the range 11 < ¢ < 21.

For ¢ < 11 all the schemes approach the stable steady solution, and for ¢ > 21
they all approach the unstable steady solution. Table 3.2 gives the values of ¢
for which each of the schemes converge to z; and z,, the stable and falsely stable
solutions respectively.

scheme converges to z; | converges to 2
E-O c< 11 c>225
minmod c< 11 c>215
superbee c<11 —

van Leer — —

van Albada c<11 c>22.5

Table 3.2: convergence regions for the implicit TVD schemes.

Figures 3.13-3.22 show solutions with residual graphs at ¢ = 10 and ¢ = 300
for the minmod, superbee, van Leer and van Albada limited schemes respectively.
As with the explicit scheme the implicit superbee scheme suffers from residual
plateauing, in this case for ¢ > 21 when it is approaching the falsely stable steady
solution (Figure 3.19). In addition, the van Leer scheme suffers from residual
plateauing for all values of ¢ (within the range ¢ < 300), Figures 3.16 and 3.21.
The minmod and van Albada schemes appear not to suffer from this problem.
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Figure 3.13: 1st order implicit E-O scheme, c=10
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Figure 3.14: Implicit TVD superbee scheme, c=10
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Figure 3.17: Implicit TVD van Albada scheme, c=10
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Figure 3.20: Implicit TVD minmod scheme, c=300
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Figure 3.22: Implicit TVD van Albada scheme, c=300

The phenomenon of residual plateauing is believed to be linked to the stability
of the limiter functions used in the TVD schemes [20, 21]. The superbee and van
Leer limiters both lie towards the top of the TVD region (Figure 3.2), leading to
larger contributions from the second order terms in the scheme. This makes the
scheme more compressive, giving higher resolution at the shocks than if the less
compressive minmod and van Albada limiters were used, both of which lie toward
the bottom of the TVD region. However, the added influence of the second order
terms also makes the scheme more unstable which, for inhomogeneous problems
such as equation 2.5, can cause oscillations in the solution and can lead to residual
plateauing.

In the following section a dynamics of discretization approach is applied to
give a more detailed description of the influence the limiter functions have on the
solution of the steady-state problem.
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4 Dynamics of Discretization

The basic idea of this approach is to treat the numerical scheme as a discrete
dynamical system. The behaviour of a particular quantity is monitored as a
parameter, usually dependant on the time-step, is varied. The behaviour of the
system can be represented graphically in the form of bifurcation diagrams, which
describe the evolution of fixed points of the system, and basins of attraction, the
sets of initial conditions which converge to the same asymptotic state.

This technique is particularly useful for highlighting the differences between
the dynamics of nonlinear numerical discretizations and the dynamics of the
original differential equations, the former often displaying spurious (stable and
unstable) fixed points and asymptotes which are not admitted by the latter. It
has also been shown [10, 17, 22, 23] how the presence of spurious asymptotes can
greatly distort, shrink and/or fragment the basins of attraction of the true solu-
tion. (See Yee & Sweby [24, 25] and Griffiths, Sweby & Yee [5] for applications
of the dynamics of discretization approach to the study of a range of implicit and
explicit Runge-Kutta schemes for a variety of problems.)

The dynamical behaviour of the TVD schemes is dependant upon many things
such as the choice of underlying E-scheme, the nonlinear solver used for the
implicit schemes (linearization, Newton’s method, etc.), and the choice of flux
limiter. For the purposes of this report the use of the Engquist-Osher E-scheme,
and of linearization to solve the implicit equations, remains constant, with only
the effect of the choice of limiter being considered. However, a study of the
dynamics of the non-limited (i.e. first order E-O) scheme was made in order to
establish the effect of adding a limited numerical flux.

For practical reasons it is necessary to restrict attention to the behaviour of
specific points in the scheme, namely the points that lie immediately to the left
and right of the shock. This choice is appropriate since experiments indicate
that the points in the neighbourhood of the shock are the first to display the
instability that leads to non-convergence and residual plateauing. An analysis
of the dynamics of these points may therefore give an insight not only into the
general behaviour of the schemes, but also into the process of residual plateauing.

The two steady-state shock positions are considered separately. The stable
shock at z = z; = 0.18 and the falsely stable shock at £ = z; = 0.82. In both
cases Az, the space interval, is taken to be 41—0.

The first step is to assume that all points away from the shock are exact and
remain unchanged, giving, in effect, a reduced boundary value problem with two
internal points. The point immediately to the left of the shock is denoted X and
the point immediately to the right of the shock is denoted Y (see Figure 4.1).

