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ABSTRACT

This report develops a mathematical model for the injection of a
hot fluid into a porous media,with applications to heavy o0il recovery.
The resulting differential equations are then solved numerically by a

finite element method.
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§1 INTRODUCTION

The first stage in the extraction of light oils (o0ils' with a low
viscosity) is by Primary Recovery, a method which simply involves sinking
a well into the reservoir and letting the fuid flow out under the natural
pressure of its surrounds (seel4] & [5]). However this method usually
removes less than half of the initial o0il in place, and therefore secondary
recovery technigues are used to remove the remaining oil, for example water
flooding (see [4]1). There also exist heavy oil fields, in which the oil is
at such a high viscosity that recovery by primary or secondary methods is
unfeasible. A number of different technigues exist for lowering the
viscosity of the oil and thus allowing extracting, for example in-situ
combustion (seel15]1), injection of carbon dioxide, or steam injection
(see [10] & [15]), there being an increased interest in the numerical simulation
of these methods (seel11,[21,[3],[6) & [7]).

Steam injection, as its name suggests, involves the injection of steam
under high pressure into the reservoir where it acts as a heating agent.
After a specified period of time the steam is switched off and the melted
0il flows out due to the pressures in the reservoir. It is know that the
steam forms a front which propagates through the reservoir and the period
for which steam is injected is dependent on the position of the front.
Therefore accurate tracking of the front is essential, but existing numerical
methods tend to give unsatisfactory oscillatory behaviour in the solution.

In this report we consider both modelling and numerical techniques
for the simpler problem of injecting hot water into a reservoir of cold
water. We have analysed this problem analytically and used a numerical method
which appears to give good resolution without oscillations.

A mathematical model for the simpler problem is developed in section
two of the report, with the resulting algebraic and differential equations

being non-dimensionalised in section three. Analytic solutions are sought



for the non-dimensional equations in section four. In section five a
Finite Element technigue (with fixed nodes) is used to obtain numerical
solutions for the equations, the results of which can be seen in section

six, with the conclusions being contained in section seven.



§2 MATHEMATICAL MODEL

As a first step we shall consider the injection of hot water into
a porous medium containing cold water, the temperature difference being
of the order of 50°C.
We consider a cylindrical reservoir of radius ‘'L and height
h , with a well bore of radius R dropping vertically through the
centre of the reservoir (see fig. 1). The reservoir is considered homogeneous

in all rock properties and isotropic with respect to permeability.
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Fluid is injected from the welfhﬁbre wall into the reservoir. The
boundary condition at this point assumes the pressure is radially symmetric
with a given pressure distribution vertically within the well bore. For
the purpose of this report we shall assume a uniform pressure distribution
within the well bore.

The strata lies horizontally with impermeable boundaries, the permeability
throughout the rest of the well being homogeneous and isotropic. Therefore
if we ignore the effects due to gravity the resulting flow may be assumed

to be pureily horizontal. As the reservoir is assumed to be radially

symmetric with respect to all the rock properties, the flow of a fluid through



the reservoir will be radially symmetric.

§ 2.1 INITIAL AND BOUNDARY CONDITIONS

Initially the reservoir is at constant pressure, density and

temperature, P, s P respectively. At the outer

int int CIgE Tin

£
boundary of the reservoir (r = L} there exists an insulated no-flow

boundary, ie. no heat or fluid flows across it. Also a no-flow condition
is imposed on the top and bottom of the reservoir, but this is automatically

satisfied, as we are considering only horizontal flow. For time greater

than zero, water is injected at a constant mass rate g at temperature

Tinj at the well bore (r = R) [(see fig.2).
Fig. 2 -1
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§ 2.2 GOVERNING EQUATIONS

As we are dealing with the flow of a heated ligiud (the heat not being
sufficient enough to change the phase of the fluid) through a porous medium,
the unknowns in this problem are (I) the temperature of the liquid, (II) the
pressure of the liquid, (III) the density of the liquid and (IV) the velocity
of the liquid. The other properties, e.g. viscosity of the liquid, density of
the rock etc., are taken as constants (see § 2.3.1). Therefore we require

four equations for the four unknowns. These are (al) Darcy's law, which relates



the velocity of a fluid in a porous medium to its pressure gradient,
(b) conservation of mass, (c) conservation of energy and (d) an eguation
of state: for this the definition of iscthermal compressibility was

chosen.

