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Abstract

In this Dissertation linear and quadratic finite elements are used to produce numerical
approximation to the solutions of first order differential equations which arise in a moving
mesh finite element method. The behaviour of the moving mesh velocity is investigated
in detail and is compared these results with the existing exact solutions to investigate the
effect of the moving boundaries and provided the error analysis in both linear and quadratic

cases.
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Chapter 1

Introduction

This dissertation concerns the finite element solution of first order differential equations. It
is well known that the standard finite element method is not well suited to % = f(z) in
(0,1) with y(0) = 1, due to the insufficient boundary conditions and difficulty of inverting
the element matrix, leading to various kinds of regularisations in the literature.

There are many applications in which first order equations arise, notably in steady state
fluid mechanics. The motivation in this dissertation, however comes from a moving mesh
method for time-dependent Partial Differential Equations (PDEs).

The strategy is to replace the first order differential equation by a second order one with
an artificial boundary condition, giving (% = 3273 = f(z) with 94(0) = 1 and u(1) = 0) a
problem which is well suited to the finite element approach. It then remains to recover the
solution of the first order equation from the finite element solution obtained. In moving
mesh applications this has to be a continous function.

The moving mesh work is new in this field and therefore, there is a limited amount of
information available in existing literature. Due to the nature of this dissertation, the

majority of the preliminary work is based on programming.

1.1 Moving mesh velocity equation

A moving mesh approach to solving the Partial Differential Equation (PDE)

op

E—pr

12



1.2. WEAK FORM 13

where L, is a partial operator, is to use conservation of the integral of p to move the mesh,

d Z(t)

4 dz = 0
a J, P

By Leibnitz’ Integral Rule [9]

d [® i rop 0
dt/o pdx—/o (m—k&n(py)) dr =0
dz

where (y = %) is the mesh velocity, giving
" L 0 d
il -0
/g ( oD+ 8x(py)) x
Since this is true for all & we get the first order Ordinary Differential Equation (ODE)

d
M@w p

1.2 Weak Form

We want to solve this equation for y by finite elements. The weak form is

o(t) g b(t)
—/ w(py)d:c:/ wL,pdz
a(ty 4o a(t)

giving, after integrating by parts, where w is a test function
b b
dw
—wpyl® + / p—ydr = / wL,pdx
a dx a
The finite element form (with w ~ ¢; and y =Y = . Y;¢;) is

dos Y, d——b Lopd
In Zj¢j x = a¢i «pdx
J

b
b
—@pYbﬁ-/‘p
a
giving (apart from the boundary term) a matrix equation

BY = f
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for the vector of velocities Y, where B is a matrix with entries

b
doi
Bij :/ ¢ qﬁ]daz

This is an unsymmetric matrix, similar to an anti-symmetric matrix, and difficult to invert.

1.3 Alternative approach

An alternative approach is to write y = 9 where u is a velocity potential, giving the second
order equation
d , du
Y=
dx (p dx) P

with weak form ) )
d du
—/a w% <pd$> —/a wL.pdx

giving, after integration by parts

i d ’
*szpi dd) ZUJ QSJ d$:/ wLypdz

leading to (apart form the boundary term)

KU=f

where K is the stiffness matrix with entries

b dg; dg;
K”:/ Pip e

This is a symmetric matrix, easy to invert after imposing a boundary condition, giving U.
The function Y can be found (in principle) from Y = %. The problem is that Y (being
a velocity) needs to be continuous. We shall investigate this second approach using a test

problem.
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1.4 Finite elements for a first order Differential Equations

Consider solving the first order differential equation problem

Y@, w0)=1 (11)

in (0,1) by the Finite Element method. The weak form is

1 dy
/0 wi% = f(z)

Replace w; = ¢;(x) by piecewise linear or quadratic basis functions and expand

yrY =) V¢

which gives us
1

S ([0 2a) = [ s (12)

J=0

To solve this system of equation, we can write equation (1.2) in the matrix form as follows

BY = f

where )
do;
B;j = —d
ij /0 o dr £r
and f is the load vector

fi= /Olqﬁz‘f(iv)dl'

Y; are unknowns and B is Matrix, which is not a stiffness matrix, it looks like this (on a

regular grid)

0O o0 0 0 -1 05
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B is badly conditioned, anti-symmetric and difficult to invert.