For the stable shock X represents uz—7 and Y represents uy—g, whereas for
the falsely stable shock X represents ug—3; and Y represents uj—33.

The restriction of the problem to a 2-D system, although being a somewhat
artificial description of the full problem, can provide useful information about
the influence of the limiters on the dynamics of the scheme. It should be kept in
mind, however, when considering the results, that they apply only to this special
case.

The fixed points of the first order E-O scheme, both explicit and implicit,
can be found analytically and their stability established. Similar analysis for the
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Figure 4.1: Grid points of reduced problem.

TVD schemes is complicated by the use of nonlinear limiters and is best studied
using a computational approach. The explicit and implicit formulations of the
schemes display quite different dynamical behaviour and are therefore considered
separately.

4.1 Explicit Schemes
4.1.1 Fixed Point Analysis of the Reduced E-O Scheme
The full first order explicit Engquist-Osher approximation to the test problem
(2.5) is given by
upt! = uf — X [fk_+1 +f = fE - fl::l-—l] + Atg(z)ug, (4.1)

where fi = 1ui, g(z) = 6kAz — 3, Az = s and fE are as defined for equation
(3.3).

For points u7 and ug on the stable shock, with all other points fixed at their
exact values, the scheme reduces to the 2-D system

X = Xn = )+ (X)) = PR = fH(ug)] - RALXT (42)
Y = Y- B[ (g) + (YY)~ FH(YT) = FHX)] - BAY

where ug and ug are known values.

The steady states of this system can be found by setting X"*! = X™ and
Y"1 = Y™ and solving for X and Y. Using the definitions of f*+ and f~ to write
fr(uw) = f(t(u—|ul)) and f~(u) = f(i(u + |u|)), and substituting for ug and
Ug, gives

— (BAt - 20A1|X"]) X — 10At (Y™ — [Y"|) Y™ + 7.628A¢ = 0 43)

10A (X™ + |X™[) X" — (2At + 20At[Y™|) Y™ — T.764At = 0 '

There are four cases to consider when solving for X and Y dependant upon
their signs.

i) X >0,Y">0. No real fixed points.

ii) X™>0,Y" <0. Single fixed point at X™ = 0.36,Y™ = —0.47.
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i) X™ <0,Y, > 0. No real fixed points.

iv) X" <0,Y" <0. No real fixed points.

Hence there is a single fixed point at (X", Y") = (0.36, —0.47).

In order to establish the stability of the fixed point it is necessary to examine
the eigenvalues of the Jacobian, S, of the 2-D system (4.2). For stability the
eigenvalues pg must be such that

lus| < 1. (4.4)
For the fixed point (0.36, —0.46) the eigenvalues satisfying |S — psI| = 0 are

ps1 = 1— 34.885At
ps2 = 1—1.885At

which satisfy the condition (4.4) for At < 0.057.

So for the first order explicit E-O scheme the stability of the single fixed point
at (X, Y™) = (0.36,—0.47) depends explicitly upon the time-step, with the fixed
point becoming unstable for At > 0.057.

Similar fixed point analysis for points X = us; and ¥ = w33 on the falsely
stable shock yields three fixed points, these are

(0.52, 0.26) — stable for At < 0.1043.
(0.40,-0.32) — unstable for all At.
(-0.29,-0.53) — stable for At < 0.1031.

4.1.2 Bifurcation Diagrams and Basins of Attraction

The fixed point analysis described previously gives limited information about the
dynamics of the reduced numerical system. Fixed points have been located and
their stability established but there is no information as to the behaviour of the
fixed points when At is taken above the stability limit. In addition, analysis
was only performed for the non-limited first order scheme since the nonlinear
structure of the limited schemes precludes similar investigation. In order to study
the dynamics of these schemes it is necessary to turn to computational methods.
The bifurcation diagrams referred to in this section describe the evolution of
the fixed points, X and Y, as At increases for the various schemes applied to
the reduced 2-D problem (4.2). For clarity the fixed points have been split into
their X and Y components and displayed on two separate diagrams, although it
should be remembered that X and Y are dependant variables. The bifurcation
diagrams are produced by first discretizing the variables X, Y and At into a
256 x 256 x 256 grid. For each value of At, and each initial point ( Xy, Yp) the 2-D
system is iterated, typically for around 2000 time-steps, to allow the numerical
solution to reach an asymtotic state before the next 10-100 points are plotted.
The basins of attraction diagrams describe the domains of initial points,
(Xo, Yo), which all converge to the same asymptotic state. They are produced
in much the same way as the bifurcation diagrams except At is kept fixed and
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the initial points are colour coded according to where they end up after 2000
iterations. Hence all initial points lying inside a specific shaded region converge
to the fixed point contained within that region, represented by a black dot. Un-
shaded regions represent the domain of initial points which lead to divergence.
The basins of attraction diagrams are displayed as plots of X against Y. The
dimension of the grid (and hence the accuracy of the diagrams), and the num-
ber of initial iterations chosen to allow the solution to settle, are to some degree
dependent upon the speed of the computer system being used. The diagrams
in this report were produced on a Silicon Graphics Indy R4400 for which the
values given above gave acceptable results, although the process is more suited
to computation on highly parallel machines such as a Connection Machine.

