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ABSTRACT

The robustness of state feedback solutions to the problem of partial

pole placement obtained by a new projection procedure is examined. The
projection procedure gives a reduced order pole assignment problem. It

is shown that the sensitivities of the assigned poles in the complete closed
loop system are bounded in terms of the sensitivities of the assigned
reduced-order poles, and the sensitivities of the unaltered poles are bounded
in terms of the sensitivities of the corresponding open loop poles. If the
assigned poles are well-separated from the unaltered poles, these bounds
are expected to be tight. The projection procedure is described in [3], and
techniques for finding robust (or insensitive) solutions to the reduced order
problem are given in [1] [2].

1. Introduction
A projection procedure for solving the problem of partial pole placement
has recently been proposed by Saad [3]. The problem is stated as follows:

n

Given system pair (A,B), A € R™™, B € R™™, where A has eigenvalues {pl,u,,,

el 1, find matri;; F ¢ R™*™ such that A+BF has eigenvalues {)\l,k?, ces

Ak’uk+l’ RN }.  In other words, find a feedback which reassigns the eigen-
values ul, ua, . ,uk to be )xl, >\2, o ’)\k’ while leaving the rest of the spectrum
of A unchanged. We remark that the sets {7\1,>\2, - ,)\k} and {”k+1’ - ,un} must

be closed with respect to complex conjugation and are assumed to be disjoint.
It is also assumed that if a multiple eigenvalue belongs to the set
{ul, L, ... ,Uk}, then it is represented several times in the set according to

its algebraic multiplicity.

The procedure of [3] determines the left invariant subspace of the eigenvalues

which are to be reassigned and projects the initial problem into that subspace

in order to obtain a reduced order pole assignment problem. The partial pole

placement problem could, of course, be solved using any full eigenvalue assign-
ment technique which allows the open loop poles to be re-assigned to the closed

loop system. For very large (sparse) systems, however, where there are only
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a few poles to be stabilized, the advantage of the projection procedure is that
the computational work required to solve the problem is very significantly reduced.

A projection procedure similar to that of [3] is proposed in [6]. The
method of [6] uses the matrix of eigenvectors associated with the poles which
are to be replaced in order to carry out the projection. This procedure is
unstable numerically and can give rise to very large computational errors. The
method of [3], on the other hand, uses an orthogonal basis for the left invariant
subspaces and the computations are numerically stable. The accuracy of the
solution may still be affected, however, by the conditioning, or sensitivity,
of the open loop poles which are replaced. (See discussion in [3]).

The reduced problem obtained by the projection procedures can be solved
by any standard pole assignment technique. For a robust solution to the over-
all problem, it is necessary that the assigned poles be insensitive to perturbations
in the system matrices (A,B) and the gain matrix F. For the single-input
case the solution to the pole assignment problem is unique and the sensitivity
cannot be controlled. For the multi-input case, however, there are a number
of degrees of freedom, and it is important to select these so as to guarantee
the robustness of the solution. Procedures which determine robust solutions
to the standard pole assignment problem by assigning the eigenvectors associated
with the specified poles are derived and discussed in [1] [2]. These techniques
can also be applied to the reduced pole assignment problem obtained by
the partial projection procedure.

In this note we show that robustness of the over-all problem can be achieved
by the partial procedure - more specifically that a bound on the sensitivity
of the assigned poles can be minimized and that the sensitivity of the unaltered
poles remains reasonably bounded under certain conditions. In the next section
we describe briefly the projection procedure and introduce notation. In the
following section we examine the robustness properties and in the final section

we present a numerical example,




2. The Procedure

We let Ql represent an orthonormal basis for the left invariant subspace

of A associated with the eigenvalues Hpo By e sl and assume that

H, _, ~H
Q4 =R0p, (1)

where Ql is nxk such that Q[_{Ql =1, and R1 is a kxk lower triangular matrix
with diagonal entries equal to the eigenvalues{pl, UIREE ,pk}. (We remark that