In the approach used in this dissertation, put

du

y:%

and instead of solving (1.1), solve the second order equation

=@ (13)

where g—z =1 at x = 0 and we impose (arbitrarily) the artificial boundary condition u = 0

at © = 1. From the weak form of (1.3), we have

du U dw; du 1
Wi(lJ—/ i dmy:/o wf(z)dx

dx
Replacing w; by finite element basis functions ¢;(x) and approximating u by

-1
U= ) U9
=0

<

and applying boundary conditions it leads to the weak form

e L dg; do; !

where eg = dg; or

N-1

b dei do; _ !
E% U; (/0 . dxjdx> = —/0 i f(x)dx — eq (1.4)

j=

We can write (1.4) in matrix form as follows
KU = —(f +e)

where K is stiffness matrix, U is a vector of unknowns and f is a load vector and where
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1.5 Outline of the Dissertation

Chapter Two, is based on theory of finite elements for second order differential equa-
tions. This chapter investigate the method of Linear Finite elements and deficencies in this
method for our purpose and provides an alternative Quadratic elements method to find the

numerical solution.

Chapter Three, provides the Linear and Quadratic approaches to solve the first order
differential equations as well as the Sturn-Liouiville type differential equations. In this

chapter we solve test problems to investigate the numerical results.
Chapter Four, introduces the results for moving boundary and discusses the possible
behaviour that can be arise as the boundary moves. We also discuss the numerical results

of the test problem and compare them with the exact solutions to investigate the errors.

Chapter Five contains discussion and conclusions.



Chapter 2

Finite Elements for Second order

Equations

There are many ways to solve Partial Differentail Equations (PDEs) numerically with ad-
vantages and disadvantages. The Finite Element Method (FEM) is a good choice for solving
PDEs over complex domains, when a domain changes (as during a solid state reaction with
a moving boundary), when the desired precision varies over the entire domain, or when the
solution lacks smoothness. For instance, in simulations of the weather patterns on Earth, it
is more important to have accurate predictions over land than over the open sea, a demand

that is achievable using the finite element method.

2.1 Basic Finite Elements

2.1.1 Weak Forms

Because of limited differentiability of discrete solutions when substituting into a PDE,

instead of substituting a piecewise linear representation we can substitute it into a 'weak’

form. Consider a second order differential equation to illustrate the weak form of PDE.
d’u

—@:f(x),(a<x<b) (2.1)

where u € C?(a, b), is at least twice differentiable in domain (a,b).

Multiply both sides of 2.1 by w;(x), where w;(x) belongs to a set of test functions which are

18
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o _ _1
x1 Element 1 x2 X
Figure 2.1: Linear finite elements for one element
N, (x) N, (x) N (x)
1

Element |

Figure 2.2: Quadratic finite elements for one element

C! and square integrable in (a,b) and integrate it, giving

b 2U b
_/ wz(:zj)j 2d:r:/ wi(z) f(x)dx (2.2)

x
Now integrate left hand side of (2.2) by parts, giving

u b dwi(z) du b
_wi(m);ixy%/ ddi)zxd:p:/ wi(@) f(z)da (2.3)

This is known as the weak form of the differential equation. In equation (2.3), we only
require that u,w; € H'(a,b), once differentiable. So linear representation of such functions

is allowed. Also since the integrals can be broken into subintervals, piecewise functions are
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allowed.

2.1.2 The Finite Element Method (general)

Leave out the first term of the left hand side of (2.3) for the moment and write the other

terms as a sum over a set of given intervals k such as
N+1

dw; du
Z/ dz dm (2:4)

By replacing w; with piecewise test functions ¢; € H', (i = 0,1,...,N + 1) and u with
U € H', where

N+1
aU de;
A 49 2.
dx Z Ui dx (25)
Jj=0
Equation (2.3) becomes

N+1

b
3.0 [0 [ girs@as 26)

which is known as finite element equation. There are N+2 equations and N+2 unknowns.

We know that basis functions ¢;(x) are non-zero only on the two intervals either side of

node i, so the system (2.6) for i =1,..., N + 1 becomes

j=it+l

S [ / bi(0) f(@)da, (i = 1,2,..., N) (2.7)

j=i—1 Ti-1

This set of equations can be written in matrix form as follows

KU=f (2.8)

where U is a vector of unknowns Uj, K is a stiffness matrix consisting of elements

T dgy d
Kl-j—/] 0i d%; 4, (2.9)

dr dx

7j—1



2.1. BASIC FINITE ELEMENTS 21

j=0,N+1 and f is load vector consisting of

fi— / 7 i) () de (2.10)

7j—1

The first and last equations are special with basis functions which are ”half hats” and are

1 z1 d . 1
Souy [0 = [ o) (@de =0 (211)
j=0 o o
and N1
Yo i ae= [ ewmei-y e

These are easily incorporated into the stiffness matrix and load vector. Boundary conditions

can easily be applied to (2.8)

2.1.3 Evaluation of Stiffness Matrix K and Load Vector f for Linears

We define ¢;(x) as follows

L=y . .
Tir Tl ST S
Jp— Tit1—T . .
¢i=1q i T <z < i (2.13)