Figure 4.1.1 shows the X and Y bifurcation diagrams for the fixed points
of the 2-D system (4.2), centered on the stable shock, using the explicit E-O
scheme. Note that, as predicted by the analysis, there is a single fixed point
(X,Y) = (0.36,—0.47) which is stable for At < 0.057. In addition it is now
possible to see that for values of At greater than 0.057 the fixed point bifurcates,
forming period two oscillations in both X and Y. Increase At still further and
period four oscillations set in. This process continues, lapsing into chaos, before
the fixed point disappears completely at around At = 0.094.

The basins of attraction in Figure 4.1.2 illustrate the bifurcation of the fixed
point by taking sections in the X-Y plane for a selection of At values. Below the
stability limit of the scheme the basin covers the whole plane, as instability sets
in the basin undergoes a dramatic reduction in size and develops large regions of
divergence (represented by areas of no colour).

The explicit flux-limiter schemes, whose bifurcation diagrams and basins of
attraction are shown in Figures 4.1.3-4.1.10, display a similar process of period
doubling, chaos and reduction in the size of the basin. As with the first order
E-O scheme there is a single fixed point (although the position of the fixed point
varies from scheme to scheme) and no spurious asymptotic solutions below the
linear stability limits of the TVD schemes.

Figures 4.1.11-4.1.20 show the dynamics of the five explicit schemes for the
two points, X = uzp and Y = uas, centred on the unstable shock. Any stable fixed
points lying in the bottom right-hand corner of the basin diagrams, corresponding
to X being positive and Y negative, would represent convergence to the falsely
stable shock solution at z; = 0.82 of the full problem. Fixed points outside this
region have been made stable by the artificial restriction of the problem to a
2-D system, i.e. the fixing of us; and us4 to their exact values. Indeed, further
analysis of the first order scheme has shown that the introduction of additional
"free’ points reduces the stability of these spurious solutions.

The E-O scheme, again in accord with the analysis, possesses two stable
fixed points, one at (0.52,0.26) which is stable for At < 0.1043 and one at
(—0.29, —0.53) which is stable for At < 0.1031. The unstable fixed point at
(0.40,—0.32) is not picked up in the computation. In this case the basins have
begun to shrink before the fixed points have become unstable. Once they do be-
come unstable the basins shrink dramatically and the fixed points quickly lapse
into chaos before becoming divergent.

The fixed points of the TVD schemes are much less stable and go through
longer periods of bifurcation and chaos. Unlike the first order scheme the pres-
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ence of the unstable fixed point can be seen in the dynamics of the four TVD
schemes, showing up as a third region of convergence in the basins of attraction
diagrams. The appearance of this oscillating solution precipitates a fragmenta-
tion and eventual break-up of the basins. This effect is best illustrated in the
basin diagrams of the explicit van Leer scheme (Figure 4.1.18).

4.2 Implicit Schemes
4.2.1 Fixed Point Analysis of the Reduced E-O Scheme

As with the explicit formulation of the problem it is possible to use an analytical
approach to find the locations and stability of any fixed points of the implicit
E-O scheme for the reduced problem. The implicit scheme, applied to the 2—
point problem, becomes

JU =R,
where
I = [ Ju Ju | _ [ 14+ AX"| - At(6z - 3) 2(Y" —|Y")
| J21 J22 _%(Xn + IX"'l) 1 + )\IY"I = At(ﬁ(l) — 3) ’
[ A- Xt Xntl _ xn )
U = -A—Yn+l]=[yn+1_yn:|,
R = |m
= (&
_ [ —%[Y"(Y“ — |Y™) + 2X™| X" — wi(w + Jw|)] + At(6z — 3)X™
| —2ur(ur — Jup]) + 2V Y — XM(X™ + | X)) + At(6z — 3)Y™ |
and where {u;, X,Y,u,} = {us,ur,us,ug} or {us1,usz,uss, us4} depending on

whether the stable or the unstable shock is being considered.
This simple 2 X 2 system can be solved by inverting the Jacobian matrix J,
assuming J is non-singular, to give the recurrance relation

