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Optimal Strategies for the Control of Wave Energy
Converters with Various Power-Take-Off Mechanisms

N.K. Nichols and A. Crossley

Department of Mathematics
University of Reading
Box 220, Whiteknights
Reading RG6 6AF

Abstract

The aims of this research are to develop and test methods for analysing and computing optimal
control strategies for maximizing the useful power generated from wave energy converters with
realistic power-take-off and control mechanisms. Previously, strategies for maximizing energy
absorbed by wave devices have been investigated, but these studies have assumed an ideal
conversion rate using perfectly efficient turbomachinery with no constraints imposed . by the
generator capacity. In practice losses occur in the conversion process due to a number of different
factors, including mechanical losses in the turbomachinery, head lossses through ducts and
limitations on power-take-off. The effect of these losses is nonlinear and depends, in general, on
both the hydrodynamic efficiency of the device and on the characteristics of the power-take-off
mechanism. '

In this report different turbine characteristics and control mechanisms incorporating nonlinear losses
are modelled, the qualitative properties of the optimal control strategy for maximizing power
delivered at the turbine shaft are analyzed, computational techniques for determining numerical
solutions to the optimal control problem are established and the results are tested on a fully
developed hydrodynamic model of a wave energy device.

The results confirm that the control gives greater improvement in the energy output for devices that
are smaller relative to the wave length. The control of head difference across the turbine is observed
to be less robust than the control of turbine flow rate (independent of head difference), and flow rate
control strategies that maximize average power output are found to be qualitatively different from
strategies that optimize entergy absorbed from the waves.

A significant new result of these studies is that the improvement in the generated power produced by
optimally controlling the flow rate across the turbine (independently of head difference) increases
with increasing losses in the turbomachinery.
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1. Summary of Report

1.1 Conclusions
The conclusions are summarized as follows:

1. In order to assess the effectiveness of the device design and the control strategies correctly,

realistic models of the power-take-off and control mechanisms need to be incorporated in the device
model.

2. Control strategies that maximize the energy generated by the power-take-off mechanism are
different in nature from the strategies that maximize the energy absorbed from the incident wave.

3. The optimal control strategies that maximize energy output where there are losses in the turbo-
machinery are not "on-off ", or "bang-bang", but require the turbine flow rate to increase smoothly
and shut-off abruptly.

4. Both theoretical analysis and numerical simulation are needed to identify the optimal control
strategies. The projected-gradient method is a simple but effective technique for computing the
optimal. More robust techniques are available at higher computational cost.

5. Control mechanisms are more effective in improving the power output from devices that are small
relative to the average wave length of the sea state than for larger devices. This effect is more
pronounced in the case where there are losses in the power-take-off mechanism than where the
device is perfectly efficient.

6. The larger the losses in the turbo-machinery, the greater is the improvement in power output that
can be achieved by a control mechanism for a device of any size.

7. Control mechanisms using throttle valves to control the head difference across the turbo-
machinery are very sensitive. The optimal control problem in this case is ill-conditioned with many
local maxima near the optimal. These locally maximal strategies "chatter"; that is, the control
oscillates rapidly between closed and open. The "chattering" strategy, in practice, acts to control the
flow rate through the turbine. This can be achieved more effectively by a mechanism designed
explicitly for this purpose.

8. The effectiveness of the control mechanism is reduced if constraints on the head difference are
imposed to prevent the turbine from stalling or choking. As the constraints become stronger, the
optimal response approaches that of the uncontrolled system.

9. The use of the turbomachinery as a compressor during part of the wave cycle gives only a small
improvement in the average useful power generated by the device model studied here. The
improvement is greater for smaller devices relative to a fixed wave length. This improvement is
reduced as mechanical losses in the machinery increase, but appears to increase marginally as head
losses increase. These effects are likely to be more pronounced if more realistic compressor
characteristics are used to model the action of the pump.

10. Further studies are needed to determine optimal control strategies and system responses

for specific system devices using sound hydrodynamic models together with the full characteristics
of the turbomachinery and the control mechanisms.
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1.2. Scope and Objectives

The aims of this project are to develop and test methods for analysing and computing optimal control
strategies for maximizing the useful power generated from wave energy converters incorporating
power-take-off and control mechanisms. Previously, strategies for maximizing energy absorbed by
wave devices have been investigated, but these studies have assumed an ideal conversion rate using
perfectly efficient turbo-machinery with no constraints imposed by the generator capacity.

Specifically, the objectives of the project are to model different turbine characteristics and control
mechanisms, to analyze the properties of the optimal control strategy for maximizing power
delivered at the turbine shaft, to develop computational techniques for determining numerical
solutions to the optimal control problem and to test the results on a fully developed hydrodynamic
model of a wave energy device.

1.3. Choice of Methods and Models

The optimal control problem is specified in terms of the power output characteristics of the
generating turbine, defined as functions of the flow rate and head difference across the turbine,
together with the state equations describing the hydrodynamic response of the device to an incident
wave. The flow rate and/or head difference are controlled. The control mechanism is modelled by a
non-dimensional control variable with constraints on the range of admissible values.

The analytic techniques used to investigate the optimal control strategy are based on a Maximum
Principle derived from the calculus of variations. The standard mathematical theory does not apply
directly to wave energy systems due to the convolution integral, representing the wave radiation
force, that is contained in the dynamical state equation. A modified theory has been developed
previously (Hoskin, Count, Nichols and Nicol, 1986, and Hoskin, 1988) which is used here to treat
the optimal wave energy control problem. For constrained problems where the constraints on the
control are functions of the state variables of the system, a transformation technique is used to
reformulate the problem in terms of controls with fixed constraints, allowing the theory and the
numerical procedures to be applied to these cases.

The primary computational method used to determine the numerical solutions to the optimal control
problem is a simple but efficient discretized projected-gradient technique. As a class the gradient-
type methods have fast rates of convergence and the projected-gradient algorithm, in particular,
proves to be effective in treating the class of problems which arise in the modelling of power-take-off
mechanisms in wave energy devices. Conditional gradient algorithms have been used previously and
are more suitable for computing "on-off " control strategies, but as shown by the analysis, the optimal
controls for systems containing realistic turbine characteristics are not strictly "on-off" strategies and
the projected-gradient algorithm is found to provide more satisfactory results for the models
formulated here. The discretized form of the projected-gradient method is not highly robust,
however, and for extremely sensitive, or ill-conditioned, optimal control problems an alternative
approach is used. In such cases, the control problem is completely discretized and a sophisticated
discrete optimization package is applied (Conn, Gould and Toint, 1992). This approach is more
robust than the simpler projected-gradient method but requires much greater computational power.

A time-domain model of an oscillating water column wave energy converter equipped with a Wells
type turbine is used in this investigation. The model was developed under the EC JOULE I R&D
Programme and a numerical simulator was constructed (Justino, Nichols and Falcdo, 1993). The
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model combines a good hydrodynamic description of the device with a facility for incorporating
various power-take-off and control mechanisms in the simulator and was selected as it was fully
developed at the start of this project The analytic conclusions obtained with this model are generic,
however, and the techniques developed in this study can readily be applied to other device models.
The hydrodynamics of the system need to be modelled accurately, however, for the conclusions to be

valid, as shown in the float system study completed as part of this project (Greenhow and White,
1996).

1.4. Methodology

Details of the modelling and the analytical and numerical techniques used in this research are
described in the main sections of the report. The mathematical formulations of the device model, the
turbine characteristics and the control mechanisms are derived in Section 2. The optimal control
problem is specified in Section 3 and qualitative properties of the optimal control strategies are
investigated. The complete discretized algorithm for computing the numerical solutions to the
optimal control problem is then defined in Section 4.

1.5. Results
1.5.1 Analytical Results

Results of the analysis show that the optimal form of the control strategy depends on the type of
control mechanism used.

If the head difference across the turbine is controlled, through a throttle valve for example, the
optimal strategy for a perfectly efficient power-take-off mechanism (designed to maximize power
absorbed from the incident wave) is an "on-off " strategy. This property still holds if there are losses
in the turbomachinery.

If the flow rate is controlled, by a variable geometry turbine for example, then the optimal strategy
also appears to be "on-off " for perfectly efficient turbines, but now "singular arcs" can arise in the
solution to the optimization problem and interior values of the control may be maximizing. For
power-take-off mechanims with losses, the optimal strategies for flow rate control are no longer "on-
off ", but require the flow rate to increase smoothly between prescribed limits, as the turbine is
brought on-line, and to shut off abruptly.

If the flow rate is controlled indirectly by a relief or by-pass valve, the analysis shows that the
optimal control is an "on-off" strategy and cannot contain singular arcs.