0 otherwise

By differentiating equation (2.13), we get

1

Ti-1 S xS

d¢ Ii—_l’i71
dﬂ; = xiJrll—xi Li S x é Ti4+1 (214)
0 otherwise
where (i = 1,..., N) are peicewise constant functions, with subsets of (2.14) for the ”half

hats.”
The equations (2.7) reduces to

Ui—U—1 Ug1 - Ui
Ti — Tj—1 Li+l — T4

_ /m+ 6s(@) f(2)da, (i = 1,..., N) (2.15)

Ti—1
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First and last equations reduced to

Up—Up
Tr1 — X

/ " gola) f(x)de, (i = 0) (2.16)

and
N+1

UN*“‘UN::/m on(z)f(z)dz, (i = N + 1) (2.17)

IN+1 —IN N
The right hand side integrals can be evaluated by numerical integration.
The stiffness matrix K is singular, which follows from the fact that the ¢;(z) form a partition

of unity, so
N+1 N+1
doi

Y dila)=1= 3 =0 (2.18)
=0 =0

It means all column sums of the determinant of Matrix K are zero. By applying boundary

conditions, it is possible to invert this matrix.

2.1.4 Evaluation of Stiffness matrix K and Load Vector f for Quadratics

In this section we explain how can we construct solution by adding an extra node in each
element as p-refinement.

There are deficiencies in linear finite elements formulation in convection-diffusion problems.
In such situations to examine the numerical solution of 1D convection-diffusion problem
discretise with quadratic shape functions as shown in figure (2.2).

First of all we establish a matrix equation for the given problem, as for linear finite elements,
then the discrete solution of the problem is analysed.

As shown in figure (2.2), we consider a generic element with nodes 1, 2 and 3, where node 2
is a mid-side. With reference to the condition 0 < z < 1, the shape function of the element
are

Ni(z) =2(z — 3)(z — 1), Na(z) = —4z(z — 1), and N3(z) = 2z(z — 3).

We can establish an element stiffness matrix K¢ of the quadratic elements [1] as follows

ON1 ON; 0Ny ONo 0Ny ON3

ox Ox ox Ox ox Ox

e __ ON2 ON; ON2 ONo ON2 ONo
K= /Q Ox Oz ox Oz or Oz dx

ON3 ON; ON3 ONo ON3 ON3
ox Ox ox Ox ox Ox
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and load vector i as follows
fi= [ F@Ni@)ds

where i = (1,2, 3).

2.2 A More General first order Differential Equation

Let us consider a more general differential equation of Sturm-Liouiville type

— — (p(2)y) + q(z)u = f(z) (2.19)

in (0,1) where ¢(z) = 0, with boundary conditions, at x = 0 and at z = 1.

2.2.1 Linear Finite Elements

To obtain the weak form multiply (2.19) by the test function w € H} and integrate from 0
to 1, apply finite elements and finally we get

N+1

RN do; '
/Op(:n) . ZUjd—xj dx:/o ¢i(z) f(x)dz (2.20)

J=0

which can be written in the form

KU = f

1 do; do;
Ki' = Zijd )

where

Uj is a vector of unknowns and

1
fi_/o ¢i(x) f(x)dx

is a load vector.
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2.2.2 Quadratic Finite Elements

Similarly from (2.19), apply quadratic finite elements and after applying all the calculations,

we get the matrix equation

KU=f
where K is the assembly of element matrices

ON; ON; ONy ONy  ON; ON3

ox Ox ox Ox oxr Ox

e __ ONo ONq ONo ONo ONo ONo
K /p(x) or O or Oz Ox Oz dx

Q ONs ON;  ON3 ONy  ON3 ONs

ox Ox ox Ox oxr Ox

and

1
fi= /0 F(2) Ny () da

is a load vector.



Chapter 3

A Test Problem

In this chapter we solve some test problems by using the methods discussed in chapter
2. First we take a simple example and solve it by linear finite element and then by the
quadratic elements method. We assemble element stiffness matrix for all elements as shown
in figure (3.1) and by using Gaussian inversion method, we will invert stiffness matrix K to

solve the problem. Consider the problem

Matrix Assembly

Figure 3.1: Shows matrices assembly for more elements.

25
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b _
dr  da?

= f(x) (3.1)

in((),l),with%zlatxz()anduz()at:v:l.

3.1 Linear Finite Elements

Let us consider finite elements for equation (3.1). We know from chapter 2, matrix equation
for (3.1)is
KU = —(f+ eo) (3:2)

where

1
do; do;
Ki' = d )
J /0 dx dx v

U are unknowns,

fi = / o1(2) f () da

and eg = [ 1 0 ... O}
We can solve this problem by dividing the interval (0, 1) into 1, 2, 4, 8, and 16 elements.