in practice the real form of the partial Schur decomposition (1) is used, where
Q1 is r_e&l with orthonormal columns, and R1 is a E_(_ea_l quasi-triangular matrix
with 1x1 or 2x2 block diagonal entries equal to the real eigenvalues, or the
real representation of complex conjugate pairs.) A solution to the pole assignment
problem in the form
F=FQ (2)
is sought. Applying the transformation from the left to the full closed loop

system matrix and denoting B1= Qll_IB, we obtain

H : ol H B

o'ita +BR) = (R | +BF)OM. (3)
If now F1 is chosen to assign the eigenvalues {Al’ A IRRE ’Ak} to the reduced
closed loop system matrix Rl +By 1’ then F given by (2) solves the partial

pole assignment problem, as shown in [3]. Techniques for finding the partial

Schur decomposition (1) are also shown in [3] and in [4].

We remark that if the original system pair is completely controllable, then

the reduced system pair (Rl’Bl) is also controllable; more precisely, if the poles

pl,...,pk of A are controllable, then the pair (Rl’Bl) is a completely

.

controllable pair. This can be seen as follows: The pair (Rl’Bl) is completely

controllable provided,

T, _.T T _ __ T
{v R1 =vy and v B1 =0 =>v = 0}. (4)
T T T it
Now v R, =viu=yaA= pyT, where yT = def, and VTB1 =0 ==> yTB = 0;
therefore, if y is a controllable pole of A, then, by definition, y* = vTQ‘f = 0.
. H: T
Since Q1 is of full row rank, we have also v = 0, and hence controllability of

~

(Rl,Bl).



3. &o‘pustness Properties

The sensitivity of an eigenvalue Aj of a (non—defective) matrix M to
arbitrary perturbations in M is well-known [5] to be proportional to the condition
number

T
.=y gL X!, (5)
Cy = Nyl g4I/ |y

J
where xj, yj are the associated right- and left-eigenvectors of M satisfying

‘ MEy = A gy Y = A | %
and Il 1 denotes the L, norm. For a robust solution to the over-all .pole assignment
problem, then, we choose the feedback F such that the condition numbers of the assigned
poles of the closed loop system matrix M= A + BF are small. (See [1] [2]).

For the reduced 'partial' feedback problem we may choose 51 such that the

assigned poles {Al,A2,...Ak} of the closed loop matrix Ri + 5151 have small
cordition numbers. We show now that the assigned poles of the full feedback
problem are also then insensitive, and furthermore, that the sensitivity of the
unchanged ﬁoles is not greatly altered.

We let Q2 denote an orthonormal basis for the left invariant subspace of A

corresponding to eigenvalues {#k+1""pn}’ and let Q denote the unitary matrix

Q= [Ql’Qz]' We assume that

1
QA= QH. (7)

where R3 is (n-k)x(n-k) lower triangular, and denote QIZ_IB = éZ'

It follows that

o @
o
(@]

Ry + BjFy

M = QHa + Br) = Q" = Mt (8)

’

s
+
o 2
2
~0

where F = F Q1= [F., o]d.
1~1 1
We now denote the right- and left-eigenvectors of the transformed closed loop

system matrix M, respectively, by




W, O . vf 0
W= » v o= - (9)
VT VT
W2 W3 2 3
Then
MY = WA, viM = avt. (10)
implies that
k7 il = o = A
(Rl + BlFl)Wl W1A1, V (R + B ) 1V (11)
and
= ™ _
R3W3 = W3A2, V3R‘,3 = A2V3, (12)
where
Al 0
A= . . " /l1 = dlag{Al,...,Ak), A2 = d1ag{yk+1,...,/.1n}. (13)
2

Hence, W:l and V'f are the assigned right- and left-eigenvectors associated with the

assigned poles {Al,Az, 9 .Ak} of the reduced pole placement problem, and WS’ Vg are

the right- and left-eigenvectors of the transformed open loop system matrix R3,
which is unchanged by the feedback.