1.5.2 Numerical Results
The numerical results confirm the analytical results.

In the case where the head difference across the turbine is controlled, the optimization problem is
found to be ill-conditioned and to have many local maxima near the optimal. The numerical
solutions are highly sensitive to the initial approximation used in the computational iteration
procedures and it is, therefore, very difficult to determine the optimal accurately. The locally
maximal strategies "chatter"; that is, the control oscillates between off and on at every discrete point
over some part of the wave cycle. The onset and length of the chattering period is also numerically
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sensitive. This behaviour can be understood from the results obtained in the case where the flow rate
is controlled. The "chattering" strategy can be seen to act in practice to control the flow rate through
the turbine smoothly.

In the case where the flow rate is controlled directly, the numerical results show that the optimal
strategy for a perfectly efficient power-take-off mechanism does contain "singular arcs," as predicted
by the analysis. The optimization problem, although still mildly sensitive, can be solved relatively
easily to the desired accuracy. Along the singular arcs, the gradient of the power functional is zero
and the control is determined implicitly by this condition. The optimal control is observed to
increase relatively smoothly between its prescribed limits along the singular arcs. These periods
correspond to periods of chattering in the case where the head difference is controlled, and the
chattering control can be interpreted as giving a "bang-bang" approximation to the required optimal
flow rate strategy. A mechanism designed explicitly to control the flow rate is expected, therefore, to
be more effective and more robust than a mechanism that controls the flow rate implicitly by
controlling the head difference.

For power-take-off mechanisms with losses, this conclusion is even more clear. In this case the
optimal strategy for controlling the head difference remains "on-off ", or "bang-bang." In contrast,
the optimal strategy for controlling the flow rate now contains interior segments that are explicitly
defined and the optimal control varies smoothly along these segments.

In the case where a by-pass or relief valve is used implicitly to control the flow, the numerical results
exhibit the "on-off" behaviour predicted by the analysis, without any chattering of the valve.

Detailed results of experiments with regular incident waves of different lengths, for optimally tuned
devices of different sizes, equipped with various power-off-take and control mechanisms are
discussed in Section 5 of the report. The optimal strategies and corresponding system responses are
shown for various cases in the attached Figures. The effectiveness of the optimal strategies under
various conditions is demonstrated in the Tables, which show the ratio of the optimally controlled
power output to the uncontrolled output. In evaluating the results it should be recognized that the
device model used here is already well-tuned to the wave climate, and that the gains that can be
achieved by controlling the system are not great. For smaller devices, or longer sea waves, the
effectiveness of the controls increases greatly, as can be seen from some of the Tables. Conclusions
that can be drawn from these experiments are summarized in Section 1.1.

2. Mathematical Models

In this section we discuss the aims of the research and specify the device models, including the
turbine characteristics and control mechanisms, that are used in the investigation.

2.1 Background

Previous research has mainly concentrated on optimizing device designs with respect to the energy
absorbed from the wave, assuming a perfectly efficient power conversion mechanism. Optimal
damping and stiffness characteristics of the converter have been identified for regular wave
conditions using frequency domain analysis. Control mechanisms for increasing absorbed energy
from various devices in non-resonant wave conditions have been proposed and investigated. The aim



of the control strategies has been to bring the device velocity into phase with the incident wave
diffraction force, thereby reducing losses in absorbed energy.

Two types of control strategy have been investigated: latching strategies and reactive loading
strategies. Latching is achieved by physically halting the device motion in the case of float systems
or by stopping the air flow to the converter in the case of pneumatic devices. Theoretically, latching
enables the attainment of energy absorption close to the maximum achievable with linear mechanical
conditioning in regular waves. Through simulation studies, latching mechanisms have also been
shown to lead to improved energy absorption over the whole sea-spectrum. Reactive loading, in
contrast to latching strategies, allows the flow rate and head difference across the turbine to be
controlled independently. With such control mechanisms the theoretical maximal energy absorption
can be attained for any wave profile. Perfect reactive loading in this case requires the reverse
operation of the power converter, however, so that during parts of the wave cycle, energy must be
pumped into the system.

The improvement in energy absorption resulting from the application of a control mechanism has
been shown to depend on the size of the device and the frequency range of the local wave climate. It
has been established that efficient energy absorption over a wider frequency band is enabled by a
controller and that control mechanisms are most effective for improving the productivity of relatively
small devices. Controllers thus allow the use of smaller plants for the same gains and enable the
delivered cost of the energy to be reduced. (See Nichols, 1993, for references.)

It has been demonstrated, however, that control strategies that optimize energy absorption are not
equivalent to strategies that maximize the useful power generated by wave energy converters under
operational conditions (Sarmento, Gato and Falcdo, 1990; Nichols, Falcdo and Pontes, 1991). Losses
occur in the conversion process due to a number of different factors, including mechanical losses in
the turbomachinery, head lossses through ducts and limitations on power-take-off. The effect of
these losses is nonlinear and depends, in general, on both the hydrodynamic efficiency of the device
and on the characteristics of the power-take-off mechanism. For the optimization and evaluation of
device designs it is necessary, therefore, to investigate models of the devices that incorporate realistic
characteristics of the conversion and control mechanisms.

The aims of this research project are to develop and test techniques for analysing and computing
optimal control strategies for maximizing power output from wave energy devices with specified
power conversion mechanisms. A basic framework for investigating the optimal control problem is
provided by the calculus of variations and Pontryagin's Maximum Principle. Analysis is carried out
in the time-domain, using mathematical models of the device. Qualitative properties of the optimal
strategy are derived from the necessary conditions for the optimal, and discrete numerical
optimization techniques are applied to compute solutions to the control problem.

Specifically, the objectives of the project are to model different turbine characteristics and control
mechanisms, to analyze the properties of the optimal control strategy for maximizing power
delivered at the turbine shaft, to develop computational techniques for determining numerical
solutions to the optimal control problem and to test the results on a fully developed hydrodynamic
model of a wave energy device. In the next three sections, the device model used in this
investigation is defined and models of the power-take-off and control mechanisms are developed. In
the following main sections of the report the optimal control problem is formulated and analyzed for
various system models and the numerical techniques used to solve the optimization problem are
described. Numerical results and conclusions are presented in the final sections of the report.



2.2 Device Model

In this project we investigate an oscillatory water column (OWC) wave energy converter. A time
domain model for this device was developed under the previous EC JOULE R&D Programme and a
numerical simulator was constructed. This model combines a good hydrodynamic description of the
device with a facility for incorporating realistic power-take-off mechanisms. The device is assumed
to be fixed with respect to the sea bed, which is taken to be of arbitrary depth and shape. The waves
incident upon the device are supposed in general to be irregular. The analysis is based on classical
linear water-wave theory and follows that of Nichols, Falcdo and Pontes (1991).

We let p(t)+p, be the air pressure (assumed uniform) inside the chamber, where p, is
atmospheric pressure, and let g,(¢) be the volume flow rate displaced by the internal free surface of
the water in the chamber (g, >0 for upward motion). The flow rate of the volume V(¢) of air in

the chamber is then dV /dt=—q,, and the mass flow rate —dm/dt through the turbine (positive
for outward flow) can be written

dm d dp
e = I/ =—p — 4 < 2.
dt dt e7) dt Rl @D

The relationship between the pressure and the density p of air depends on the thermodynamic

process taking place inside the chamber and the turbine. (See Falcéo and Justino, 1994). Here we
consider the air to be a perfect gas and assume that both the discharging and filling processes are
isentropic. Consequently we may write

(p+p,)p”" =constant = p,p," (2.2)

where p, is the atmospheric air density and y =c, /¢, is the specific heat ratio. In addition, the

variation in air density is considered small, that is,

p— pa| << p,, which allows us to write density
as a linear function of pressure

p=pa|:l+§m:|. (2.3)

a

If we assume also that |V —V,,I <<V,, where ¥, is the volume of the air chamber at equilibrium,
then the volume flow rate g through the turbine can be written as

1 dm v, dp
H=——"=——2 4 q (). 2.4
q(t) o dt o, dt q.(¢) (2.4)

The flow rate g.(¢) can be decomposed using linear water-wave theory in the form
q:(1)=q, () +q4(1), (2.5)

where ¢, is the radiation flow rate induced by air pressure oscillation in the chamber in the absence

of incident waves and g, is the diffraction flow rate due to the incident wave field with the air
chamber held at atmospheric pressure.



Within the framework of linear water wave theory, the radiation flow can be expressed in the form

4= x@pe-te = [ ct-npein, 2.6)

where x(t) depends on the geometry of the system. This function is easily related to the system’s

radiation coefficient by setting p(t) = P, q,(H)= Q,eim’ , Where 13(0) ), Q, (w) are in general
complex. The complex coefficient of radiation is by definition (Evans, 1982)

B(w)+iC(w)= Qr (w)/ f’(co) , where B,C are real. Assuming x(t) to be an even function, we
find by a Fourier transform that

Bo)="%[" x(t)e™dt, @.7)

from which, by inversion, we obtain

k()= %J:B(m )cos(o ¢ )dw . 2.89)

The function B(w) depends on the geometry of the device and is assumed to be known either
theoretically or from measurements.