Stiffness matrix entries in each case are (for equal spacing h)

“H dgy de, 11 -1
K;; = P2 de = =
d /xi_l dv dz " " h\ -1 1

e Stiffness Matrix and load vector for One element

Consider the following figure (3.2) and apply the method mentioned in section (3.1),

we can find the stiffness matirx as follows

. 1 -1
K¢ =
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0 Element 1 1 e

Figure 3.2: linear finite elements for one element

and load vectors for f(x) = 22 are

1 , 1
foz/o (1—x)x dmzﬁ

! 1
f1:/0 x?’daczz

By solving the test problem, we get approximate value of velocity potential U shown
in table (3.1).

. 2
Table 3.1: Results for equation % = z and 2? for one Element.
x value Exact f(x)=x LFE f(x)=x EBError (u-U) Exact f(x)=x? LFE f(x)=x2 error (u-U)
0 -1.33333 -1.16667 -0.166667 -1.08333 -1.5 0.416667
1 0 0 0 0 0 0

e Stiffness Matrix and load vector for Two element
The stiffness matrix for two elements in figure (3.3) can be found by getting element

stiffness matrix for each element and then assemble them as shown

2 =2 0
K= -2 4 =2
0o -2 2

and load vectors are

=

f —/2(1—2x)x2dx—1
L A ~ 96
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0 1

1
2

Figure 3.3: Linear finite element for Two elements.

1

fi= /0 (2z)x?dx —|—[ (2 — 22)2?de = %

2

N

and
17

1
= 20 — 1a?dr = —

Similarly if f(x) = x the load vector is

f 1 1 5
@ ( 24 4 24 )
The solution for U is shown in table (3.2)

. 2
Table 3.2: Results for equation 373 = 2 and 22 of Two Element.
x value Exact f(x)=x LFE f(x)=x BError (u-U) Exact f(x)=x> LFE f(x)=x2 error (u-U)
0 -1.33333 -1.16667 -0.166667 -1.08333 -1.08333 2.22045e-016
0.5 -0.791667 -0.645833 -0.145833 -0.578125 -0.578125 1.11022e-016
1 0 0 0 0 0 0

e Stifflness Matrix and load vector for Four element

The assembled stiffness matrix for four elements is

4 -4 0 0 O
-4 8 —4 0 0
K = 0 -4 8 —4 0
0 0 -4 8 -4
0 0 0 -4 4
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and the load vector is

el

1
fo= /0 (1 — 4z)z’de = 768

i %(274x)12dx:§
fi —/ (4w)x2dm+/
0 1

4
25

1 %(3—4x)$2da::@
fo= / (4z — 1)z’dx —{—/
1
1 1

1
2

1 ! 55
_ _ 2 _ 2 _
/3 —/é (4x — 2)x“dx —&—/2 (4 — 4z)r*de = 384

and

1 27
J1 /3 (4z — 3)z"dx 256

4

The load vector f is when f(z) = x is

1

N[ =
N[V

1
1

Figure 3.4: Linear finite element for Four elements.

The solution is shown in table (3.3)
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Table 3.3: Results for equation % = z and 22 of Four Element.
x value Bxact f(x)=x LFE f(x)=x Error (u-U) Exact f(x)=x> LFE f(x)=x2 error (u-U)

0 -1.33333 -1.16667 -0.166667 -1.08333 -1.08333 0
0.25 -1.07813 -0.914063 -0.164063 -0.833008 -0.833008 1.11022e-016
0.5 -0.791667 -0.645833 -0.145833 -0.578125 -0.578125 1.11022e-016
0.75 -0.442708 -0.346354 -0.0963542 -0.306966 -0.306966 1.11022e-016

1 0 0 0 0 0 0

e Solutions for eight and sixteen elements
Similarly we can find the stiffness matrix and load vectors for eight and sixteen and

solve them to get results shown in table (3.4) and (3.5).

=
0|~

ool

1
2

oolw

1
1

ol—=

Figure 3.5: Linear finite element for eight elements.

Table 3.4: Results for equation % = 22 of Eight Element.

x value Exact f(x)=x LFE f(x)=x FBError (u-U) Exact f(x)=x2 LFE f(x)=x> error (u-U)

0 -1.33333 -1.16667 -0.166667 -1.08333 -1.08333 2.22045e-016
0.125 -1.20768 -1.04134 -0.166341 -0.958313 -0.958313 1.11022e-016
0.25 -1.07813 -0.914063 -0.164063 -0.833008 -0.833008 1.11022e-016
0.375 -0.940755 -0.782878 -0.157878 -0.706685 -0.706685 2.22045e-016

0.5 -0.791667 -0.645833 -0.145833 -0.578125 -0.578125 0
0.625 -0.626953 -0.500977 -0.125977 -0.445618 -0.445618 5.55112e-017
0.75 -0.442708 -0.346354 -0.0963542 -0.306966 -0.306966 0
0.875 -0.235026 -0.180013 -0.055013 -0.159485 -0.159485 2.77556e-017
1 0 0 0 0 0 0