§ 2.2.1 DARCY’S LAW

In 1856 Darcy (see [41) derived an empirical law for the single
phase flow of a fluid through a porous medium. Later King Hubbert (see [81)
obtained the same law from the Navier- Stokes equation of motion for a

viscous fluid. The law may be stated in the form.

v = -8 (vp - pgvd) (1)
h U

where
V - superficial velocity (volume/unit area/unit time)
M - viscosity

p - pressure

p - density
g - gravity
d - depth

K - absolute permeability tensor (a function of the rock].

In this report we are ignoring the effects due to gravity and assuming

a radially symmetric flow, so (1) simplifies to

~

v -RY¥p (2)
u

where V now takes the form

2 H >

3
or

~

being the unit vector in the radial direction.

§ 2.2.2 CONSERVATION OF MASS

If we consider an arbitrary volume R with boundary oR contained
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in the porous region, then conservation of mass yields

rate of change of| = ~-[flow of mass| + [mass created in R
{lmass in R . out of R |per unit volume J
i.e. 9 ¢pwdT = - P Yw i dg + gdT
ot
R dR R
where
. V .
¢ - porosity = pores = Volume occupied by pores
tht total volume

~

dn - outward unit normal to R

g - mass injected per volume, which is zéro in the present probilem
as fluid is injected or extracted only at the edge of the region.

Therefore mass injected enters only as a boundary condition.

From the divergence theorem

pW ~W dP B Y pW~WdT
3R BR
or
{,3 (¢pW] +Y . [pwywl} dr=20 |,
Bt

and as we are considering an arbitsary region R

9 (¢ pW] + V., [pw VW) =0, . (3)
ot

where the operator V . E 1s taken as

~ ~

V.E=13(rr.E)

~ .

r or
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§ 2.2.3 CONSERVATION OF ENERGY

Again considering an arbitrary volume R conservation of energy

gives : rate of change of energy conducted heat, conducted
=1 = out of R by the |- |out of R by
internal energy in R water the rock
(energy
+ created in R

per unit volume

(ignoring effects due to radiation, because of their small magnitude),

i.e.
e m .dn - | - kg VT .dn
(b, U, + (1= ¢) p U d = ap dt 7 | Py My Y o 6 - :
3R
R 3R
where

Uw - gpecific internal energy
HW - specific enthalpy

ke - coefficient of thermal conductivity

g - heat injected into R, taken as zero in the present problem as heat
is injected at the edge of the reservoir: it 1s therefore again treated
as a boundary condition.

After applying the divergence theorem,

{a (9o, U, + 1=¢) p U + V. (o H V) -V kg VT}dr‘r= 0o,
at " .

but because R 1is an arbitrary volume, we obtain

9 (¢ P Uw + (1-¢) . Ur] + V., [pw Hw VW] -vV. Ke vT=20 (4)
ot - - ) -

§ 2.2.4 ISOTHERMAL COMPRESSIBILITY

As we are only dealing with a temperature range of ~ 50°C, whereas
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the pressure range should be of the order 500psi, we can assume that the
density of water is a function of the pressure only. Therefore, from the

definition of isothermal compressibility

(5)

(!
1l
|

N

v
where

CW - coefficient of isothermal compressibility for water.

But

S0

" 2 O 1 9pi
m )

P

Integration gives

CW p = log p + const ,

but initially p = Pint when p = Pint
therefore

C p - =

w Pint = 108 Pjpy = const

which gives

C, P~ C,Pint = logp - 1og 03t

Cw (p_piht) = log [p/pint]

0 = Pyng exp e, (Popyng) b (6)

A consequence of using the definition of isothermal compressibility as the
equation of state is that it decouples the equation for the conservation

of mass (3) from the equation for the conservation of energy (4).

§ 2.3 PHYSICAL ASSUMPTIONS

2.3.1 ROCK PROPERTIES

Due to the homogeneity and isotropy of the rock, ¢ , K, Ke and P



can be assumed to be constant throughout the reservoir, for all time.