Combining equations (2.4), (2.5) and (2.6) we obtain

% =—cq(t)+c j « (¢ =) p(t)dt +cqy(t), (2.9)

where c=yp,/V, and we assume, without loss of generality, that p=0 for 1 <0. The turbine
flow rate g(#) is determined by the power take-off and control mechanisms, and for a given incident
wave form the diffraction flow rate g,(¢) is assumed to be a known function of time, dependent on
the geometry of the device.

In the numerical simulator a simple two-dimensional geometry is adopted for the device. The
incident waves are assumed to propagate unidirectionally towards the device along a channel of
constant depth 4 and of constant width b equal to the inner chamber width. This geometry can be
regarded as an approximation to an OWC device built in a gulley (such as the pilot plants designed
for Islay in Scotland and Pico in the Azores). The chamber consists of a vertical fully reflecting back
wall and a front wall at distance a from the back wall. It is assumed that the lower lip of the front
wall is submerged to a negligible depth and is of small thickness, so that the diffraction it produces
may be ignored.

For this geometry the hydrodynamic coefficient of radiation B(w) is given analytically (Sarmento
and Falcdo, 1985) by

B(®) =—2‘°—”Zsin2 ka, (2.10)

w

where g is the acceleration of gravity, p,, is the density of water, & is the wave number, related to
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the angular frequency © by the dispersion relationship

ktanhkh=0?/g, 2.11)

and p =(1+(m2 / g)hcosechz(kh))_l . The procedure for computing x(¢), defined by (2.8), is
described in (Justino, 1993). It should be noted that k(#) has a logarithmic singularity at =0
which is integrable.

If the diffraction due to the front wall is neglected, then the diffraction flow rate g, is simply that

of the volume displaced inside the chamber by the free surface of the stationary wave system, which
is obtained from the superposition of the incident wave and the wave reflected from the back wall.
For a regular incident wave with angular frequency ® and amplitude #, we find that

2bA40

qq ()= sin(2ka)cos(wt +0), (2.12)

where O is the (random) phase shift. The energy flux of the incident wave, equal to the rate of
work done by the pressure forces on a vertical plane at a fixed point in the channel, averaged over an
integer number of wave periods is given by

E, =A#%bp,g0 / 4k . (2.13)

Regular waves are simulated by the superposition of a finite number N of regular waves. The
diffraction flow rate is then

J

A0
2L sin(2k a)cos(w ;¢ +6 ), (2.14)
J

%
qq=2b
d =%,

where it is assumed that © ; =@, /N s N ; an integer. The average energy flux of the composite
wave over the wave period is then given by

, N )42(0 ;
Efzﬂz#_ (2.15)
4 50 Kk

The spectral distribution of the irregular waves is taken to be representative of the wave climate
measured at the pilot plant site on Pico in the Azores.

2.3 Turbine Characteristics

From turbomachinery theory it is known that the mass flow rate dm/dt through the turbine depends
on the pressure difference p, across the turbine and on the rotational speed Q of the turbine, as

well as on the stagnation conditions at the turbine entrance (that is, on p,,p, for inward flow and
p,p for outward flow). Here we may ignore the effects of varying inlet stagnation conditions, since
we assume that pressure and density variations are small compared to p,,p,. The volumetric flow
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rate g through the turbine can then be expressed in the form

q= Qd’(%j- (2.16)

For a Wells type turbine, which is known to be linear in characteristic, the volumetric flow rate can
be written

g=K'p, 1Q, (2.17)
where K' depends upon p, and the diameter of the turbine.

The power P generated at the turbine shaft is also a function of both the pressure difference p,
across the turbine and the rotational speed Q and can be expressed in the form

P=QL,(p,,Q)EQ3H{§2—), (2.18)

where L, =Q%T s the turbine torque. In the case where there are no losses in the turbo-
machinery, and all the energy available to the turbine is output, we have

P=Py=qp,, 2.19)

which for a Wells type turbine implies that the function IT is given by

2
B K{%) | (2.20)

In the case where there are losses, we have P =gpm,, where 1, is defined to be the turbine
efficiency. The efficiency may be expressed in terms of the power losses £ in the form

n,=1-4/P,y. A simple approximation to the power losses in the Wells type turbine can be
written

£=0Dg* +Q°C. (221)

The power output is then given by (2.18) where
2
m=K'(l- DK’)(p—’Z) =16, (2.22)
Q
In practice, the function IT is adequately approximated by a quadratic function of the form
TI(E) = axt” +arfe| -, (2.23)

where & = p, /Q* and ay,ay,a, >0.
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For a given characteristic curve I, the turbine operates at maximum efficiency where the rotational
speed Qp of the turbine is related to the pressure p, across the turbine by the equation

Qp=yp 'k - (2.24)

Here & i is a dimensionless quantity satisfying

oP 0 3 2 2.3

— = (QTI(E) =3Q°TTI-—EQ’TI' =0, 2.25

20 aQ( (3), 3§ (2.25)
or equivalently,

2 !

§§EH Eg)=TEE). (2.26)

For some types of turbine, including in particular the Wells type turbine, the curve TII(§) exhibits a

maximum for a critical value |§‘=&, o+ It is undesirable to operate the turbine at values of

=p,/ 0? beyond the critical value, as power is lost and stalling or choking of the turbine can
t g

result. In practice a control mechanism, such as a by-pass relief valve or a throttle valve in the
turbine duct, is used to prevent the critical value being exceded.

For a two-dimensional device with the geometry described in Section 2.2, equipped with a Wells type
turbine operating at a fixed rotational speed Q and driven by a regular incident wave of frequency
® , an optimal value for the turbine constant K =K'/Q is given by Sarmento and Falcdo (1985).
The optimal parameter maximizes the proportion of the available energy E, that is absorbed by the
device from the wave. Maximum absorption of 100% can be achieved for complex values of K, for
such parameters the turbine is operating out of phase with the flow and must act, over part of the
cycle, as a compressor, supplying energy to the wave field. For the models examined here, no phase
difference is assumed, and K is selected to be real and such as to maximize energy absorption at a
typical wave frequency in the sea spectrum. The control mechanisms can be used, however, to
enable the turbine to act as a compressor over parts of the wave cycle.

2.4 Control Mechanisms

Three basic mechanisms for controlling the device are available. The first allows for the pressure
p; across the turbine to be controlled using a throttle valve. The second permits flow through the

turbine to be controlled, for example, by a variable geometry turbine. The third is a by-pass or relief
valve.

2.4.1 Control of Pressure Difference

We assume that the rotational speed Q of the turbine is fixed at a constant value €, and that the
pressure p, can be controlled. In the simplest model we take p, to be directly proportional to the
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pressure p and write
Py =0ap, a €[0,1], (2.27)

where a.(f) is a (non-dimensional) control variable. To ensure that p, does not exceed the critical

value p, =QF, for the turbine, we need to limit the control a(f) to satisfy

o e[0,1] for |p| < pe,

(2.28)
a [0, p,, /|p[] for |p| <p,,.

A more sophisticated model can be obtained by assuming that p, is controlled via a throttle valve.
Then we find

P =p—&2[2‘%}sq2 (2.29)
where o =sign(p), A is a reference area related to the turbine diameter, and G (¢) is now the
(non-dimensional) control variable. Substituting into (2.29) for ¢ =Kp, from (2.17), where
K=K'/Q, weobtain

(o3

Tl J1+ 43> ) (2.30)

b=

with v2=paK2/ 24%.  Assuming v? s sufficiently small, we find that a reasonable
approximation to p, is given by

pe=p—avippl. (2.31)

The limits on the control variable are now

0<& <1/ (vy7]) (2.32)

For & =0, the valve is fully open and p,=p. For & at its maximum value, the pressure
difference p, across the turbine becomes zero. To ensure that p, does not exceed the critical

value for the turbine, we limit & to satsify (2.32) for |p|< p, and

1 ~ 1
— P - per <G <— for |p|2 pe, - (2.33)
vlp| vl

Although this model appears more realistic than the simple model initially proposed, from an analytic
point of view, the optimal control strategies reduce to the same form. Indeed, &> can be generated
directly from o using &’ =(1-a)/ (v\/H) .

2.4.2 Control of Flow Rate

In the simplest model of flow control, we assume that the flow rate g across the turbine can be
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controlled, independently of the pressure, proportionally between zero and the maximum capacity of
the turbine; that is, we take

q =akp, (2.34)

where K=K'/Q, Q; is a nominal value of the roational speed of the turbine, and the (non-
dimensional) control variable o.(¢) satisfies

() €[0,1]. (2.35)

If no pressure losses are assumed in the turbomachinery, then p, = p. Alternatively losses may be
modelled as for a throttle valve. In this case

_ P 2
pr=pP- (ﬁj@q (2.36)

where A is some representative area and ¢ = sign(p). Substituting for ¢ from (2.34) and solving

for p, gives (2.30) as before. Provided that v? = p aKz / (2A2) is sufficiently small, p, can be
approximated as in (2.31), and we find that the controlled flow rate is given as a function of p by

g=Ka(p-o*vipp). (2.37)

If we allow the turbine to act as a compressor during part of the wave cycle, then the flow can be
driven in the opposite direction to the pressure difference, and the control a(f) may take negative
values. In this simple model we restrict oo to the range

a(r) e[-L1], (2.38)

and assume that the turbine characteristics are the same for both compression and generation modes.
More sophisticated models can be constructed that allow for different characteristics in each mode of
operation (Andrews, Nichols and Xu, 1990).