Xrl 1 Joz  —Ji2 T X"
= . 4.5
l yn ] Judaz ~ JaJiz l —Jun  Jn T tyn (4.5)
The fixed points of this system can be found by setting X"*! = X" and

Y™l =Y", to give
Jaary — Jiare _ 0
[ Jur: — Jam ] B [ 0 ] (4.6)
as necessary conditions on X and Y for a fixed point. By considering the signs
of X and Y, and assuming that Jyj1Jo2 # Ja1J1g, it is straightforward to solve
equation (4.6) for X and Y on either of the shocks. Stability is established by

checking that the eigenvalues of the system Jacobian, S, are less than one in
modulus, where

1+i[ Joor1=Jia72 ] L[ Joary =Jiorg
S = dX [Ji1J22—=J21J12 dY | Ji1Je2=J21J12
- d [ Jiira=Jo1ms ] 14+ 2 [ Ji1re=Jay 7y ] '
dX [J1J22—=J21J12 dY [JiaJ22—J21J12
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Calculations show that at the stable shock, z = z; = 0.18, where X = w; and
Y = ug, there is a single fixed point (X,Y") = (0.37,—0.48) which is stable for all
At. At the unstable shock, = z; = 0.82, where X = u3; and Y = wuag, there
are three fixed points (0.52,0.26), (—0.29, —0.53) and (0.40, —0.32). The first two
are stable for all At, but the fixed point (X,Y) = (0.40,—0.32) is only stable for
At > 1.0585.

4.2.2 Bifurcation Diagrams and basins of attraction

As with the explicit schemes computational methods can be used to provide extra
information about the dynamics of the first order scheme, as well as providing
descriptions of the behaviour of the nonlinear TVD schemes. The dynamics of the
implicit schemes are quite different to that of the explicit schemes. In addition
to regions of period doubling and chaos they can also possess spurious steady
solutions, even at values of A below the linear stability limit of the scheme.

At the stable shock position the dynamics of the five implicit schemes are
well behaved. The bifurcation diagram of the E-O scheme, mirroring the results
given by the analysis, possesses a single fixed point (X,Y) = (0.37,-0.48) which
is stable for all At. The four TVD schemes all display very similar results with
slight differences in the position of the fixed point.

Figures 4.2.1-4.2.10 describe the dynamics of the five implicit schemes at the
unstable shock position. All five schemes produce the three fixed points identified
in the analysis of the first-order scheme (although the precise position of the fixed
points vary from scheme to scheme). As described in Section 4.1.2 fixed points in
the region X > 0,Y < 0 correspond to convergence to the falsely stable solution
of the full problem, indeed the value of At at which these fixed points become
stable (At ~ 1.06) coincides with the Courant number values given in Table 3.2
marking convergence to the unstable shock. The point (Xo,Ys) = (0.52, —0.53)
represents the initial conditions used in the full problem to represent the shock
at ZT9g.

Figure 4.2.1 shows just such a point occuring at At = 1.1 in the bifurcation
diagram of the implicit E-O scheme. The transition from two to three fixed points
causes brief periods of chaos and divergence in the lower right-hand quadrant of
the basin diagrams in Figure 4.2.2 (analogous to the periods of non-convergence
between ¢ = 11 and ¢ = 22 in the full problem) before the whole quadrant
becomes a basin for the new fixed point. (N.B. some of the features shown in
the basin of attraction diagrams, such as the brief period of instability in the
fixed points when At = 0.8, have been lost in the calculation of the bifurcation
diagrams due to computational constraints.)

The dynamics of the TVD schemes (Figures 4.2.3 - 4.2.10) are complicated by
the introduction of additional spurious fixed points, causing fragmentation of the
basins and a reduction in size of the basin of the falsely stable solution in the lower
right-hand quadrant. For the minmod scheme this spurious behaviour, appearing
as a At dependant period two oscillation, is short lived, allowing the basin to fully
recover until it resembles the first-order solution. These spurious fixed points are
less evident in the bifurcation diagrams of the implicit van Albada scheme (Figure
4.2.5), appearing only breifly when the falsely stable solution first becomes stable.
The effect on the falsely stable solution however is dramatic, causing it to oscillate
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chaotically, although the basins appear largely unaffected. The van Leer scheme
displays similar dynamics to that of the minmod scheme with the introduction
of a spurious period-two oscillating fixed point in the X > 0,Y < 0 region. In
this case the spurious behaviour persists and the basin of attraction of the falsely
stable solution remains greatly reduced (Figure 4.2.8). The superbee scheme is the
worst affected with the spurious solutions displaying a higher order of oscillation
for a range of At. As with the van Leer scheme this behaviour persists causing
a severe and lasting reduction in the size of the basin of the falsely stable fixed
point.