2.3.2 THERMODYNAMIC PROPERTIES

Defining
T
u = C dé6
\Y
T
H =1 C._deé
P

where

CV - gpecific heat at constant volume,
Cp - specific heat at constant pressure,

it can be shown that {(see [91)

U=H- P
Y (7)
If we assume Cg and C; are constants and that HW = Hr = 0 when
T = Tb (a base temperature)
ase
then
- W -
Hw - Cp . Tbase] (8)
_ pl _
Ho o= G5 (T=Ty o) ()

Also if the pressure in the rock is taken to be the same as in the water,

then by (7)
Uw = HW - B {(10)
Pu
and
u. =H_ - E_ . (11)
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§ 2.3.3 VISCOSITY

From [10] we take the viscosity of water u to be given by the

approximate formula

1 =0.14 + 6/30 + gx10° 8 . % op'1 (8-°C)
u

{see fig 3).

Fig 3

VISCOSITY OF WATER AGAINST TEMP.

0.8 4
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For the temperature range we are interested in it can be seen that
v varies by approximately 0.4 cp. but for the purpose of this report we

will assume u to be constant.
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§ 2.4 SIMPLIFICATION OF EQUATIONS

Substituting (10) and (11) into (4) gives

é_f[wpw [HW -p )+ (1+¢) %1 [Hr -p
at P P

ﬂ £V LG H V) -V L KVT

3 (¢p H ) +3 ((1-¢) p_H) -03p+y . (p H V)-V.KVT =0
FE wWoowW It i Tt W W W “ 6.

H 3 (¢p )+ dp 3H + (1-¢)p 3H -3p
et " at” Tl T2

¥ Hw Y ! (pw YWJ " Pu Yw ' Y Hw - Y i KGYT L

thy 22 Weg) =7 a0Ry, Vily, * dmeg BHE, » 111 - ) P, 8H - 8p
ot ot 594 ot

But from (3)

%E (6 pw] ¥ Y ) (pw Vw] =0

so that equation (4) simplifies to

pp, OH + (1-¢) p OH_ - op+tp V. . VH -V . KVl =0
W 5¥w r Btr 5T W W ~ W . 0.

Then substituting (8) and (8) in the above gives

(¢p, CV + (1-¢) p_C ) 3T - 3p + o V. . C¥ o7
wop . TP O3T o3¢ ul S P37

[
1
<1
~

@
<
._|
i
o

and, finally substituting (2), namely

vV = - into equation (3), and the above equation we obtain

W

e I

P
or

=[x
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8_,E¢p1_13_[1fpwi< 3_PJ=D (12)
3 r ar s or
and
(p,, Co + (1-¢) p C7) 8T - 8p - p ChK3p 8T - 13 (rkdT) =0 (13)
P ot ot P ar i r or or
along with (B)
C _
=0y, e w.(p pint] ’ (6)

which gives us three equations for the unknowns p, T and Py *

§ 2.5 BOUNBDARY CONDITONS

At r = R (well bore radius) water is injected at a constant mass rate

g at temperature Tinj .

The flow into the reservoir per unit area is

oy vV, = @ r
2nrh  ”

and, substituting for Vw , We obtain

~

- Kp  3p = g
BTl 27Rh

which implies that

\

% . v (14)
ar 21rRthw
at r =R
and T =T, .
inj

At r = L (outer boundary) no heat or fluid flows across the boundary,

therefore
P yw = 0 = 3p =0
or
at r = L (15)
and 9T =10
or
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Summarising, (12), (13) and (B8) form our set of three equations,with

boundary conditions (14) and (15) and initial conditions

. T=T,

int int afid| ‘P

§ 3 NON-DIMENSIONAL FORM

int °

We now non-dimensionalise the equations of §2 so as to try and make the

variation in the variables lie in the range 0(1), giving us a better idea of

the size of the coefficients of the differential equations and thus leading

to simplification of the system of eguations.

Also equation (6} will be assumed

to be a linear function of pressure (see table 1].

Non-dimensional variables are represented by an overbar.

=S Prmax

p ’

and t
max max

obtained in this problem.

TABLE 1

be the maximum pressure,density, and time

Relationship between variable and

non-dimensionalesed variable

Range of non-dimensionalised
variable

r=»Lr il S [R/L , 1]
T = int + [Tinj = 1nt] T T e [0, 1]
P= Pint + pp p € [0, [pmax N pintJ/p]
i . "
‘ t = 1t t e [0, tmax/f]
| - - > -
Py Pint SN QVE o, [pmax pint]/b p ]
max
Let
§ = R/L
T = - T

Diff = Vinj int s
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where p 1is chosen such that 3p = -1 at r =28 . Then
ar
% =p3 = g M at r =R, (r=6) by (14) ,
ar L or 2mRh pr
and hence
P ' (16)
2mRhp K
W

T is chosen so as to match the most dominant terms in the energy equation.