To ensure that the critical turbine flow is not exceeded at the rotational speed ; we require that
|a(t)| satisfies

loe(t)| €[0,1] for |p,| < p, = OfE .,
(2.39)
low(#)| €0, per / |} for |py|= P

In practice, the flow is controlled independently of the pressure, and the pressure p, across the

turbine cannot be maintained below its critical level for a given rotational speed by controlling the
turbine flow alone. An additional control mechanism is needed.
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2.4.3 Control of Relief Valve

An alternative mechanism for controlling the flow rate is a by-pass or relief valve. The total
volumetric flow rate g is then given by the sum of the flow rate g, through the turbine and the
flow rate g, through the valve. The valve flow rate is given by

2
7, <ls J_P| (2.40)
a

where the (non-dimensional) control variable &(¢) €[0,1], o =sign(p) and A4 is some
representative area. The total flow then takes the form

q=4,+apo |7 (2.41)
where B=42/p,.

In this case, to ensure that g, = Kp, does not exceed the critical value at the rotational speed Q,,

we require that for |p,|z p,, = Q¥ o s

0<8 < (7]~ Kpor)/ (B Per) 2.42)

—~

where § is the total flow rate needed to ensure that 1 p,| = p,, is maintained; thatis, § is such that

dp/dt=0,, where dp/dt isgivenby (2.9)with g=g .

In practice the two flow control mechanisms described in Sections 2.4.2 and 2.4.3 need to be used
together to achieve the desired behaviour of the system.

3. Optimal Control Strategies

The optimal control problem is to determine the control strategy that maximizes the generated
energy £ produced by the wave plant during a given time interval 0<¢<T, subject to the
dynamical system equations and the constraints on the control (and state) variables being satisfied.
We observe that the optimal strategy for maximizing the average power absorbed by the device from
the wave is not in general the same as the optimal strategy that maximizes the average useful power
produced by the plant via the turbomachinery.

For the models described here, the optimal control problem can be written
. T
maximize E *=-J. P(a, p)dt 3.1
g 0
subject to

p==cq(@,p)+cf x(t-T)p()dt +cqq(t), p(0)=0, (32)
15



and

o <o <o

min max ? (3.3)
where we have assumed, without loss of generality, that p(¢)=0 for <0, and that the volumetric
flow rate ¢ and the instantaneous power output P are given functions of the control variable o
and the state variable p. The bounds o p;,, 0t 1 On the control variable may also be explicitly

dependent on the state p.

Following the arguments used in Hoskin, Count, Nichols and Nicol (1986), Hoskin (1988) and
Andrews, Nichols and Xu (1990), based on the calculus of variations, we can obtain necessary

conditions for an optimal control o * and its corresponding optimal state p* to solve the problem
(3.1)-(3.3). In the case where the bounds o ,;,, & are independent of the state p, we find that
the optimal solution must satisfy equations (3.2)-(3.3) together with an adjoint equation

. T
x=cxaa—q-cj c(@-na - L MT) =0, (3.4)
op ap
and a Maximum Principle, expressed by
H*p*\)=  max  H(a,p*\), (3.5)

A in SO max

where

H(@,p,2) = P(@, p) + M(=cq(@, p) +cf, x(t-1)p(x)ds +cqq ().

In the case where the constraints on the control depend explicitly on the state, a transformation on the
control variable is first used to eliminate the dependency of the bounds o ;,, ¢ on p. The

necessary conditions then follow by applying the theory to the modified problem.
The form of the optimal controller can be deduced from the Maximum Principle (3.5). In the

following subsections we examine the behaviour of the optimal solution under different assumptions
on the turbine characteristics and the control mechanisms.

3.1 Control of Perfectly Efficient Devices

We first consider cases where all of the energy available to the turbine is output; that is, the
turbomachinery is perfectly efficient (with m, =1) and the power generated by the turbine is given
by P=P,=qp,.

3.1.1 Optimal Control of Pressure Difference

In the simplest model of pressure control we assume that p, can be controlled proportionately to
the pressure p in the chamber and therefore that p, =ap, where o €[0,1]. The flow is then given
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by ¢=Kp, and the available power is P, = Ko?p?. For a* to be optimal, the Maximum
Principle (3.5) then implies that

Ka? p? = AcKop = Kap(op — Ac) (3.6)

must be maximized by o *. It follows directly that the optimal occurs where o takes either its
maximum or minimum value and hence

a*=0 if p(p—Ac)<0

3.7
=1 otherwise. S
We observe also that
oH
H, =—=Kp(ap—-ic)=0 (3.8)
oo,
where a =a,, =(p—»Ac)/2. Atthis point, however
8*H )
H,, E—2=2Kp >0 3.9)
ool

and hence o.,, minimizes the Hamiltonian (3.6) and does not give an optimal strategy.

If we constrain o to satisfy o €[0,p,, / | p\] in order to ensure that the turbine pressure does not

exceed its critical value, then we must modify the problem before applying the necessary conditions.
We make the transformation o =uG(p) where

G(p) =1 if <
(p) | 10l < Per G.10)
=Der /lpl if lpl 2 Per
and require u €[0,1]. The pressure is then given by p; =upG(p) and

q=Kp,, Py=qp, = Ku’p*G*(p). Applying the theory to the modified problem, we find that the
optimal o * takes the form

a*=u*G(p) =0 if pG(p)[pG(p)—Ac] <0,

) (3.11)
=G(p) otherwise.

If we consider the more sophisticated model where p, is controlled via a throttle valve, then
essentially the same results hold. Ignoring higher order terms in p,, we have

po=p-a?ipp,  q=Kp, (3.12)
and, therefore,
P, =Kp? = K(p* -2a*p?|p|+a*viph), (3.13)
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where

& [0,1/ (vl - (3.14)
We may use the same technique as previously to transform & onto a fixed interval, independent of
the state p, and then apply the optimality conditions. We find that the optimal & *  must now
maximize

K& p2@Wipt -c(2p-21c)), (3.15)

where o = sign(p), and, therefore,

a*=1/v\|p) if o(p-io)<,

(3.16)
=0 otherwise.
We find also that
Hy = K282 p* Qa2 p* —o(2p-Ac)) =0 (3.17)
at
~2 _ )
a0 =c2p-Ac)/ (2v:p°), (3.18)

which gives a real value for & provided o(2p—Ac)>0. For this value of &, however, Hgz >0
and hence (3.18) does not give a maximizing value for the control.

These results are to be expected, since there is a direct correspondence between d and the control
a for the simple model, as shown in Section 2.4. In the case where we require |p/| < per, this

correspondence can be used to find the optimal strategy o * directly from (3.11). We find that

a*=1/(vy|p| if o(p-Aic)<0,
=0 if o(p-Ac)>0 and |p|<p,, (3.19)

| JIpl = Per otherwise.

R

The optimal strategy for controlling the pressure is thus a ‘bang-bang’ strategy in all cases, and no
interior control strategy is maximizing.

3.1.2 Optimal Control of Turbine Flow Rate

We now examine the optimal strategies for controlling the flow in the case of a perfectly efficient
turbine where there are no pressure losses in the machinery. For the simple model we have p, =p
and

g=0Kp, P=P,=0Kp’ (3.20)

where a €[0,1]. The Maximum Principie (3.5) then implies that
18



Kocp2 —eKap=op(p—Ac)
must be maximized by o *. It again follows that o * must satisfy

a*=0 if p(p-Ac)<0

=1 otherwise. (EL2l)

It appears, therefore, that the strategies for controlling the flow and the pressure are the same in the
simplest cases. If we examine the gradient of the Hamiltonian, we find now, however, that

Hy = p(p—he), (3.22)

which is independent of o . It is thus possible that H, =0 over some interval of time. In this case

the control a is determined implicitly by (3.22) together with the state and adjoint equations (3.2)

and (3.4), respectively. For such a control to be maximizing the Clebsh condition (Bryson and Ho,
1975)

a d2m
)" —|—=H, | <0 3.23
- 6a[dt2’" u} (3.23)
must hold for the first positive integer m where d 2"’Ha / de*" depends non-trivially on o . Here

H, =0 implies that either (i) p=0 or (ii) p~Ac=0. Differentiating in case (i) leads to a
contradiction. Differentiating in case (ii) leads to an expression of the general form

dzHa 2
7=—ac Kfl(p,?»)+f2(p,}»)r, (3.24)

and hence (3.23) is satisfied with m=1 if the function f,(p,A)>0. This condition is not excluded

and therefore interior maximizing controls may exist along curves where H, =0. Such curves are
known as “singular arcs”.