The results indicate that the more compressive limiters, such as van Leer’s
and Roe’s superbee, suffer more from the effects of spurious solutions introduced
by the nonlinear second-order terms. The associated reduction in the size of the
basin of attraction of the true (falsely stable) solution increases the chances of
the initial conditions leading to spurious oscillations, non-convergence and hence
residual plateauing.

27



5 Residual Plateauing

The results in the previous section highlight the trade-off involved in choosing
a particular limiter for a specific problem. Highly compressive limiters, such as
superbee and van Leer, produce sharper shock resolution and greater accuracy
than more diffusive limiters such as minmod and van Albada. Their drawback is
that they have lower stability and slower convergence rates. This is especially true
for problems containing strong hypersonic shock waves, see Yee [19, 20]. Even for
the 1-D transonic test problem under consideration in this report the instability of
the compressive limiters was experienced, causing oscillations around the shocks
and leading to the residual plateauing seen in Section 3.

An obvious solution to this problem would be to use less compressive lim-
iters, but since compressive limiters give better results in the majority of cases
this solution seems rather drastic. What is needed is an inbuilt mechanism for
preventing, or at least curing, the effects of limiter instability.

5.1 Limiter Freezing

Although not placed on any firm theoretical footing the technique of limiter freez-
ing is sometimes employed to provide a ‘quick fix’ solution to the problem of
residual plateauing. The method involves monitoring the residual error in the
numerical solution, |u™*! — u"|, until it begins to plateau, then fixing the value
of the limiter, i.e. preventing it from being updated at each time-step and thus
freezing its value.

One way of monitoring the numerical solution for the onset of instability is to
measure the total movement in each of the nodes. Let

wg = w(ug) = Zn: \ukm'“ - uZ‘l (5.1)

m=ngo

where ng is some initial time-step (eg n = 100) chosen to allow the scheme time
to settle on a solution, and n is the current time-step. The function wy can be
thought of as a ‘wobble factor’, measuring the total change in the value of the
solution at the node u;. A node which has become unstable and is oscillating will
possess a high wobble factor, whereas a node which is stable and remains fixed
will have a wobble factor of zero. By setting a threshold value ¢, above which
a node is recognised as being unstable, the wobble factor can be used to trigger
limiter freezing.

Naturally not all nodes need to be frozen since most parts of the solution,
particularly those points away from the shock, remain stable. Neither is it suf-
ficient to only freeze the limiters at those points lying on the shock, since even
small instabilities here can set off instability in neighbouring nodes. By using the
wobble factor it is possible to freeze the limiter ¢(ry) at all points which display
a substantial degree of instability, i.e. at points for which wy > e.

5.2 Results using Limiter Freezing

The method of freezing described above is only suitable for implicit TVD schemes
since it causes divergence in the explicit schemes.
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Numerical experiments were performed using limiter freezing for the implicit
superbee and van Leer limited schemes applied to the scalar test problem (2.5)
with an initial jump at the unstable shock position z = 0.82. As described in
Section 3 these two schemes, under the same conditions, suffered from residual
plateauing for certain ranges of Courant number.

The value given to the threshold parameter € was found to be crucial to the
effectiveness of the method and dependent upon the choice of limiter. If the value
of € was too high then, unless wy became very large, limiter freezing was never
triggered. On the other hand, if the value of ¢ was too low, limiter freezing was
triggered prematurely causing the scheme to become unstable. The best results
were acheived using a value of € = 0.1 with the superbee limiter (3.5) and ¢ = 10~°
with the van Leer limiter (3.6).

Table 5.1 gives Courant number ranges for convergence to the (physically)
stable shock at z = 0.18 and the (physically) unstable shock at z = 0.82 for the
two implicit limiter schemes both with and without limiter freezing.

scheme converges to z; | converges to
superbee c< 11 —
frozen superbee c< 11 22 < c< 55
van Leer — —
frozen van Leer c< 11 c> 22

Table 5.1: Convergence regions for frozen & non-frozen schemes.