A~

If we place p = p +pp into (B) »

int

_ PP
P =Pint ©

Then expanding g WPP in the form
- (1+q P+ (o,p)"
P = Pint 1+qPP+ (guPPJ) + .. )

21
J

where

CW‘EJEJ g '10_3

3
By Tl

we have

where

B = Ping CwP v 2

Substituting the expressions in table 1 into equations (12) and (13) and

the boundary conditions (14) and (15) gives

1-34-[¢[pint +bpl) - 1 3 (r E-(pint + bp) 3 [pint + pp) =0

~ ~

T 9t L2 r or u or
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and

It W i : _ 4
[¢[pint + b p) Cp + (1 ¢]pr Cp) 1-§;ETint + TDiFf T) i-éu(pint

T 9t

T 9t

(17)

-~ w A~
(Pypy * BP) CoK 3 pyy +pR) B (Typp * Tpgpe T) .
u L2 ar a1 g or
(rkg 3 (Tyw * Tpige 1)) =0
or
with
3 =-1 at r=6 , 3 =0 at r=1 ,p=0 at t =0
ar or
and
T=1a r=6t>0 ,37=0 at r=1 , T:=0 at t =0
or
This simplifies to
EE.— 1_3__(r K piht pt + Kbpt F .EE} =0
3t r or upbL? uebl? " ar
and
w . o il W e R
(¢ Pgpn Cp * (170) ol € Tpgpe 8T * 4B G Tpype P 2T - P 9P
T ot T ot T 3t
Ce. L MKpT 3p 8T b CVKp T b 9p Bt - 1
int “p " P Tpipe °P OF p K P Tpjep PO 3t =l Tpipe 10 fr ot
L2 5z ar u L2 51 or L r

(18)
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From the data set (see [11) given in appendix A, the two dominant terms of

the energy equation are

W r
(o Pint Cp + (1-¢) I Cp] TDiF? = f1 , say
T
and
w A
Pint Cp K P Tpipe = h, » sy
uLz

Thus T dis chosen such that h

n
-+

1 1

T -1 - W _ r 2
3 f1 (¢ Oint Cp + (1-¢) P Cp] TDiFF uL
W ~
h, Pint Bp P Tpiss

Now substitute T dinto (17) and (18) and then divide equation (18) by the

coefficient of

to give the two non-dimensional differential equationsywhich follow.

We have
op - 1_3__(r (a0 + B p) EE) =0 (19)
ot r or or

with
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and
(1+Ap) 3T - (1+wp) 3p 3T - v 3 (r 3T) = nap (20)
ot or or r 9r or or
with
T=T,, at r=258,t>0
inj )
3T =0 at 1 =1,
or

Again from the data set of appendix A the coefficients may be calculated as

o = 1687.80
B = 3.543
) -4
A = 5.92488 x 10
w = 2.15843 x 1075
. -4
v = 1.38088 x 10
-2
n = 3.0395 x 10

§ 4 ANALYTIC SOLUTIONS

In this section we shall simplify the equations of §3 and seek some analytic

solutions.
As B 1s small compared to o in equation (19) , we can as a first

approximation place g =0 in (19} giving

3p - 23 (r3p) =0 (21)
ot r or or
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3
Fig 4
3p = 0
or
ar
I
i - effect of injection felt at
outer boundary r = 1
R/L r =1
—] ¢
r= g

After the injection has been taken place for a sufficient period of time -
such that the effect of the outer boundary (r = 1) has been felt (see fig 4) -
a semi-steady state condition cccurs, that is to say if the injection rate

is constant, then the reservoir pressure will increase in such a way that

_gé constant for all r and t (see [4]).
ot

From (5) we have

C = -1 98V and CW V.dp = - dv = Volume rate of injected fluid.
V 9p dt dt
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But the volume rate of injected fluid = g , so that

Pw
9P % o E ,
d C Vp ) V=7 (1-R)* ¢h ,
WowW

Hence

dp = q =P 9P

dt C m(L-R)Z he¢ T ot
3p = q T = ¥ 0.901) (22)
ot p Cw ﬂ(L—R]2 hpo
Then (19) becomes
3 (r 3p) = :g = 10 where o = ¥ 3 28
85 ar & o
=~ g -
rip=r4 +C (C=C(t]);

9 2

~

when T =1 3p =0 V¢t

or
which implies that
C=-0 oy 8

~ v 2
{note that when r = &, E%L_ -1+ 8 iy -1 }
: or

~

N 5 .
] 6 - ] ) =
p=20r" -Slogr + CG DD Co(t] .
2
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Then differentiating with respect to
3p = 9C_ = V¥ C_ = ¥t + const
-y = 3° e

ot ot

so that

~ ~5 N -

p = r~ - 8logr + ¥t + const.,

(23)

which gives an equation for the non-dimensional pressure in the reservoir.