The general nature of the optimal remains unchanged if we require o (f) €[-1,1] and thus allow the

turbine to be used as a compressor over part of the wave cycle, or if we require |a (t)l €10, pcrl pl] in
order to ensure that the critical turbine flow rate is not exceeded. In these models the optimal control

strategy is essentially ‘bang-bang’ with o * taking the maximum or minimum value permitted for
the control, except possibly along singular arcs.

We conclude that the optimal strategy for controlling the turbine flow is in general a ‘bang-bang’
strategy, but in contrast to strategies for controlling the pressure, interior controls can be optimal
along singular arcs.

3.1.3 Optimal Control of Relief Valve

With the alternative mechanism where the flow is controlled using a relief valve, we have
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g=Kp+GBoylpl,  Py=Kp*. (3.25)

The optimal strategy & *(#) must then maximize

~A&Bo /7], (3.26)
and therefore
a*=0 if pA=0, 57
=1 otherwise. (2:200)

To prevent the flow rate exceeding the critical value at the rotational speed (,, the optimal control
must take the form

a=0 if pA20,
1 if pA<0 and }p |spc,, (3.28)
= M otherwise.
B\/ Der

In this case singular arcs can occur if either p=0 or A =0. Differentiating in either case leads to a

contradiction and, therefore, singular arcs are excluded and the optimal control is always ‘bang-bang’
in nature.

3.2 Optimal Control Strategies for Turbines with Losses

We now investigate optimal control strategies for devices with losses in the turbomachinery. The
power generated at the turbine shaft is given by

P=qppn, :an[gf] : (3.29)

where the efficiency m, <1 gives a measure of the power losses. In practice the function IT is

generally approximated by a symmetric quadratic form, as described in Section 2.3. A simple model
of the losses in a Wells type turbine is given by

2
I=K'(1- DK')%‘Z—) — (3.30)

where the losses depend on the parameters D, C>0 .,

3.2.1 Control of Pressure Difference - Optimal Strategies for Turbine Losses

We model the controlled pressure either by p,=op or, in the more realistic model, by

p,=p—-0a 2y2 plpl, and assume that the rotational speed Q= is fixed. For losses of the form
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(3.30), we can see that the power function P is merely scaled and shifted, and therefore the optimal
control strategy remains the same as for the perfectly efficient turbine. For more general losses,
where Il is the quadratic function defined in (2.23), the Maximum Principle (3.5) implies that the
optimal o * (or &*) must maximize an expression of the general form

pi(@yp? + | p,|-8y) — AeKp, . (331)

If @ >0, this function is concave with respect to o (or ) and hence the optimal control
strategy must remain ‘bang-bang’, and no interior strategy can be maximizing.

Since the rotational speed of the turbine is assumed constant here, the flow rate g=Kp, and the

efficiency n, =n,(p,) depend only on op (or &p). The same conclusions on the nature of the
optimal control strategy must, therefore, hold for all losses where

Kp,[pm(p;) —Ac] (3.32)

is concave with respect to p,. Cases where this condition doesn’t hold are examined in Nichols,
Falcdo and Pontes (1991).

3.2.2 Control of Flow Rate - Optimal Strategies for Turbine Losses

The flow rate can be controlled either by altering the turbine flow rate, or by using a by-pass valve,
or by a combination of these techniques. Power losses can be experienced now through a drop in the
pressure p, across the turbine (due to duct losses, etc.) as well as through a direct loss of power
(due to mechanical losses, etc.) in the turbine. In the case of a by-pass valve, these losses affect the
power output, but do not modify the form of the optimal control strategy. The optimal control
remains an ‘open-closed’, or ‘bang-bang’, strategy. In the case where the flow rate through the
turbine is directly controlled, however, the nature of the optimal strategies is altered significantly.
This can be demonstrated by considering two simple models that illustrate the behaviour of the
optimal control strategies for each type of loss in the turbomachinery.

Mechanical Losses
We assume first that the controlled flow can be written g = Kop, where K= K'/Q;, and that the

power output is given by P =gqpm,, where the efficiency m,=1-4/gp and the (mechanical)
losses £ are given by
£=Dg*+C=DK*a?p*+C (3.33)

with D=Q,D and C= Q3C at rotational speed Q=0Q;.

The power output is thus P = K(ap? - DKa?p?)+C , and the Maximum Principle (3.5) implies
that

Klop(p - \c) - DKo p*] (3.34)

must be maximized with respectto o by the optimal strategy o *. The gradient of the
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Hamiltonian H, satisfies

H, = K[p(p-Ac)-2DKa p*1=0 (3.35)
at

6 3y = ];[g;{i;? i (3.36)
and we have

H,, =-2DKp* <0, Vo. (3.37)

It follows that the optimal control o*=o ,,, provided that o, is admissible. If we require
o €[0,1], then for p(p-Ac)<0 we musttake o*=0, since otherwise the expression (3.34) is

negative. If p(p—Aic)=2D Kp?, then a, >1 and o, is not admissible. The optimal strategy
is, therefore,

a*=0 if p(p-Ac)<0,
=oy if  0<p(p—Ac)<2DKp*, (3.38)
=1 if 2DKp*<p(p-ic).

Similarly, if we require o €[-1,1], then we find
a*=0 if p(p—kc)s-Zﬁsz,
=ay if p(p-rc)<2DKp?, (3.39)
=+1 if 2DKp*<p(p-ie).

In the constrained case, where |a|€[0, p.,/ |pl|] a corresponding result holds. We have a*=a

provided |p(p—Ac)|< 2DKp,|p| and a*=+p,/|p| otherwise, where the sign of o * depends
on the sign of p(p—Ac).

Duct Losses
Next we examine the effect of pressure (duct) losses on the optimal control strategy. We assume

again that g =Kop and that the power output is now given by P =gp, —C where p, is

approximated by p, =p —oc2v2p1p| . The power output is thus P = Kop(p —a2v2p|p|)— C, and

from the Maximum Principle (3.5) it follows that the optimal strategy o * must maximize
K(op(p-re)~a*vp?|pl) (3.40)

over all admissible o . The gradient M, now satisfies

Ha=K(p(p—xc)—3a2v2p2|p1)=o (3.41)
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at o = ta,., where

3v?p?Ipl
and we find
Hyy =—6av?p?|pl . (3.43)

The Hamiltonian is therefore maximized only for o =+o . If we require o €[0,1], then o ,, is

admissible for 0< p(p—Ac)<3v? Plpl. If p(p-xc)<0, the expression (3.40) is negative for
the admissible o unless o =0. The optimal strategy is, therefore,

a*=0 if  p(p-Ac)<0
=aM if  0<p(p-ie)<3vip?p (3.44)

=1 if 3v2p2|p|Sp(p—?»c).

If we require o €[-1,1], then o =+oa,, is admissible as before, and o =-a ,, is admissible

for —3v2p*|pl< p(p—-Ac)<0, but o=-o u does not maximize the Hamiltonian. Since the
expression (3.40) is positive for all a <0 if p(p-Aic)<0, the maximum is achieved with
o =—1 in this case. The optimal strategy is now given by

a*=-1 if p(p—-Ac)<0
=a, if 0<p(p-ic)<3vip?p| (3.45)
=+1 if  3vIp?|pl<p(p-ro).

Similarly in the constrained case where |a|€[0, p.,/|p|] is required, we find that a*=-p, /|p|

for p(p—Ac)<0, a*=a, for 0<p(p—Ac)<3vip?|p| and a*=+p,/|p| otherwise.
p M cr

If we take a more accurate model of pressure losses, where g = Kap, and P =gp, - C, we find that
the same general results hold.

We conclude that the optimal strategy for maximizing power output in the case of simple losses in
the turbomachinery is not an ‘on-off’, or ‘bang-bang’, strategy as for a perfectly efficient turbine, but
interior controls must now be applied in order to obtain the optimal output. The strategy for
maximizing generated power is therefore not the same as the strategy for absorbing maximum
energy from the incident wave.

Although these models are not entirely realistic, the results of the analysis are typical for systems
with turbine losses, and demonstrate the need for good models of the power-take-off mechanisms in
order to assess the effectiveness of control strategies in wave energy devices.

4. Numerical Procedures

The analysis of Section 3 gives qualitative properties of the optimal control strategies for a generic
wave energy device under various assumptions on the power-take-off and control mechanisms. In
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order to determine the precise forms of the optimal controls it is necessary to apply a numerical
procedure. The procedure used here consists of a constrained optimization algorithm for iteratively
determining the optimal control function, together with a numerical approximation scheme for
solving the state and adjoint equations.

For most of the results presented here, a projected gradient algorithm has been used to solve the
optimization problem. As a class, the gradient-type algorithms have fast rates of convergence and
the projected-gradient algorithm, in particular, has previously proved to be efficient for treating
problems that contain singular arcs and have discontinuous solutions (Andrew, Nichols and Xu,
1990). The gradient direction is computed in this process from the state and adjoint variables
(satisfying equations (3.2) and (3.4) respectively). In practice the solutions to these equations are
determined approximately by a finite difference method. The iteration process is easy to implement

and can be shown to converge to a solution in the neighbourhood of a local maximizer (Gruver and
Sachs, 1980).