For ¢ < 11 both schemes converged to the stable steady solution with a shock
at £ = 0.18. In the case of the superbee limiter the scheme was already convergent
within this range and indeed limiter freezing was not activated. The van Leer
scheme however did benefit from limiter freezing and converged for values of
¢ < 11 at which it previously suffered from residual plateauing. Limiter freezing
also had the side-effect of causing the van Leer scheme to converge to the falsely
stable steady solution for values of ¢ > 22, as shown in Figure 5.1 for ¢ = 300.
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Figure 5.1: Implicit van Leer TVD scheme with limiter freezing, c=300

This stabilising of the physically unstable steady solution was experienced to
a lesser degree by the frozen superbee scheme. Although the scheme converged
for 22 < ¢ < 55 residual plateauing still occured for Courant numbers in the
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range 55 < ¢ < 130, after which the scheme became convergent once more. As ¢
was increased past ¢ = 160 the solution jumped suddenly from the falsely stable
steady solution with a shock at z = 0.82 (Figure 5.2) to a completely spurious non-
physical solution (Figure 5.3). This solution persisted until plateauing returned
for 180 < ¢ < 260. For ¢ > 260 the scheme converged to a non-physical solution
containing a shock at the right boundary caused by the fixed boundary value
(Figure 5.4).
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Figure 5.2: Implicit superbee TVD scheme with limiter freezing, c=150
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Figure 5.3: Implicit superbee TVD scheme with limiter freezing, c=160
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Figure 5.4: Implicit superbee TVD scheme with limiter freezing, c=300
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It is clear from these results that the method of limiter freezing described in
Section 5.1, whilst reducing the effects of residual plateauing, does so at the cost
of introducing spurious solutions. A bifurcation analysis of the frozen schemes
applied to the reduced 2-D problem of Section 4 clearly shows the extent to
which the dynamics of the schemes have been affected by the introduction of
limiter freezing (Figures 5.2.1 & 5.2.2).

The addition of a host of closely packed spurious fixed points greatly reduces
the chances of converging to the true solution. The basins of attraction in Figures
5.2.3 and 5.2.4 have become fragmented, severely so in the case of the superbee
limiter, making the numerical solution highly dependent on both the time-step At
and the initial conditions. This effect can be seen in the full problem by comparing
the solutions given in Figures 5.2 and 5.5. Both graphs show converged solutions
for the frozen superbee limiter scheme with Courant number ¢ = 150. In Figure
5.2 initial conditions have been chosen with a shock at = 0.82 whereas in Figure
5.5 the initial conditions contained a shock at x = 0.916. The two solutions differ
significantly.
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Figure 5.5: Implicit superbee TVD scheme with limiter freezing, c=150.

The high dependence on initial values and the untrustworthiness of the so-
lutions make limiter freezing an extremely unreliable method. This is perhaps
not surprising since it relies on switching off the solution monitoring mechanism
that makes TVD schemes so desirable. A method is needed that will encourage
convergence whilst preserving the properties of TVD.

5.3 Limiter Switching

An alternative solution to the problem of residual plateauing is that of limiter
switching which combines the advantages of the highly compressive, yet less sta-
ble, limiters and the more stable, less compressive limiters. The idea is to use a
highly compressive limiter wherever possible, switching to a less compressive lim-
iter for points displaying signs of instability. This can be done using the ‘wobble
factor’ wg, defined by equation (5.1), to detect oscillations in the numerical solu-
tion at each grid point. If wy grows large enough to exceed some predetermined
threshold value, ¢, then the method switches to a more stable limiter at that grid
point for all subsequent time-steps. The solution obtained through this method
is therefore a hybrid of the two limiters. The advantage of this method over that
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of limiter freezing is that it maintains the TVD structure, using a nonlinear flux
limiter to adapt the scheme according to the current solution.

5.4 Results using Limiter Switching

The method of limiter switching was tested on the scalar test problem (2.5) using
superbee and van Leer as the initial high-compression limiters switching to either
minmod or van Albada if the scheme became unstable. Table 5.2 describes the
convergence behaviour of the implicit limiter-switching schemes for the various
combinations of limiter, with initial conditions possessing an initial shock at z =
0.82, the unstable shock position. These values can be compared with those given
in Table 3.2 for the straight superbee and van Leer schemes.

scheme converges to z; | converges to
22 < ¢ < BT
superbee-minmod c<11 122<¢e¢< 174
¢ > 295
22 < ¢ < 103
superbee-van Albada c<11 > 309
van Leer-minmod c<1l c> 22
van Leer-van Albada c<11 c> 22

Table 5.2: Comparison of convergence regions for limiter-switching schemes.

As with the limiter-freezing method limiter-switching improves the general
convergence of the problem irrespective of whether it is to the stable or unsta-
ble solution. Whereas the straight superbee scheme only converged for ¢ < 11
both of the superbee schemes with limiter-switching also demonstrate conver-
gence for ranges of Courant number greater than ¢ = 22. The superbee scheme
with minmod switching is perhaps more successful than the scheme with van
Albada switching in this respect since it converges for a wider range of Courant
number, even though it possesses more regions of non-convergence. Unlike the
situation with limiter-freezing, where each range of Courant number represented
convergence to a different solution, the solutions gained from limiter-switching
(for ¢ > 22) are independent of the value of ¢. Figures 5.6 and 5.7 show the
solutions obtained from the two superbee limiter-switching schemes for ¢ = 310.
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Figure 5.6: Implicit superbee scheme with minmod switching, ¢=310.
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Figure 5.7: Implicit superbee scheme with van Albada switching, c=310.