Solution for sixteen elements
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I
N

FE 1 5 sz b o 5 lu [z [
16 8 16 4 16 8 16 2 16 8 16 4 16
Figure 3.6: Linear finite element for sixteen elements.
Table 3.5: Results for equation % = 22 of Sixteen Element.
x value Exact f(x)=x LFE f(x)=x Error (u-U) Exact f(x)=x2 LFE f(x)=x2 error (u-U)
0 -1.33333 -1.16667 -0.166667 -1.08333 -1.08333 0
0.0625 -1.27075 -1.10413 -0.166626 -1.02083 -1.02083 0
0.125 -1.20768 -1.04134 -0.166341 -0.958313 -0.958313 1.11022e-016
0.1875 -1.14364 -0.978068 -0.165568 -0.89573 -0.89573 -1.11022e-016
0.25 -1.07813 -0.914063 -0.164063 -0.833008 -0.833008 1.11022e-016
0.3125 -1.01066 -0.84908 -0.16158 -0.770039 -0.770039 2.22045e-016
0.375 -0.940755 -0.782878 -0.157878 -0.706685 -0.706685 -2.22045e-016
0.4375 -0.86792 -0.71521 -0.15271 -0.64278 -0.64278 1.11022e-016
0.5 -0.791667 -0.645833 -0.145833 -0.578125 -0.578125 3.33067e-016
0.5625 -0.711507 -0.574504 -0.137004 -0.512491 -0.512491 2.22045e-016
0.625 -0.626953 -0.500977 -0.125977 -0.445618 -0.445618 5.55112e-017
0.6875 -0.537516 -0.425008 -0.112508 -0.377216 -0.377216 -1.66533e-016
0.75 -0.442708 -0.346354 -0.0963542 -0.306966 -0.306966 2.77556e-016
0.8125 -0.342041 -0.264771 -0.0772705 -0.234516 -0.234516 8.32667e-017
0.875 -0.235026 -0.180013 -0.055013 -0.159485 -0.159485 1.94289¢-016
0.9375 -0.121175 -0.0918376  -0.0293376 -0.0814603 -0.0814603  1.38778¢-016
1 0 0 0 0 0 0

3.2 Quadratic Finite Element Method

In this section we explain, how can we construct solution by adding an extra node in each

element. So the quadratic solution for (3.1) is as follows

3.2.1 Solution for Two Elements

Let us consider the figure (3.7). First of all we need to find the node values to get stiffness

matrix and load vector. The node values are as follows for two elements.

1. First Element
Ni(z) = 8(x — §)(z — 3),
No(z) = —162(z — 1),
N3(z) = 8x(x — %)

2. Second Element
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1

1
0 1

SN [SV]

1
2

Figure 3.7: Quadratic finite element for Two elements.

Ni(w) = 8(z - $)(a — 1),
Na(z) = —16(z — 3)(z — 1),
N3(z) = 8(z — 3)(z - })

For each element, the stiffness matrix is

14 =16 2

3 3 3
e _ —16 32 —16
K™= 3 3 3
2 =16 14

3 3 3

so we need to assemble this to get stiffness matrix for two elemts.

The load vector of function f(z) = x is
i| T

T
f2=[_1 1 3 23 13]

S
|
| —
o
-
29
NI
l=

and for f(z) = 22 is

480 40 60 120 160

The matrix after assembly is

bz o
eom g
0 0 o2 oo
0 0 3 opou
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By solving the above matrix system we get the result as Table (3.6) shows the U values of

equation 3.1.

Table 3.6: Results for equation % =z and 22 for Two Element.
)

X Exact (x) QFE (x) Error ( Exact (x?) QFE (x?) Error (x?)
0 -1.33333 -1.14583 -0.1875 -1.08333 -1.07396 -0.009375
0.25 -1.07813 -0.893229  -0.184896 -0.833008 -0.823698  -0.0093099
0.5 -0.791667 -0.625 -0.166667  -0.578125 -0.56875 -0.009375
0.75  -0.442708 -0.335938 -0.106771 -0.306966 -0.302344  -0.0046224
1 0 0 0 0 0 0

3.2.2 Solution for Four Elements

Let us consider the figure (3.8) The node values are as follows

T A

1
0 3

1

00|~y

ool
EN[3Y

1
2

olw

1
4

Figure 3.8: Quadratic finite element for Four elements.