The discretized form of the projected-gradient algorithm has the advantage that the state equations
are treated as strong constraints on the problem and the cost function needs only to be optimized with
respect to the control variables. An alternative approach is to discretize both the cost function (3.1)
and the state equation (3.2) and to treat the controls and states as independent variables. A discrete
optimization technique can then be applied to determine simultaneously the optimal control and
optimal state variables. This approach allows more sophisticated algorithms to be applied and can be
more robust than the simpler technique we describe here, but it requires much greater computational
power.

Details of the discrete form of the projected-gradient algorithm are described in the next two
sections. For problems where the optimal solutions are particularly sensitive, we have also
computed solutions to the fully discretized problem using the package LANCELOT (Conn, Gould
and Toint, 1992).

4.1 The Projected Gradient Method

To approximate the optimal control function o that maximizes the energy functional E, given by
(3.1), subject to the state equation (3.2) and the control constraints (3.3), we apply the following
iterative process:

Algorithm
Step 1: Set £ =0, VE% =0 and N0:=1, Set k:=1, s:=1.

Choose o

= constant, V t€[0,7], where o ,;, <constant <o,y .
Step 2: Set a":=oc"'1+sVEk/Nk

If o <O min» SEt akzzamin.
If ak>amax, set ak:=amax.

Step 3: Solve the state equation (3.2) for pk = p(ak ).
: k ko ks (T ook &
Step 4: Evaluate the functional E* = E(a”, p")= -[0 P(a”, p™)dt.

If E¥<E*¥', reduce s and goto Step 2.
Step 5 If |E¥ - E*'|/E¥ <ETOL1, goto Step 8.
If |E¥ — E¥|< ETOL2, goto Step 8.

24



Step 6: Solve the adjoint equations (3.4) for Ak = X(ak N pk) .
Step 7 Evaluate the functional gradient VE* = H, (a.*, p*,A*) and its norm
Nk = HVE/‘ ‘ , where H, =0H/0a =0P/da - hcdq /0o and H is the Hamiltonian

given by (3.6).
If k<KTOLl, set k:=k+1 and goto Step 2.
Step 8: STOP.

In this method the new approximation to the optimal control is chosen in Step 2 of each iteration as
o = pa* + sVE"), (4.1)

where 2 isthe L, projection operator onto the set of admissible controls. Since the operator 2
has the property

fpr—l, =, min |-

) 4.2)

it follows that the inequality

1 2
<VEk’ akl gk s > _“akﬂ_ak“

4.3)
S

2

1

holds for the selected control o **' where <-,-> denotes the L, inner product. It can be shown,

therefore, that for some choice of s, E¥*' > E k¥ and thus the algorithm generates a sequence of

k

admissible controls o and a corresponding, monotonically non-decreasing sequence of energy

functionals E*. Provided that an optimal solution exists amongst the admissible controls, the
process converges and the limiting control satisfies the necessary conditions. It may be, however,
that only a local maximum is found, and it is necessary to check that the Hamiltonian H is in fact
maximized by the computed solution.

The Algorithm described here defines a function iteration and in practice it is necessary to discretize
the procedure in order to find the iterates numerically. The discretized procedure can only be shown
to converge to within some neighbourhood of a true optimal solution, and the iteration may never
satisfy the stopping criteria in Step 5 of the discretized Algorithm if the tolerences ETOL1 and
ETOL?2 are too small. The size of the neighbourhood of convergence depends on the step-size used
in the discretization. The tolerances should depend, therefore, on this step-size and must be selected
with care to ensure both the accuracy of the numerical solution and the efficiency of the
computational process.

4.2 Finite Difference Approximations

In order to discretize the iteration procedure of §4.1, the interval [0,7] is partitioned into 7 steps of
length At=T/n and solutions are determined at the mesh points ¢, = jAf. The state and adjoint
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equations are solved using a finite difference technique and the energy functionals E* are
evaluated using a quadrature rule. The trapezoidal scheme (Lambert, 1973) is chosen to approximate
the differential equations on the mesh and the functionals E k- are approximated by the trapezium
rule (Johnson and Reiss, 1982). The convolution integrals in the state and adjoint equations are also
approximated using the trapezium quadrature rule. The state equation for p is integrated forward in
time from the initial condition p(0), and the adjoint equation for A is integrated in the backward
direction from the final condition A(T) . Both of these integrations can be shown to be absolutely
stable. The schemes are also consistent and technically of order two and can be shown to converge
as h—0. Since the control variable is expected to contain discontinuities, the state and adjoint

variables are only expected to be piecewise smooth and, therefore, difference methods of order
higher than two have no computational advantage over second order schemes.

In cases where g(a,,p) is linear in p, the two schemes reduce to one-step explicit methods in the

appropriate directions. If ¢ is non-linear in p, then the difference scheme approximating the state
equation for p is implicit and an inner iteration process is needed at each time step of the
integration. The difference approximations to (3.2) and (3.4), in implicit form, are given by

P, =0,

4 c
Pist =Py =5 AHg; + 4,00+ 7 A ko (P + Pa1)

j-1
c c .
"‘EAtzsz—l(Pm +pi)+EAt(qd(tj)+qd(tj+l)’ J=01l..n-1,

i=l

4.4)
and
A, =0,
PV d P | BV P Y
Ao = i3 1 j@f j—15—j_1+5 koA j + 1)
n
+5At221<,._j(x,+x,._,)+ﬁAta—P +-a—1i , j=nn-1.1
20 2 apJ apj_l
(4.5)
where
oq oq oP oP
‘I'=CI(0":P')=K :K(SAt)a _| =_(0""P'), . =_(0L',P‘),
J J &) 5 apj apjj apj ap ey

and o ;,p;,A; are approximations to o(t;), p(¢;) and A(¢;), respectively. The energy
functional is approximated by

n-1
E = At(AP(©0 5, po) + 2P )+ Y. P(0;,0))), (4.6)
J=1

and the gradient VE attime ¢ = f; is approximated by

oH
VEj=£(ajapja)\'j)- 4.7
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Equation (4.5) is easily solved to give an explicit expression for A j-1- If g depends linearly on p,
then equation (4.4) can similarly be solved explicitly for p i+15 otherwise a fixed point iteration is

needed to find p,,,. The iteration takes the form

0
pj+1 =p;

c s G . (4.8)
p;f'g‘:(l—ZAﬂKO) 1(—5Arq(aj+l,pj+l+1ej), m=12,...,

where R; represents all the terms in equation (4.4) that are not explicitly dependent on p j+1- The

iteration (4.8) defines a contraction mapping and, therefore, is convergent for a sufficiently small

step-size Ar, since k,<0. The iteration is stopped when ’ p;.":ll - p}"ﬂ'/ pj-":ll < PTOL or

when the iteration parameter £ exceeds a specified upper bound KTOL2.

4.3 Numerical Simulator

The complete discretized Algorithm described in §4.1-4.2 for solving the optimal control problem
(3.1)-(3.3) is implemented in a FORTRAN program. Input required by the program includes tables

of data for k(¢;) and g,(¢;) at discrete points ¢ ; =Jjh. For the OWC device described in §2.2,
the data for ¥ and ¢, depends on the geometry of the device, defined by the values of @, b and A,
and on the incident wave form, defined by the set of values {®,, #,,6,}. A subroutine is used to
generate the required values of ¢, and k¥ for given geometric and incident wave parameters
(Justino, 1993). Additional input required by the program includes values for ¢, o, 0 ax  and the
tolerances ETOL1, ETOL2, PTOL, KTOLl1 and KTOL?2. The functions
q, P, 8q/0p, OP/Op, dq/do. and OP/do,  defining the turbine characteristics and control
mechanism, are evaluated for given values of a and p by user-supplied subroutines.

The algorithm is not directly applicable to problems where the constraints on the control variable o
are explicitly dependent on the state variable p . Such problems must first be transformed, as
described in §3.1, and corresponding new functions g and P must be defined before the procedure
can be applied.