To solve equation (20) we require ‘Eé which from (23} is

ar
3 =ér -8
or r
0.8 -
N
Fig.5 0-6""

0. 02

r

0.03

0. 04

0. 05

From*Fig. 5 it can be seen that for r < 0.05, 6r W 0 , therefore

(24)



Substituting into equation (20) gives

~ ~

(1+#Ap) 3T + (f+wp) 6 8T - v 3 (r 8T) = n 3p

ot r ar r or or or

Next if we assume that A , w and n are zero

we have
3T+ 83T -v3 (ral) =0 (25)
ot T or r or ar

with boundary conditions

~ ~ ~

T=0 at =t

i}
o
<
~

~ ~

r =24 t >0

— 2
I
-
0)]
ct

If we assume that T =1 at ; =0 for t >0

1}
o
o
ot
H
1}
—
=
[0}
c
)
o
—¢
1}
O
1)}
o
N
n
8
<
ot

and instead of Ei
or

we can find a similarity solution to (25)

Let T(FE) = t ix) , x-= i;_ (28)
+B
i » =01 T o
3T = at .
_l_ ot y +t Yy Xt
3t
x> = -grt £ = —prt”t = et
B
SO
3T = £ (ay - Bxy. ) (27)

ot
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T
or

]
cfF 2
Q
<
X
>
H o2

o ran =% P oy ) =t Py v oy X

X XX T
or or or

_ a-B " ~_g
t (yx+ryxxt )

_ Ta-B To-28 ~
t v *t Y x

Substituting (27), (28) and (29) into (25) gives

£0=1 _ Lo-B ~ a-B _.0-2B
t [qy Bxny + %_t Y, %_t Yy vt '

Next substituting (26) x = into the above gives

o

ta~1 (ay - Bxyx) + §E§—28 yx _ ta—2B

|<

X X

or

£0=1 _ o-=2B . o _ _
t (ay Bxny + t ((8 \)Jz5 vyxx] 0

X

For a solution to exist

o1 ta—ZB

t = which implies that

0-1 = a-28 or B

NI=

(28)

(29)
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which gives

(uy-%xyx] + ((8-v) Yy ~ vyxx] = 0

X

The new boundary conditions are

~ ~

(a) f =1 at r=0 t >0 = 1 =

2
?
?

n
(wn]
<
>}
d

(b)) T =0 at ¢t

0 = lim £y(x) Vvr

t%(a) v t> o0

t>0 x>

-2
i
o
H2
¥

(c)

as

From (a) a =0 and y(0) =1
and from (c) y(e) =0

which gives from (26)

T = y(x]) where x =T
e
substituting o into (30) gives us an
namely
-1 - - =
Xy, (§-v) le W, =0

X

Yy A%y, - (6-v) y =0

2v VX

Letting +=1_ « = (§-v )
Vv

where from the data set [11]
= 3620.8794
k = 0.931136
we obtain

y" + ux - k) y' =0

X

o Vit 0+t%(x) x =+

ODE for vy

(30)

(31)
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Then letting z =y, z' = y"
z' = (k= wx)
z X
~ 2
log z = klogx -  x~ + log c ( c-const.)
2
or
log y' = log c x° - j_xz
2
K - x2
y' = cx e 15
giving x 2
K ___]i
y = cx e 2 dx +d ( d-const)
a]
Whem x =0 , y =1 we find that d = 1

and when x = o , y =0 |,

2
X
y =1 + ¢ xK e 2 dx = 0
0
so that
n o= - 1
w0 2
xKe-lg dx
s]
X
Therefore ( 2
"1
Tr ,8) =y (x) =1 - |x<e? dx
ol
o —1)(2
<< e 2 dx
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As Kk = 0.9311 , the approximation k = 1.00 will lead to a simplification

of the above equations., namely,

—1x2 —1x2 —1x2
X e dx = | - 1e € = 1 {1-e 2 }
N 1 o 1
b8
-1X -1x
. 2 2 _
Then Lim Xe dx = Lim. 1 { 1-e b=
X0 X0 1 1
which gives
-1x -1x
y=1-"1{16 2} = o 2
1/
1
therefore
-1x
& E N e . L]
T(r,t)=y=c¢ with x = r/t?2
-1r
T{r ,t) = e ZL for small r

which along with (23) gives us two analytic solutions for the presssure

and temperature in the reservoir.