If we also denote the right— and left-eigenvectors of the complete closed loop

system matrix M = A + BF, respectively, by

T Y'f
X = [X,%,], ¥' = R
2
where
MK = XA, v'M = avT, ‘ (14)

and 4 is defined by (13), then we may write, from (10) and (14)
= QM =,
(15)
vimgH = vigth = avTot

Premultiplying the first of (15) by Q, we deduce that




X = [X K] = Q85 [QW, + QW,,QW,],

(16)
o vigH
T 1 T H 4
v 1| =vifs
Y
2

TH . .TH
VoQy + Vo,

It follows that the condition numbers of the assigned poles {/\1,1\2, 20 C ,Ak} are

given by
_ o R
cy = Ny, IX, e l|/|e lel_Jl
(17)

T..T "

= llng (] e. ||/|e Vngjl, j=1,2,...k
W
2

Here e j denotes the jth unit vector. The condition number is invariant under

scaling of the eigenvectors, and we may assume that the right- and left-

W
eigenvectors are scaled to unit length, such that Il Wl e jll =1, 'g I = 1.
2
The condition numbers are then given precisely by
-1/|§jV1 1gj| j=1,2,...,k (18)
Similarly, the condition numbers of the unaltered eigenvalues {"lk+1' ces ,/.xn}
are given by
_ T
cj = ug Y u llX2§ u/| 2§ l
(19)
= ueT[VT VT]u W& u/|e Mae ], 8=k, j=ktl, ...n.
Assuming again that the eigenvectors are scaled to unit length, such that
Rl T
Ilwsgsll 1 and Ile [V V3]II = 1, then
Cj = 1/|e V3W3_S|, s=j%k, j=k+t1,...,n (20)

o~

We remark that w:ith a full feedback of the form F = [Fl,Fz]QH, it is possible

to assign all the eigenvalues {A ,[Jn) such that an over-all

grhgres et
measure of all the condition numbers cj, j=1,2,...,n is minimized. This

requires the solution of the full feedback problem, however, which for large
systems may not be practicable. Instead, we wish to solve the 'partial' pole

placement problem in such a way that the condition numbers (18) of the assigned
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poles A j=1,2,...,k, are as close to unity as possible and the condition

5’
numbers (20) of the remaining poles “j’ j = k+1,...,n are not much worse than in
the open loop system.

In practice, to minimize the condition numbers cj, j=1,2,...,k, given by
(18) we require information about the matrix W2, and, in particular, about the
matrix R2, which is not available from the partial Schur decamposition (3). We
therefore aim, instead, to find a feedback solution which minimizes the
sensitivities of the assigned poles of the reduced problem. We now examine the
effect of such a feedback choice on the robustness of the complete closed loop
system.

For robust pole placement in the reduced 'partial' problem we select 51 to
assign eigenvalues A1 and right- and left-eigenvectors W1 and VE satisfying (11),

such that the condition numbers

- T, T T,,T, :
c., = g,V It N e.l V.We.l, =1,2,...,k. 21
= legVy 185 /Igj 1 1_Jl J (21)
are small. (In essence we select the eigenvectors to be as close to an

orthonormal set as possible.) We emphasize here that the condition number 51., given
by (21), gives the sensitivity of the eigenvalue Aj with respect to the reduced problem,
and the condition number Cj’ given by (18), gives the sensitivity of th'e same eigenvalue
with respect to the entire system. From (18) and (21) we find that

c‘_j = IN,ell c. < cC (22)

=9 ©3 °
Furthermore, from (8)-(10) we find that

~

and by the scaling assumption we have
1 =1IW g.ll2 + I()\I-R )_1(R +}~3 EN* YW.e ||2
17) ) j2 3 2 2717715
< W, e.ll 1+ w. ), 24
< WWe (1 + ) (24)

. =i T
where &, = |(\T-R3) (R, +B,F Il . We find then that

Ej ==Ll ;- (25)
/1 + w2

i\
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From (22) and (25) it can be seen that the condition measure c:.| is, in a mathematical

sense, equivalent to the condition number cj; that is, the measures cj and Cj are bounded

in terms of each other.