1. First Element
Ni(2) = 3200 — 1w — 1),
No(z) = —64a(z — 1),
Ns(z) = 32z(z — §)

2. Second Element
Mi(e) = 32(x — )z - 3),
Na(a) = —64(x — 1) (z - 1),
Ny(e) = 32 — D(a — )

3. Third Element
Ni(z) = 32(z — 3)(z — ),
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4. Fourth Element
Ny(z) = 32(x — %)(x - 1),
Na(z) = —64(z — 2)(z — 1),
Naa) = 320z — D@~ 3)

For each element, the stiffness matrix is

28 -32 4
3 3 3
e _ —32 64 —32
K* = 3 3 3
4 -32 28
3 3 3

and load vectors for f(x) = z and f(z) = 22 are

T
fl=fo L L 1L 1 5 1 7 1
? 48 96 16 48 48 32 48 24

and
T
fQ—{ 1 1 3 23 21 89 41 53 }

i = R — o

3840 320 1280 960 320 3540 320 1280

The matrix after assembly is

28 =32 4 0 0 0 0 0 0
-32 64 -32 O 0 0 0 0 0
4 =32 56 —32 0 0 0 0
0 0 =32 64 =32 0 0 0 0
K= é 0 0 4 =32 56 32 4 0 0
0 0 0 0 =32 64 =32 0 0
0 0 0 0 -32 56 32 4
0 0 0 0 0 0 -32 64 32
0 0 0 0 0 0 4 —-32 28

Table (3.7) gives the solution for four elements
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Table 3.7: Results for equation % = z and 22 for Four Element.

x Exact (x) QFE (x) Error (x) Exact (x?) QFE (x?) Error (x?)

0 -1.33333 -1.15625 -0.177083 -1.08333 -1.06953 -0.0138021
0.125 -1.20768 -1.03092 -0.176758 -0.958313 -0.944515 -0.013798
0.25 -1.07813 -0.903646 -0.174479 -0.833008 -0.819206 -0.0138021
0.375 -0.940755 -0.773763 -0.166992 -0.706685 -0.693376 -0.0133097
0.5 -0.791667  -0.638021 -0.153646 -0.578125 -0.565299 -0.0128255
0.625 -0.626953 -0.49707 -0.129883 -0.445618 -0.434554 -0.0110636
0.75 -0.442708  -0.346354  -0.0963542 -0.306966 -0.297656 -0.0093099
0.875  -0.235026 -0.17513 -0.0598958 -0.159485 -0.154834  -0.00465088

1 0 0 0 0 0 0

3.2.3 Soluiton for Eight and sixteen Elements

Similarly we can construct solution for eight and sixteen elements. The element stiffness
matrix is given for each case, assemble it acoordingly, also load vectors are shown. So to

solve these systems, we get the results as shown in table (3.8) and (3.9). For each element,

0|~y

|

oot

N[
—
(=)

oolw

5
16

gy

00—
—
(=)

Figure 3.9: Quadratic finite element for eight elements.

the stiffness matrix is

56 64 8
3 3 3
e _ —64 128 —64
K= 3 3 3
8 64 128
3 3 3

—
©
[}
W
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w
[0 9]
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and
—1 1 3 _23 3 21 89 41 53 203 83 r
f2— | 30720 2560 10240 7630 T0240 2560 30720 2560 10240 7680 10240
i 101 359 141 163 563 213
2560 30720 2560 10240 7680 10240
Table 3.8: Results for equation d? x and 22 for eight Element.
X Exact (x) QFE (x) Error (x) Bxact (x?) QFE (x%) Error (x?)
0 -1.33333  -1.13688  -0.196452  -1.08333  -1.06904  -0.0142904
0.0625 -1.27075  -1.07434  -0.196411  -1.02083  -1.00654  -0.0142901
0125  -1.20768  -1.01156  -0.196126  -0.958313  -0.944023  -0.0142904
0.1875  -1.14364  -0.948446  -0.19519  -0.89573  -0.881459  -0.0142718
025  -1.07813  -0.884603  -0.193522  -0.833008  -0.818754  -0.0142537
0.3125  -1.01066  -0.820109  -0.190552  -0.770039  -0.755944  -0.0140948
0.375  -0.940755  -0.754395  -0.186361  -0.706685  -0.692749  -0.0139364
04375  -0.86792  -0.687703  -0.180216  -0.64278  -0.629184  -0.0135963
0.5  -0.791667  -0.619303  -0.172363  -0.578125  -0.564868  -0.0132568
0.5625 -0.711507  -0.549601  -0.161906  -0.512491  -0.499897  -0.0125933
0.625  -0.626953  -0.477702  -0.149251  -0.445618  -0.433687  -0.0119303
0.6875 -0.537516  -0.404175  -0.133341  -0.377216  -0.366456  -0.0107602
0.75  -0.442708  -0.327962  -0.114746  -0.306966  -0.297375  -0.00959066
08125 -0.342041  -0.250061  -0.09198  -0.234516  -0.226826  -0.00769018
0.875  -0.235026  -0.170573  -0.0644531  -0.159485  -0.153695  -0.0057902
0.9375 -0.121175 -0.0857747 -0.0354004 -0.0814603 -0.0785655 -0.00289485
1 0 0 0 0 0 0
B I T I T RO T O T O S
o LIL sl sfs 1l oofs nfs s st arlo 19l 2ufu msls s orfr w5 sl
32'16 328 3216 32'4 3216 32'8 3216 32 2 3216 32 8 32 16 32 4 32 16 32 '8 32 16 32

Figure 3.10: Quadratic finite element for sixteen elements.