§ 5 NUMERICAL METHODS

We reguire a numerical method capable of solving the system of
non-dimensional differential equations of § 3. Although the majority of
0il reservoir simulators use finite difference techniques on a fixed
rectangular grid (see [2 1, [5], and [B]), we shall use a finite element
method (see [13]1) with fixed nodes on an irregular grid. This method

was chosen for two reasons: firstly further simplification of equation

(32)



= 26 =

(19) vyields a linear parabolic equation and it is known the finite
element method gives good results for this type of problem (see [131)
and secondly it is anticipated that it may be necessary to use finite

element techniques with moving nodes in future work.

§ 5.1 THE FINITE ELEMENT METHOD

As in this section of the report we shall always be dealing with the
non-dimensional form of the equations, we shall ignore the overbars and
assume each variable is in its non-dimensiocnal form.

We seek semi-discrete approximations for the unknowns p and T ,
in the form

n+1

plr , t} = £ p () ¢ .(r] (33)
i=1 1 i
n+1

ks s, €0 = B2 T.(t) ¢, (r) (34)
y=q 1 i

where Py and Ti are coefficients and ¢, are linear basis functions

(see fig (B)).
The region of: solution is the line r =8 to r =1 (using the

symmetry of the problem), divided into n intervals (elements).

2 % 6,/
/

N\

s

Fig. 6
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From Fig 6 we note that

1 1
+
Pre1 T P
+ -
and o, =0 . ¢ i=2, , N
1 1 1

If we write equations (189) and (20) of §4 as

Pt - Lp) =0 (35)
and
(1+Ap) T, *nP - L'(T, p) =0 ., (38)
where L(p) = 1 3 (r(a+Bp) 3p)

r ar or

and
L(T , P} = (1+w) 3p 3T + v 3 (r 3T)

ar ar r ar or

then ODE's for the 2(n+1) unknowns quﬁ siie » P and T,l , T

n+1 2 HEre L

Tn+1 can be obtained by taking a Galerkin - weak form of (35) and (36)

using test functions ¢i i=1, ... , ntl , to give

< p o+ L(p) , ¢, > = 0 (37)
i=1, ... , ntl
CUPY T #0PL + (T, p) L, ¢, > =0 (38)
where
<a , b > = abdrt
T

In this case T represents the volume of the reservoir,



with
§ ¢r <1
0 < z < h/L
0 <0 ¢ 2w
and dr = ndrdédz , so that
h/L 27 1
<a , b > = ab rdrdédz
o o ¢
1
Gga B1Ea== 2Th ab rdr (32
L
8

Due to the.lower triangular coupling of the equations equation (37)
may be solved first, and the values obtained for the p 's used in the
i

solution of (38]).

By considering the term o + gp in equation (18) and using the values

obtained for o and B in §3 it can be seen that (a+Bp) = 1887.80 (1+0.0022p).
As it is thought that pe€l0,91], it may be assumed for the purpose of this

report that 8= 0, therefore simplifying equation (18) to

% -ad (rdp) =0 ,
at r dr ar

p=0 at t =20

9p = -1 at r =3¢ ,t > 0
ar

9p =0 at r =1,Vt,

or

From the analytic solution of §5 it can be seen that

p = -6'logr + U[rz] , S <r <1
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therefore as p = -8 logr satisfies (40), it was decided to transform the

variable p to p , where

p=p -3 logr

This has the effect of changing the initial and boundary conditions of
equation (40) to

g = § lograt t =0 ,

ap = 0 at r S§vt,

Having non-zero initial data allows us to equi-distribute the nodes (see [14])
with respect to f = 6 logr |, This has the effect of placing the majority of
the nodes near r = §, where it 1s expected that the greatest disturbance will
occur. The new boundary conditions have the effect of introducing a small flux
into the region at r = 1 with a no-flow condition at r = §, rather than a

large flux at r = 6§ and a no-flow condition at r = 1

Taking the weak form of (40]) with test functions ¢  leads to a set of n+1
i

linear ODE’s

MP=aKP+L (41

~ ~ ~ ~

where p = (D » P 3 rea g Dn+_,|]T .