In practice, an gver-all robustnéss measure of the system, such as

) (26)

where dj are given weights, is optimized [2]. From the inequalities (22) and (25)

we may deduce that for each j = 1,2,...,k, there exists a constant ':)j such that
J)jcj=cj, where (1+o~>?)—1/2 5i:>j < 1. Hence we have
Tk
S 221/2
v = d’c’ 27
(> e (27)
J=1
where
2,-1/2 7 = N
1+w d.<d,=w.d, <d,, 28
R g) & Syt =Sy SrSs h8)

and optimizing the robustness of the 'partial' pole placement solution thus
corresponds to minimizing exactly a particular weighted sum of the squares of the
condition numbers of the assigned poles of the complete closed loop systenm.

Moreover, since

k
vy () @3+ w2 (29)
j— J j ]
it follows that minimizing v, also minimizes an upper bound on the weighted sum of
the squares of the assigned pole sensitivities for the weights dj 1+ wj2)1/2.

We now show that the sensitivities of the remaining, unaltered poles of the
closed loop system can be bounded in terms of their condition numbers in the
original open loop system.

If we denote by [UE,V;I] the left-eigenvectors corresponding to the poles My
j = k+1,...,n, of the transformed open loop system matrix QHAQ , given by (7), then,

using similar arguments to those for the closed loop system, we find that the open loop
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condition nunbers of the poles (Pk+1'”k+2' T ,,un} are given by

e _ T T_T T,,T,
cy = ngs[uz,va]n nwagsn/|gsvawags|,
ugg[ug,vg]u
=__T.._T_.T_.cj i s=3jk, j=k+1,...,n. (30)
e [V, V1
From (10) we have that
. T T e T &
- = + 31
AV37Vy (R 4B E) = V3(Ry + ByFy) (31)
and it can be shown, similarly, that
T . T T, .
N = 32
a,U5-U5R) = V3R, (32)
We have, therefore, that
T, T T.T T T T.T .
ngsvzn < ngsvsnvj . ngsuzn < ngsvauaj, s =ik, (33)
where
_ & & _ ~o -1
'yj = || (R2 + BzFl)(ij (Rl + BlFl)) i,
(34)
- - -1 A
5],— ||R2(u].1 Rl) n o, j =k+1,...,n.
Now, using the assumption that the closed loop eigenvectors are normalized to unit
length, such that ug:[vg,vg]u = 1, we also have
_ 4. T, T 2 T T 2 T, T 2 2
1= g Ve + g VoI < e Vo (1 + vj ). (35)
It follows, then, from (33) and (35) that
S T..T 2 T.T 2,1/2 2,1/2
cj < (IlgSUzll -i: IlgSV3II ) cj < (1 + 6], c-_j (36)
and
° T,T 1 (37)

c. > lleV.ll ¢, > Cs.
j* 7sd T3” (1+~:.2)1:2 J
J
Hence the closed loop candition numbers c‘_j of the unaltered poles {“k+1' e .,un} are
bounded in terms of the open loop condition numbers.

We summarize these results in the following:
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THEOREM The condition-numbers, or sensitivities, cj of the poles

{Al,...,Ak,pk+1,...,pn} of the closed loop system matrix A + BF obtained by the

partial pole placement projection algorithm are bounded by

B 2.1/2 ~ .
c. <c, € (1 +w’ c., =1,2,...,
j Syt ( J) j J k (38)
and
1 e 2.1/2 = i
. $eL € (1 +vY) C., j=k+1,...,n (39)
— 3.1/2 ° '
(1 + 5?)1 2] J ] J
where cj are the condition numbers of the assigned poles {Al,...,Ak} of the

i (=]
reduced closed loop system matrix R1 + B1F1, and cj are the condition numbers of

the poles {“k+1""'#n) of the open loop system matrix A, and
W = H(le - R3)_1(R2 + gzﬁl)n,
7= (R, + §2§1)(%I = (R + glﬁl))_lﬂ,
§j= uRé(‘%I— Rl)—ln. } (40)

We remark that the parameters Wy Yy Sj exist provided the matrices
(AjI - R3), j=1,2,...,k, and (ij - (R1 + BlFl)) and (ij - Rl)’ j =k+l,...,n,
are invertible,and the order of magnitude of the parameters depends essentially on
the conditioning of these matrices. The constants ip exist, therefore, by virtue
of the assumption that the assigned eigenvalues {)1, ces ’>‘k} of R1 + ].%1~ 1 and the
fixed eigenvalues ST ,pn} of A, are disjoint. Similarly, the constants v exist,
since the eigenvalues of N and those of R3 are disjoint by the same assumption. The
constants (Sj exist provided the sets {1_11, cey uk} and{pk+1, S, ,pn} are also disjoint,
which holds by the initial assumption that repeated eigenvalues are not contained
in different sets.