The two limiter-switching van Leer schemes show a marked improvement over
the straight van Leer scheme in terms of convergence. Whereas the straight van
Leer scheme did not converge for any value of ¢ (Table 3.2) both of the switching
schemes demonstrate convergence for the same Courant number ranges as the
underlying E-O scheme. The scheme using van Albada switching has a slight

advantage in that it tends to converge slightly faster, as shown in Figures 5.8 and
5.9.
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Figure 5.8: Implicit van Leer scheme with minmod switching, c=310.
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Figure 5.9: Implicit van Leer scheme with van Albada switching, c=310.
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The effect of limiter switching on the dynamics of the reduced problem is
clearly illustrated in the bifurcation diagrams of the superbee-minmod and van
Leer-minmod schemes in Figures 5.3.1 and 5.3.2. Whereas the stable solutions of
the primary limiters (i.e. superbee and van Leer) remain intact the spurious oscil-
lating solutions are replaced by the dynamics of the switching (minmod) limiter.
The persistant spurious fixed points of the superbee and van Leer schemes are
therefore replaced by the short-lived spurious behaviour of the minmod scheme.

Figures 5.3.3 and 5.3.4 show the basins of attraction of the two limiter-
switching schemes for At = 40, long after the spurious behaviour of the minmod
scheme has died off. In Figure 5.3.3 the region X > 0,Y < 0 is composed of two
basins of attraction, with one set of initial conditions converging to the falsely-
stable fixed-point solution of the superbee scheme and the other converging to
the (nearby) falsely-stable fixed-point solution of the minmod limiter.

Although the limiter-switching schemes retain the same basic dynamical struc-
ture as the primary limiter the introduction of a well-behaved switching limiter
appears to lessen the effect of, or even completely remove, the influence of spu-
rious asymptotic solutions arising from the limited anti-diffusive flux terms. In
the full problem therefore, at values of At for which the superbee and van Leer
schemes suffered residual plateauing, their solutions are replaced by those of the
well-behaved minmod scheme. It is this feature which leads to the increased
stability and improved convergence capabilities of the limiter-switching schemes.
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6 Concluding Remarks

Explicit and implicit formulations of an E-O upwind based TVD scheme, using
a selection of flux limiters, were used to approximate the solution of a scalar
transonic flow problem possessing multiple steady-states. It was shown how an
implicit discretization of the problem can result in a physically unstable solution
of the original ODE becoming a stable solution of its numerical counterpart.

The problem was reduced to a 2-D system in order to allow a study of the
dynamics of the numerical solution at points on the stable and unstable shocks.
The explicit schemes were shown to possess no spurious dynamics below their
respective stability limits. As At was increased above the stability limit the
schemes entered a period of bifurcation and chaos accompanied by a dramatic
shrinkage in the numerical basins of attraction.

The dynamics of the implicit schemes at the unstable shock showed the falsely
stable fixed point becoming stable for sufficiently large values of At. For all
the limiters tested the stabilizing of the fixed point was accompanied by the
introduction of additional, spurious fixed points. These spurious solutions caused
fragmentation, and a reduction in size, of the basin of the falsely stable fixed
point. The fact that the more compressive limiters exhibited greater disruption
of the numerical basins due to the effects of the spurious fixed points seems a likely
cause of the phenomenon of residual plateauing experienced in the full problem.

Two methods for combatting residual plateauing were studied. Although im-
proving convergence rates limiter-freezing, whereby the value of the limiter is kept
from being updated at points exhibiting instability, did so at the cost of intro-
ducing a great number of spurious fixed points, causing a severe fragmentation of
the numerical basin of attraction and leading to multiple spurious solutions with
a high dependence on initial conditions. The method of limiter-switching on the
other hand, which switches to a less compressive, more stable limiter at points
exhibiting instability, replaced the spurious behaviour of the primary limiter with
the more stable behaviour of the switching limiter. This lead to improved basins
of attraction and convergence rates. Although the resolution of the solution at
certain points in the full problem (notably points around the shock) was only as
good as allowed by the less compressive limiter, limiter-switching was only en-
abled for values of At for which the more compressive limiter would have caused
non-convergence. For other values of At the resolution remained as for the more
compressive limiter.