M being a mass matrix , K a stiffness matrix and L a load vector obtained
from the Neuman boundary conditions. From the nature of the inner product
(39), both K and M are symmetric.

A simple one step € time-stepping scheme is employed to reduce (41) to n+1

linear egations



- 30 -

M fEK” —QKJ= eaﬁﬁkﬂ s (1-0) o K g¢ L ) (42)
At
5K+1 can then be obtained by applying an LU solver to the above
with
DK+1 = 5K+1 - Sdlogr
i i 1

With p known,(20) can be solved. This was done first with X =w =n =0

and later with n = O

After taking the weak form of (20) with test functions 6 , we obtain the set of

n linear ODE’s (as T1 =1 for t » 0)

MT=KT=+wKT+L (43)

where M and K are the same mass and stiffness matrixes, as derived in
equation (41), but K is a different stiffness matrix obtained from
¢ 3p AT , ¢. > V. ,
dr or
so that K = R(p) and C is a load vector, obtained from the Neuman
boundary conditions which in the present case is always zero.

Note that K 1is wunsymmetric.

Again using a one step 6 time stepping scheme we can reduce (43) to n

linear eqguations,

LG AU SR °, P (1-6, ) KT8 e, vk ™ (-0 vk T
At (44)
and TK+1 may be obtained by applying an LU solver to the above.

If we take n = 0 , then we have an extra term on the right hand side,

namely



but if we only consider times after which p has reached semi-steady state,

then by the analysis of §5 ,

EE_ x constant

ot

and this can be calculated from the definition of isothermal compressibility

as

Therefore taking n 2 0 changes (43) into

M T (45)

KT+vKT+L+

>

|

where = <nV¥ 5 ¢, 5 1 =14 see , N+

i

?

Again a o time stepping scheme was used to reduce (45) to n 1linear equations

ket oopky o g KRR gy kR TR s e;)KTK+1 - (1-0) wKTE

>

(L =0)

and a LU solver was used to calculate 'l'k+/I

~

§ 5.2 RELATIVE NORMS

If we have two piecewise linear functicns f and g defined on the
interval [ a, bl , we often require a measure of the relative difference
between them. If f and g are defined on the same grid, then a relative

pointwise norm Lr , may be defined as



._32_

12=5 f.-g. 2
r . 1
i=1

n+1
& 2
i=1

there being n intervals and Fi and g; being the values of f and g
at- node 1 , respectively. However if f and g are defined on different
grids with possibly different numbers of nodes a more general relative L2

norm Lr must be used to measure the relative difference between f and g .

derived from

rb
2 2
Lr = (f-g)~ dr
‘a
b
'_ft&j.]zdr
i 2
a

with appropriate gquadrature.

§ 8 NUMERICAL RESULTS

§ B.1 Pressure

Up to a time of ¢ o 0.0001 transient flow occurs. This is due to the
fact that the effects of the outer boundary of the reservoir have not yet
affected the flow and can be seen in fig (7) where a fully implicit scheme

(6=1) is used to solve equation (42) (as feor the rest of the results).

Figures (8) and (9) show the pressure distribution for times up to t=0.01,

the result for fig (9) having twice as many elements as the result for fig (8].

»

A relative L2 norm for the difference between them gave Lr % 9,527 x 10_4

while a relative pointwise norm between fig (8) and the analytic solution at
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3

this time fig (10) gave L_ = 3.2842 x 10 Figures (11) and (12)

show the numerical and analytic solution up to t = 1.00, the relative

pointwise norm between these results being Lr = §,5782 X 10_4

§ 5.2 Temperature (n=0)

Placing n = 0 has the physical effect of putting the internal energy
equal to the enthalpy.
The results shown in figures (13) and (14) show the temperature up to

time t = 1.00 (using implicit time stepping)with the results in figure (4)

having twice the number of nodes as the results in figure (13). A relative

L2 norm for the difference between the two solutions gave Lr = 2.4318 x 10_3 A

while a relative pointwise error between fig (14) and the approximate analytic

2

solution in fig (15) gave Lr = 1.2328 x 10 Figure (18] shows the

temperature up to t = 1.00 but with 61 = 0 (the convection term calculated
using explicit time steppingl, a pointwise norm between this and the analytic

solution giving Lr = 1.2652 x 10—2

§ 6.3 Temperatureln = 0.)