From these remarks it follows that the order of magnitude of the parameters
wj and Yj depends on the separaticn measure

. -l ,
min
1<igk | -w || . (41)
k+l<j<n )

If this value is 0(1), or smaller, then the condition numbers Ej of the reduced problem
may be expected to give a tight bound on the condition numbers -Cj’ j=1,2,...,k,

of the assigned poles in the complete closed loop system; furthermore, the condition

numbrs Cj’ j = k+l,...,n of the unaltered poles may be expected to be very little
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worse than their open loop condition numbers. In selecting the dimension of the
reduced problem, it is therefore advisable to ensure that the unassigned eigenvalues
are well separated from the poles to be assigned, so that the separation measure (41)
is small.
The magnitude of the gain matrix Erl is expected to depend on the distance beétween
the sets {ul, cees M } and{)\l, S ,Ak} and on the sensitivity of the assigned closed loop

poles. In fact the feedback F, is given explicitly by

s . el gl T T

Fl —B1V1 (_/\1V1 VlRl), (42)
where + denotes the Mocre-Penrose pseudo-inverse and Vrf is defined as previously.
(We remark that V’{ is taken to be of full rank n, since otherwise the closed loop
matrix of the reduced system would be defective and the conditioning of some of the

poles would be infinite.) From (42) we obtain

N -1 5 =T T T
< —
IIFlll S0 {Bl} | A ||F Ill&vl ViR I

1 F
. k. 1k 1
- -1 ' 2Y2( © T.,T B 2%
omin{Bl}(_z ci] (_2 le Vi (AT - R I )7,
i=0 i=0
where | .“F denotes the Frobenius norm and Omin{.} denotes minimum singular value.

The parameters wj,Y]. then depend implicitly on the conditioning numbers S and on
the separation between the assigned poles ?\i, 1=1,2,...,k and the eigenvalues

Uj’ j=1,2,...,k, of R1 , as well as upon the separation measure (41). Small constants

u)j, Yj and a small separation measure thus imply a good separation between{pl, omms ,_Li(}

and {uk+l’ . ,un}. The reduced system should, therefore, also be selected such
that its poles are well-separated from the unassigned poles in the complete system.

To ensure good separation between the set{n . ,}ln} and both sets D\l’ . Xk}

k+1” "

and {Ul, cees “k}it may be advisable to include in the set to be reassigned any open

loop poles near the sites of the specified closed loop poles. By this technique, the
conditioning of all such poles could also be controlled.

We observe that it is not necessary to assume the disjointness of the sets
D\l’ cees Ak} and{l_lk+1, e ,Un} in order to solve the partial pole placement problem.
If this assumption is not made, however, it is possible for the complete closed loop

system matrix A + BF obtained to be defective, in which case the sensitivity of some
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eigenvalue of the system must be an order of magnitude worse - that is, perturbations
of 0(e) in A + BF must cause perturbations larger by at least an order of magnitude
in some eigenvalue. In practice, therefore, we make the disjointness assumption
to ensure robustness.

The principal advantage of the projection procedure arises for very large sparse
systems. In these cases the necessary information to determine the constants
wj, %, 6]. , is not available from the partial Schur decomposition (1), but it is expected
that good estimates are attainable and further research on this problem is in progress.
In the next section we examine a small numerical example to illustrate the conclusions
of the theorem, and compare the results of the robust partial pole placement with
robust pole placement for the complete problem.