The functions g and P used here to simulate various system models are defined as follows:

(i) QUADRATIC MODEL - pressure control with perfect efficiency:
g=Kap,  P=Ka’p?,

(i) LINEAR MODEL 1 - turbine flow rate control with perfect efficiency:
g=Kop,  P=Kop*;

(ili) MODEL 2 - turbine flow rate control with (mechanical) losses:
g=Kap,  P=K(ap’-Da’p*-F);
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(iv) CONSTRAINED MODEL2 :
g=Kop, P=K(p*-Da’p’-F), for |pl<p,,
g=Kap,, P=K(p,-Da’p, —F), for|plzp,;

v) MODEL 3 - turbine flow rate control with (duct) losses:
g=Kap,  P=Kop(p-a*’p|p)-KF, v}=DK;

(vi) CONSTRAINED MODEL 3 :
g=Kop, P=Kap(p-a®v’p|p))-KF, for |p|< p,,
g=Kop,, P=Kop,(p,-a>V p,|p,|)-KF, for |p|zp,;

(vil) MODEL 4 - turbine flow rate control with pressure losses:
g=K&(p-G*v’plp|), P=Kap(p-2a°v’p|p|-KF;

(viil) MODEL 5 - by-pass valve control:
q=Kp+@po.ipl , P=Kp’;

5. Results and Discussion

In this final section of the report, we examine the numerical solutions to the optimal control problems
formulated and analysed in Section 3. The results are computed by the methods of Section 4 for the
device described in Section 2.2 and the various power-take-off and control mechanisms discussed in
Sections 2.3 and 2.4. The data selected for the numerical experiments is presented first and the
discussion follows.

5.1 Numerical Experiments

Numerical results are obtained for the device described in Section 2.2 for water depth 42 = 10 m ,
chamber width b = 1 and values of a=15m and a= 10 m. It is assumed that the device is
equipped with a Wells turbine, characterised as in Section 2.3, and that the system is optimally tuned
to a wave period of 10 s for each value of a. The turbine constant K is thus chosen to be equal to
the optimal value given by Sarmento and Falcao (1985) for a regular wave of frequency 0.1 Hz
incident on a device of the specified geometry. The values of the turbine constants (in m4 s kg-1)
are given by K=0.66 X 103 for a=15m and by K=10.95x 103 for a=10 m . This device
model approximates the pilot plant designed for Pico in the Azores and is close to optimal for 10 s
incident waves, which are typical of the wave climate at the site. The gains that are expected by
controlling this system are, therefore, not great, but the numerical results are indicative of general
trends.

The functions describing the power output and flow rate for the models used in the calculations are
summarized in Section 4.3. In these models the turbine loss parameter F is given by

F = 005 G,% /| K* , where G, is equal to one-third of the maximum defracted flow rate g,(?) due
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to a regular incident wave of frequency 0.1 Hz and amplitude 1 m. The values of F (in kg2 m2 s-4)
corresponding to the values a=15m and 10 m are thus F=1.94 X 106 and F=2.01 X 106. In
Model 2 , where the losses are given explicitly by expression (3.3) with C=KF and D = D/K , the
values for the loss parameter D are taken between 0.1 and 0.3. For the value D=0.2 the turbine
efficiency 7, is 75% at flowrate G, and 60% atflowrate G,/2. In Model 3 the values of D

are taken between 0.005 and 0.02, which is approximately equal to the maximum value for which
the problem remains well-posed.

The projected gradient algorithm has been verified for various choices of the discretization step At
and for different tolerances ETOL1 and ETOL2 defining the stopping criteria for the optimization
iteration. The error tolerances are selected as functions of the discretiztion step Az, and the algorithm
is observed always to stop where the relative error tolerance is satisfied. In Table 1 the ratios of the
controlled to the uncontrolled energy output for a 10 s regular wave over one period are shown for
different stopping criteria and different choices of Ar=10/n, where n is the number of steps. The
results are computed using Model 2 with a=15m and D =0.2. It can be seen that the numerical
solutions agree to within an error of 0.5 X 104 . The results shown in the subsequent Tables and in
Figures 3 - 19 are computed with a step-size of Az=10/n, where n =200, and a relative stopping
criterion of ETOL1 = 7.5 X A2 . The order of the stopping criterion is the same as that of the
truncation error of the finite difference approximations to the state and adjoint equations and of the
quadrature rule for the power functional. A less accurate criterion could be applied to obtain the
same accuracy in the power output, but the tighter criterion is used to ensure the accuracy of the
computed control and state variables.

In Tables 2 - 11, the computed ratios of the controlled to the uncontrolled average power output are
shown for the various models in the case of a incident wave with a period of 10 s. The results are
shown for averages over the middle six periods of an optimal solution calculated over ten wave
periods. The transient effects at the beginning and end of the optimization period are ignored in
order to give an approximation to the average power output for an optimal periodic response. In
Table 12 the same ratios are shown for an irregular wave with a typical spectrum obtained from
measurements of the sea-state. In these computations the convolution integral is truncated after two
periods. Experiments show that increasing the number of periods over which the optimal is
calculated and/or the number of periods ignored at the ends of the interval affects the solutions only
in the fifth significant figure. Increasing the number of periods retained in the memory term has
slightly more effect, but the results still agree to within 2 units in the fourth significant figure. For
comparison the ratios of the average controlled and uncontrolled power output over one wave period
are shown in Tables 2 -3 and Tables 8 - 9 for the different models.

The Tables show results for different sizes of devices for the different models with and without losses
for incident waves of different periods. The effects of increasing losses are shown and the effects of
limitations on the power-take-off. The Figures show the optimal control and the optimal response of
the system for the different models defined in Section 4.3. The instantaneous optimal power output
and flow rate are also shown, together with the values of the Hamiltonian and its gradient at each
time step of the computation.

5.2 Discussion
From Figures 1 and 2 the optimal strategy for the control of pressure difference in a perfectly
efficient device can be seen to be 'bang-bang' with periods of chattering. These results were

calculated using LANCELOT (Conn, Gould and Toint, 1992). Although a local maximum of the
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optimization problem has been found, it can be seen from the graph of the Hamiltonian that the
optimality conditions have not been satisfied. For different initial values of the iteration, different
results are obtained. All give very similar values for the optimal power output, but the onset and
lengths of the periods of chattering vary slightly. The oscillations in the control occur at every
discrete time step and as the number of steps in the optimization period increases, the oscillations
increase.

For the control of turbine flow rate in a perfectly efficient device, the optimal strategy calculated by
the projected gradient algorithm is shown in Figure 3 for one wave period of 10 s . It can be seen that
the optimal solution contains singular arcs where the gradient of the Hamiltonian is identically zero.
Over these intervals the optimal control takes interior values and, as predicted by the analysis, the
optimal strategy is not 'bang-bang'. The singular arcs in this model (Model 1) can be seen to coincide
roughly with the chattering periods in the pressure control model (Quadratic Model). It can be
deduced that the chattering strategy is acting in practice to control the flow rate through the turbine
smoothly.

In Figure 4 the turbine acts as a compressor for negative values of the control variable. It can be seen
that there are relatively short periods of compression in the optimal strategy. The optimal solution
again contains singular arcs, but only where the control takes positive values. From the Tables it can
be seen that on average the pumping adds little useful energy to the power output. The effect
increases for smaller devices relative to the wave period, but decreases with increasing (mechanical)
losses. In both Figures 3 and 4 it can be observed that there is an initial surge of power where the
flow rate is first switched on, and then the flow rate is cut back to conserve the pressure in the
chamber in order to achieve the maximum output over the entire interval.

The optimal solutions for devices with losses in the turbomachinery (Models 2 and 3) are shown in
subsequent Figures. The control strategies all contain interior solutions over part of the wave period,
as predicted by the analysis of Section 3. If the conversion mechanism is allowed to act as a
compressor, it is again found that the compression periods are relatively short and add relatively little
to the useful power output (in comparison with the capital expenditure needed). In Figures 10 and 11
the solutions over 10 wave periods are shown. The transient effects can be observed in the first and
last two of the periods. From the Tables it can be seen that the control has more effect in improving
the energy output for devices that are small relative to the wave length and also that as the losses
increase the control has more effect.

In Figures 7 - 9 and 15 - 17 the effects of limitations on the power-take-off are illustrated for
different values of the critical pressure p, . We observe that if the critical pressure is large, the
control strategy remains close to the unlimited case. As the critical pressure decreases, the control
strategy gradually approaches the uncontrolled model, where the control is at its maximum,
corresponding to the critical pressure value, over the whole period. From Tables 6 and 11 it is
evident that the control has less effect as the limitations on the power-take-off become more
stringent.

The optimal solution for a more accurate model of the turbine flow rate control mechanism (Model
4) is shown in Figure 8. The results are almost identical to those for the simple model (Model 3) and
it can be concluded that the simple model gives a good approximation to the system. In Figure 19 the
behaviour of the optimal strategy for controlling the by-pass valve is shown. The solution is a simple
bang-bang strategy that acts simply to keep the pressure from exceeding its critical value.

Results for an irregular wave with a spectrum typical of a sea-wave are shown in Figure 12 and Table
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12. The control strategy gives a good improvement to the power output, even averaged over a long
time period. This improvement is dramatically increased where there are losses in the turbine.

6. Conclusions

The conclusions of the research are summarized in Section 1.1. A significant new result of these
studies is that the improvement in the generated power produced by optimally controlling the flow
rate across the turbine (independently of head difference) increases with increasing losses in the
turbomachinery.