Having n z 0 should allow for heating by compressibility, thus
increasing the temperature through out the whole reservoir, not only near
the well bore as in the case nn = 0 . This phenomenon can clearly be seen
in figures (17) and (18), the results of figure (17) being calculated using
a fully implicit time stepping scheme [61 =92 = 1),whereas the result
in figure (18]} uses a time stepping scheme with 6 = 1 (explicit on the
convection term], a relative L norm for the difference between the two

results giving L_ = 3.7417 x 10°°
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§ 6.4 Convective flow

Tt was next decided to check the robustness of the numerical method
by letting v > 0 , the flow being purely convective when v =0
Physically, this is eguivalent to lowering the thermal conductivity of the

rock until the heat transfer is only by convection in the water.

Figures (19) and (20) show that v can be reduced by factors of
10 and 20 respectively, and the method will still reproduce the solution
with 100 elements. However if v is reduced by a factor of 100, figure
(21) shows that oscillations occur using 100 elements, but if 200 elements
are used a smooth solution is again obtained (fig (22)) similarly, if v
is reduced by a factor of 200, a solution using 100 elements leads to
oscillations (fig (23)), but using 200 elements gives an. oscillation - free
solution. Fipally taking v = 0 and using 100 nodes, we obtained very bad
oscillations (fig (25)),but again using 200 elements they are almost totally

eliminated.
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§ 7 CONCLUSIONS

In this report we have discussed the modelling of hot fluid injection
into porous media, with analytic and numerical solutions being obtained
to the resulting differential equations. In section two we showed that.the
problem could be written as a system of three equations, one algebraic and
two differential. In section three, the three equations were non-dimensionalised
with the algebraic eguation being simplified to a linear function of pressure,
which when substituted into the two differential equations resulted in two
differential equations for the unknowns pressure and temperature. After
simplifying the equations it was possible to obtain analytic solutions for
the pressure and temperature, this being done in section 4, with numerical
methods being described in section 5. The results were displayed

in section b.

The numerical method coped very well with the simplified pressure
equation (40), as expected, with good comparisons between the numerical and
analytic solutions. The method also gave good results for the temperature
eguation (since most of the activity takes place near the well bore), the
nodal distribution used for the pressure equation proving very suitable for

the temperature problem.

When the flow became purely advective O *0) the method still coped
well, but at the cost of a large number of elements, mainly distributed
near the well bore. Therefore if the problem was run to a greater
time, such that the temperature front reached further into the well, it is

expected the results would break down due to the lack of nodes in the region.



Also if we considered a 2-D problem the method would become very expensive
in terms of computer time. In order to have enough nodes to resolve the

solution some kind of adaptive gridding would therefore appear to be necessary.
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APPENDIX

For completeness, we include the data set (see [14] ) used for this
report.

Reservoir parameters

Outer radius L 300.0m
Height h = 30.0m

Well bore radias R = 0.08m

Rock Properties

Porosity ¢ = 0.2
F -3 2
Permeability K =1.87385 x 10 m
. _ 3 -3
Density Pn = 2.843 x 107 Kgm

1.8028 Jm | 50 K7

Thermal Conductivity Ke
Specific heat at

constant volume C =1.0 x 103 J Kg_l| K_/I

Water Properties

4.3511 x 1019 pascals™’

Thermal compressibility C

Specific heat at

constant volume CU = 4.0 x 103 J\Kg_1 K_,I
Viscosity b o=3.0x10"% kgm s
Stock Tank Conditions
Temperature T = 288.0K
SitE
Density of Water pstc= 1.0 x 103 Kgm—3

Atmospheric Pressure Potp 1.0135 x 105 pascals
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Initial Conditions in Reservoir

Temperature T, = 310.0 K
int
. 3 3
Density of Water P. = 1.0 x 10" Kgm
int
Pressure P = 1.0341 x 107 pascals

Injection Conditions

0.15406 Kgs |

Mass injection rate g

7.4040 x 10° 387

Heat injection rate ap,

Temperature 386.0K

T, .
inj
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