4. Numerical Example

We consider a model of an unstable chemical reactor with n = 4 states and

m = 2 controls and system matrices

[ 1.380 -0.2077 6.715 -5.676
-0.5814 ~4,.290 0 0.61750
A= 1.067 4.273 -6.654 5.893
0.0480 4,273 1.343 -2.104 |
0 5.679 1.136 1.136
gl= |0 0 -3.146 0 .

The open loop eigenvalues {pj) are given by the set {1.991, 0.06351, -5.057,
_8.666) with condition numbers {c;} given by {1.631, 1.304, 1.506, 1.451}.

The partial pole assignment problem is to move the unstable poles Hyr Hy into
stable positions given by {Al,/\z} = {-0.2, -0.5}. Applying the partial Schur

decomposition we obtain (to four figures accuracy) the reduced system pair

1.991 0 B
R, = p
-0.5446 0.06351
p -1.560 1.771
B, =
-5.117 0.2882
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Since the matrix Bl is square and invertible, the poles {Al,)«z} can be assigned to

the reduced problem with perfect conditioning C, =6y = 1. The feedback is

~

obtained from F1 = Bl_1 (A1 - Rl)‘and is given (to four figures) by

-0.1853 0.1159

g 2
Il

~-1.401 0.1021

The feedback for the complete system is constructed fram (2) as

0.1522 —0.04904 0.09370 -0.1159

1.0856 0.2124 0.7790 -0.3767

The condition numbers of the assigned poles A 1’ A 2 in the complete closed
loop system A + BF are now given by c, = 1.515 and c, = 1.735. The condition
numbers of the unaltered poles in the closed loop system are given by Cy = 1.5698

and ¢ )y = 1.795, which compare well with the original open loop condition numbers.

i

For this example we compute the constants ¢, , v., and 8. to be
s I J. \
w) = 1.558, y, = 2,580, 83 = 1.638 ,°
Wy = 1.627, Y4 T 1463 8y = 0.9945, _

and it can be seen that the inequalities of the Theorem are satisfied by the

condition numbers Cj' i=1,2,...,4.

We may also compare the partial pole placement results with those of a full

robust pole assignment for the problem, where the poles A, = -0.2, A, = -0.5,

1 2

A3 = Hq and A4 =, are assigned so as to make all the poles of the system matrix
A + BF as robust as possible. Results for this problem are given in [2], and are
reproduced in Table 1, together with the results of the partial pole placement

algorithm.
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TABLE 1 Condition Numbers

Partial Pole Placement Complete Pole Placement
(Method 1)
c1 1.52 1.48
02 1.74 1.76
Cq 1.57 1.45
C4 1.80 1.81
gil,, 3.32 3.23
&, (X) 3.59 3.32
nEn 1.42 1.40

We observe that the condition numbers of the assigned poles are very close to
4
each other. The over-all measures of conditioning given by Ilgll2 = (2 c?)l/zand

1<2(X) are also close together. We remark that the minimal condition number xz(X)

which is achievable for this problem is bounded below by

xz(X) 2 1.88,
ard the solutions obtained by both methods are close to optimal (See [2]).
Clearly, from this result and from the values of the constants Wi, %, 6; we see
that this a very well-conditioned system and the results of the partial pole
placement may be expected to be satisfactory. We remark that the magnitudes of
the gains in both feedback solutions are nearly the same, but the computed

feedback matrices are themselves rather different.
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5. Conclusions

In this paper we have examined the robustness of state feedback solutions to
the partial pole placement problem obtained by the projection method of [3]. We
have shown that the sensitivity of the assigned poles to perturbations in the
closed loop system matrices can be bounded in terms of the sensitivities, or
condition numbers, of the assigned poles of the reduced order pole placement
problem. Methods for finding robust solutions to the reduced pole placement
problem are given in [1][2]. We have also shown that the closed loop
sensitivities of the unaltered poles can be bounded in terms of their open loop
sensitivity. If robust solutions to the problem exist, that is, if the over-all
problem is well-conditioned, then the bounds may be expected to be tight, provided
there is good separation between the assigned poles and those which are
unaffectecd by the feedback. Further numerical experiments and techniques for
estimating the parameters in the bounds will be discussed elsewhere.
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