It is important to note that both methods enhanced convergence to the steady
solutions of the underlying E-scheme irrespective of the physical stability of these
solutions. In particular, whilst the limiter-switching method reduced the influence
of spurious fixed points introduced by the limited anti-diffusive flux terms, and
improved convergence to the true solution with a shock at =z = 0.18, it also
increased the stability of the falsely stable solution at x = 0.82. Clearly other
techniques are needed to identify and account for such falsely stable solutions.
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Figure 4.1.1 : Bifurcation diagrams for fixed points at the stable shock. 1st order
explicit E-O scheme.
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Figure 4.1.2 : Basins for fixed points at the stable shock. Explicit E-O scheme.
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Figure 4.1.3 : Bifurcation diagrams for fixed points at the stable shock. Explicit
minmod TVD scheme.
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Figure 4.1.4 : Basins for fixed points at the stable shock. Explicit minmod TVD
scheme.
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Figure 4.1.5 : Bifurcation diagrams for fixed points at the stable shock. Explicit van
Albada TVD scheme.
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Figure 4.1.6 : Basins for fixed points at the stable shock. Explicit van Albada TVD
scheme.
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Figure 4.1.7 : Bifurcation diagrams for fixed points at the stable shock. Explicit van
Leer TVD scheme.
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Figure 4.1.8 : Basins for fixed points at the stable shock. Explicit van Leer TVD
scheme.
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Figure 4.1.9 : Bifurcation diagrams for fixed points at the stable shock. Explicit
superbee TVD scheme.
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Figure 4.1.10 : Basins for fixed points at the stable shock. Explicit superbee TVD
scheme.
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Figure 4.1.11 : Bifurcation diagrams for fixed points at the unstable shock. 1st order
explicit E-O scheme.
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Figure 4.1.12 : Basins for fixed points at the unstable shock. Explicit E-O scheme.
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Figure 4.1.13 : Bifurcation diagrams for fixed points at the unstable shock. Explicit
minmod TVD scheme.
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Figure 4.1.14 : Basins for fixed points at the unstable shock. Explicit minmod TVD
scheme.
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Figure 4.1.15 : Bifurcation diagrams for fixed points at the unstable shock. Explicit
van Albada TVD scheme.
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Figure 4.1.16 : Basins for fixed points at the unstable shock. Explicit van Albada
TVD scheme.
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Figure 4.1.17 : Bifurcation diagrams for fixed points at the unstable shock. Explicit
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Figure 4.1.18 : Basins for fixed points at the unstable shock. Explicit van Leer TVD

scheme.
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Figure 4.1.19 : Bifurcation diagrams for fixed points at the unstable shock. Explicit
superbee TVD scheme.
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Figure 4.1.20 : Basins for fixed points at the unstable shock. Explicit superbee TVD
scheme.
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Figure 4.2.1 : Bifurcation diagrams for fixed points at the unstable shock. 1st order
implicit E-O scheme.
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Figure 4.2.2 : Basins for fixed points at the unstable shock. Implicit E-O scheme.
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Figure 4.2.3 : Bifurcation diagrams for fixed points at the unstable shock. Implicit

minmod TVD scheme.

1.00_, — 1.00

0.00

=0.50

=1.00

D =1
-1.00 -0.50 0.00 0.50 1,00

vn dt = 5.0
1.00 1

0,50

=t.00

; -1
-1.00 -0.50 0,00 0,50 1,00

0.50

=0.50

0.50_F

o.00

vn dt = 2.0

00
=1.00

.00
-1.00 -0.50 0O.00 0.50 1.00

Figure 4.2.4 : Basins for fixed points at the unstable shock. Implicit minmod TVD

scheme.
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Figure 4.2.5 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
van Albada TVD scheme.
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Figure 4.2.6 : Basins for fixed points at the unstable shock. Implicit van Albada TVD
scheme.
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Figure 4.2.7 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
van Leer TVD scheme.
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Figure 4.2.8 : Basins for fixed points at the unstable shock. Implicit van Leer TVD
scheme.
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Figure 4.2.9 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
superbee TVD scheme.
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Figure 4.2.10 : Basins for fixed points at the unstable shock. Implicit superbee TVD
scheme.
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Figure 5.2.1 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
superbee TVD scheme with limiter freezing.
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Figure 5.2.2 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
van Leer TVD scheme with limiter freezing.
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Figure 5.3.1 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
superbee/minmod limiter-switching TVD scheme.
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Figure 5.3.2 : Bifurcation diagrams for fixed points at the unstable shock. Implicit
superbee/van Albada limiter-switching TVD scheme.
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Figure 5.3.4 : van Leer/minmod