For each element, the stiffness matrix is

and load vectors for f(x) = z and f(z) = 22 are

0
fl=1 A3
i 1768
13
1536

1 L
768 1536
T 5
1536 256
I
256 768

1

256
192

29

768

1

768

17

768

31

768

112 -128 16
3 3 3

—128 256  —128
3 3 3

16 128 112

3 3 3

5 1 7 1
768 512 768 384
3 19 5 T
512 768 768 256
1

96

3 5 11 5
256 1536 768 256
11 23 1 25
1536 768 128 768

1
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and
-1 1 3 23 13 21 89 41 51 203 83
245760 20480 81920 61440 81920 20480 245760 20480 81920 61440 81920
f-2 _ 101 359 141 163 563 213 241 809 301 333 1103
i 20480 245760 20430 81020 61440 81920 20440 245760 20480 S1920 61440
403 441 1439 521 563 1823 653 701 2249 801 853

81920 20480 245760 20480 81920 61440 81920 20480 245760 20480 81920

Table 3.9: Results for equation % = 2 and 2? for sixteen Element.

X Exact (x) QFE (x) Error (x) Exact (x2) QFE (x2) Error (x?)

0 -1.33333 -1.15159 -0.18174 -1.08333 -1.06953 -0.0138041
0.03125 -1.30207 -1.12034 -0.181735 -1.05208 -1.03828 -0.0138041
0.0625 -1.27075 -1.08905 -0.181699 -1.02083 -1.00703 -0.0138041
0.09375 -1.23931 -1.05773 -0.181582 -0.989577 -0.975774 -0.013803
0.125 -1.20768 -1.02631 -0.181373 -0.958313 -0.944511 -0.0138018
0.15625 -1.17581 -0.99481 -0.181002 -0.927034 -0.913238 -0.0137957
0.1875 -1.14364 -0.963158 -0.180478 -0.89573 -0.881941 -0.0137896
0.21875 -1.11109 -0.931384 -0.17971 -0.864393 -0.85062 -0.0137722
0.25 -1.07813 -0.899396 -0.178729 -0.833008 -0.819253 -0.0137548
0.28125 -1.04467 -0.867246 -0.177421 -0.801562 -0.787845 -0.0137171
0.3125 -1.01066 -0.834821 -0.17584 -0.770039 -0.756359 -0.0136795
0.34375 -0.976044 -0.802193 -0.173851 -0.73842 -0.72481 -0.0136102

0.375 -0.940755 -0.769229 -0.171526 -0.706685 -0.693144 -0.0135409
0.40625  -0.904734 -0.735532 -0.169202 -0.674814 -0.661388 -0.0134259

0.4375 -0.86792 -0.701439 -0.166481 -0.64278 -0.629469 -0.013311
0.46875  -0.830251 -0.667061 -0.16319 -0.61056 -0.597426 -0.0131339
0.5 -0.791667 -0.632225 -0.159442 -0.578125 -0.565168 -0.0129567
0.53125  -0.752106 -0.596887 -0.155219 -0.545446 -0.532747 -0.0126983
0.5625 -0.711507 -0.56103 -0.150477 -0.512491 -0.500051 -0.01244
0.59375 -0.66981 -0.524807 -0.145003 -0.479226 -0.467148 -0.0120787
0.625 -0.626953 -0.488003 -0.13895 -0.445618 -0.4339 -0.0117175

0.65625  -0.582876 -0.450794 -0.132082 -0.411627 -0.400398 -0.0112292
0.6875 -0.537516 -0.412943 -0.124574 -0.377216 -0.366475 -0.0107409
0.71875  -0.490814 -0.374644 -0.11617 -0.342344 -0.332245 -0.0100989

0.75 -0.442708 -0.335644 -0.107065 -0.306966 -0.297509  -0.00945689
0.78125  -0.393138 -0.296155  -0.0969824  -0.271039 -0.262407  -0.00863188
0.8125 -0.342041 -0.255904  -0.0861374  -0.234516 -0.226709  -0.00780691
0.84375  -0.289358 -0.215123  -0.0742345  -0.197348 -0.190581  -0.00676713

0.875 -0.235026 -0.173519  -0.0615075  -0.159485 -0.153757  -0.00572739
0.90625  -0.178986 -0.131344  -0.0476413  -0.120874 -0.116435  -0.00443851
0.9375 -0.121175  -0.0882851 -0.03289 -0.0814603  -0.0783106  -0.00314967
0.96875 -0.0615336  -0.0446156  -0.016918  -0.0411885 -0.0396137 -0.00157482

1 0 0 0 0 0 0
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3.3 A More General 1-D Differential Equation

Now consider the problem
d du

-5 (eerng) =2 (33)

in (0,1) with artificial boundary conditions % =latox=0and u=0at =1 Thisis

representative of the moving mesh movement equation.