The results show also that the control gives greater improvement in the energy output for devices that
are smaller relative to the wave length. The control of head difference across the turbine is observed
to be less robust than the control of turbine flow rate (independent of head difference), and flow rate
control strategies that maximize average power output are found to be qualitatively different from
strategies that optimize energy absorbed from the waves.

For regular waves, if the conversion mechanism is allowed to act as a compressor, it is found that the
compression periods are relatively short and that on average the pumping adds relatively little to the
useful power output.

If limitations on the power-take-off are imposed so as to prevent the pressure across the turbine from
exceeding its critical value, then for a large critical pressure, the control strategy remains close to the
unlimited case. As the critical pressure decreases, the control strategy gradually approaches the
uncontrolled model, where the control is constant over the whole period and is equal to the maximum
allowable value. It is evident that the control has less effect as the limitations on the power-take-off
become more stringent.

For an irregular wave with a spectrum typical of a sea-wave, the control strategy also gives a good

improvement to the power output, even averaged over a long time period. This improvement is
dramatically increased where there are losses in the turbomachinery.

References
[1] Andrews, T.P., Nichols, N.K. and Xu, Z. (1990) The form of optimal controllers for tidal power
generation schemes. University of Reading, Department of Mathematics, Technical Report NA 8/90.
[2] Bryson, A.E. and Ho, Y.C. (1975) dpplied Optimal Control. Halstead Press.
[3] Conn, A.R., Gould, N.I.M. and Toint, P.L. (1992) Lancelot. Springer-Verlag,

[4] Evans, D.V. (1982) A theory for wave-power absorption by systems of oscillating pressure
distributions, J. Fluid Mechanics, 114, 481 - 499,

[5] Falcao, A.F. and Justino, P.A.P. (1994) OWC wave energy devices with flow constraints.
Instituto Nacional de Engenharia e Tecnologia Industrial, Lisbon. Preprint.

31



[6] Greenhow, M. and White, S. (1996) Control of wave energy devices. Off-shore Wave Energy
Converters (OWEC - 1), JOULEII - Wave Energy R & D Programme Report, Commission of the
European Communities, Brussels.

[7] Greenhow, M. and Nichols, N.K. (1993) The use of time-domain models for control of OWCs,
CEC DG XII JOULE Wave Energy Initiative: Wave Energy Converters - Generic Technical
Evaluation Study, Commission of the European Communities, Brussels, Annex Report B1: Device
Fundamentals/Hydodynamics, Paper 4, pp. 1 - 13.

[8] Gruver, W.A. and Sachs, E. (1980) Algorithmic Methods in Optimal Control. Pitman.

[91 Hoskin, R.E., Count, B.M., Nichols, N.K. and Nicol, D.A.C. (1986) Phase control for the
oscillating water column. Hydrodynamics of Ocean Wave-Energy Utilization, (eds D.V. Evans and
A.F.deO. Falcao), Springer, Berlin, 281-286.

[10] Hoskin, R.E. (1988) Optimal Control Techniques for Wave Power Generation. University of
Reading, Department of Mathematics, PhD Thesis.

[11] Johnson, L.W. and Reiss, R.D. (1982) Numerical Analysis (Second Edition). Addison-
Wesley.

[12] Justino, P.A.P. (1993) Phase Control of Systems of Oscillating Water Columns for Extracting
Energy from Waves. Instituto Superior Tecnico, Technical University of Lisbon, M.E.Mech Thesis.

[13] Justino, P.A.P., Nichols, N.K. and Falcao, A.F. (1994) Optimal phase control of OWC's,
1993 European Wave Energy Symposium, (eds. G. Elliot and G. Caratti), National Engineering
Laboratory, East Kilbride, Scotland, 145 - 149.

[14] Lambert, J.D. (1973) Computational Methods in Ordinary Differential Equations. John Wiley
& Sons.

[15] Nichols, N.K., Falcao, A.F. and Pontes, M.T. (1991) Optimal phase control of wave power
devices, Wave Energy, Institution of Mechanical Engineers, London, 41-46.

[16] Nichols N.K. (1993) Phase control in wave energy generation, Wave Energy R&D, (eds. G
Caratti, A.T. Lewis and D. Howett), Commission of the European Communities, Brussels,
Rpt. EUR 15079, pp. 177-182.

[17] Sarmento, A.JN.A. and Falcao, AF. (1985) Wave generation by an oscillating surface-
pressure and its application in wave energy extraction. J. Fluid Mech., 150, 467-485.

[18] Sarmento, A.J.N.A., Gato, L.M.C. and Falcao, A.F. (1990) Turbine controlled wave energy
absorption by oscillating water column devices, Ocean Engineering, 17, 481 - 497.

32



Terminology

a
A

A, A,

b

B(w), C(0)

|

c

c,C
D,D

3]

device depth
reference area

wave amplitude
device width
coefficients of radiation

parameter =yp, /V,
coefficients of power losses

generated energy functional

average energy flux of incident wave
gradient of E

coefficent of turbine loss
acceleration of gravity

channel depth

Hamiltonian of energy functional
V-1

wave number;

turbine constants

turbine torque

turbine losses

mass

number of finite difference steps
norm of VE

integer = w, /v,

pressure difference between chamber and atmosphere
pressure difference across turbine
atmospheric pressure

critical turbine pressure

power at turbine shaft

power available to turbine =¢gp
projection operator

volume flow rate through the turbine
volume flow rate displaced by internal free surface
diffraction flow rate of the incident wave
radiation flow rate of the device

step size in gradient direction

time

time step

volume of air chamber

volume of air chamber at equilibrium
control variable
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min> O max

lower and upper bounds on control variables

valve loss parameter = 4,/2/p,,
specific heat ratio

turbine efficency

kernel of hydrodynamic damping
adjoint variable

pressure loss parameter = paK2 /2.4
rotational speed

non-dimensional turbine power output
non-dimensional turbine flow rate
air density in chamber

atmospheric density

water density

sign (p)

phase shift of incident wave

angular frequency of incident wave
non-dimensional pressure variable
critical turbine pressure
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Tolerance
No. of steps | 0.5 At?2 | 5At* | 7.5 At? | 10 A¢?
200 1.127532 | 1.127492 | 1.127322 | 1.127436
500 1.127540 | 1.127522 | 1.127522 | 1.127522
1000 1.127157 | 1.127114 | 1.127114 | 1.127114

Table 1: Comparision between step sizes and tolerances

Without losses

With losses

1 period | 10 periods | 1 period | 10 periods
Without pumping | 1.062 1.035 1.127 1.075
With pumping 1.081 1.046 1.141 1.082

Table 2: Model 2, 15m device, 10s wave

Without losses

With losses

1 period | 10 periods | 1 period | 10 periods
Without pumping | 1.102 1.072 1.173 1.120
With pumping 1.162 1.097 1.223 1.135

Table 3: Model 2, 10m device, 10s wave




Wave period

8 sec. | 10 sec. | 12 sec. | 15 sec.

Without losses | 1.009 | 1.035 | 1.071 | 1.159

With losses 1.022 | 1.075 | 1.115 | 1.212

Table 4: Model 2, 15m device, 10s wave

0.0 0.1 0.2 0.3

Without pumping | 1.035 | 1.052 | 1.075 | 1.122

With pumping |1.046 | 1.061 | 1.082 | 1.124

Table 5: Model 2, 15m device, 10s wave, various D

Critical pressure

1.0 2.0 3.0 | None

Without pumping | 1.000 | 1.050 | 1.073 | 1.075

With pumping | 1.000 | 1.050 | 1.076 | 1.082

Table 6: Model 2, 15m device, 10s wave, lim. pressure



Without losses

With losses

1 period | 10 periods | 1 period | 10 periods
Without pumping | 1.062 1.035 1.074 1.044
With pumping 1.081 1.046 1.099 1.057

Table 7: Model 3, 15m device, 10s wave

Without losses With losses
1 period | 10 periods | 1 period | 10 periods
With pumping 1.102 1.072 1.117 1.082
Without pumping | 1.162 1.097 1.187 1.110
Table 8: Model 3, 10m device, 10s wave
Wave period
8 sec. | 10 sec. | 12 sec. | 15 sec.
Without losses | 1.009 | 1.035 | 1.071 | 1.159
With losses | 1.009 | 1.043 | 1.085 | 1.187

Table 9: Model 3, 15m device, various waves



0.0 |0.005| 0.01 | 0.02

Without pumping | 1.035 | 1.042 | 1.044 | 1.050

With pumping | 1.046 | 1.054 | 1.057 | 1.063

Table 10: Model 3, 15m device, 10s wave, various D

Critical pressure

1.0 2.0 3.0 | None

Without pumping | 1.000 | 1.037 | 1.042 | 1.044

With pumping | 1.000 | 1.037 | 1.050 | 1.057

Table 11: Model 3, 15m device, 10s wave, lim. pressure

Run time

Value of D | 10 sec. | 128 sec. | 200 sec.

0.0 |7 1.130 1.102

0.2 1.243 | 1.245 1.203

Table 12: Model 2. ratios of efficiencies for an irregular wave
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