3.3.1 Linear Finite Elements

So by using the approach discussed in chapter 2, we can find stiffness and load vector as

shown below.

e Solution for One element

Stiffness matrix for one elemnt with h =1 and p(z) =2z + 1 is
1t doi do; 2 -2
K== —Ldx =
hQ/OP(x)d:v dz " <_2 2 )
1 , 1
f0:/0 (1—2x)z dac:ﬁ

! 1
f1:/0 dex:E

We have element stiffness matrix and load vector, solve this to get the result, which
is shown in table (3.10)

and load vectors are

Table 3.10: Results for equation —% ((2z + 1)%) = 22 for One Element.

x values  Exact values (u) Linar Finite values (U) Error (u-U)

0 -0.516638 -0.458333 -0.0583047
1 0 0 0

e Solution for Two elements

We require two stiffness element matrices for two elements, hence h = 2

1
1 (3 dé;do, 3 -3
Ke= — 95 gy =
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.1 Y deide; 5 -5
K?Zm/;p@)dxdxdx: 5 s

and load vectors are

-

2 1
fo= /0 (1 — 2x)z’dx = %

fun

1

fi= /2 223 dx +/ (2 — 2z)a?de = T
0 % 48

1 ) 7
fQZ/%(ZJJ—l)ZL‘ dx:&

After assemling above stiffness element matrices,we get

3 =3 0
K=| -3 8 -5
0 -5 5

To solve this system we get the result shown in table (3.11)

Table 3.11: Results for equation —% ((2z + 1)%) = 22 for Two Element.

x values  Exact values (u) Linar Finite values (U)  Error (u-U)

0 -0.516638 -0.498611 -0.0180269
0.5 -0.172985 -0.16875 -0.00423495
1 0 0 0

e Solution for Four elements

In this section we need four stiflness element matrices with h = 4

1
1 (i dé;do; 5 -5
KS= 995 gy =

1
1[5 déide; 7 7
K5 = — 905 g =
2 hQ/}lp(w)da:dxx (_7 7>

39



40 CHAPTER 3. A TEST PROBLEM

3
1 [2 do; do; 9 -9
KS=— —dx =
3 h2/é p(@) dr dx * (_9 9 >

. 1t do; do; 11 11
K4:h?/ip($)dxdz:dx: 111

and load vectors are

=

1

fo= /0 (1 — 4x)z’dr = 68

1 1
4 2
fi= /0 4z dx +/}1 (2 — dx)z’de = 38l

1 3
2 1 2
fa= ﬁQ (4z — 1)z’dx + [4(3 — 4z)x?dr = %

4 2

f3= %(4 — 2)2?dx + 1(4—4)2d -5
3 = % X xrodx % x)x x—384

! 27
= [ (4o —3)z?dz = —
fa /3 (4z — 3)x“dx 556

IS

The stiffness matrix for four elements is

-5 12 -7 0
K= 0 -7 16 -9 0
0o 0 -9 20 -11

Table 3.12: Results for equation —% ((296 + 1)2—;) = 22 for Four Element.

x values  Exact values (u) Linar Finite values (U)  Error (u-U)

0 -0.516638 -0.511708 -0.00493015
0.25 -0.314139 -0.311968 -0.00217054
0.5 -0.172985 -0.171901 -0.00108365
0.75 -0.0706532 -0.0701941 -0.000459115
1 0 0 0

Similarly we can find solutions for eight and sixteen elements.



3.3. A MORE GENERAL 1-D DIFFERENTIAL EQUATION 41

3.3.2 Quadratic Finite Elements

The solution for equation (3.3) can be found by using the same technique used for first test
problem but for stiffness element matrix, we need to multiply the integral of each entry of

the stiffness element matrix before integrating.

e Solution for Two Elements

So the stiffness matrix for two elements is

K = 0 -7 16 -9 0
o 0 -9 20 -11
0 0 -—-11 11

2

So we use the same load vector for f(x) = z° in quadratic finite elements as used

before in this chapter. The solution is shown in Table (3.13)

Table 3.13: Results for equation —% (2 + 1)2—:) = 22 for Two Element.

x values  Exact values (u) Linar Finite values (U)  Error (u-U)

0 -0.516638 -0.520043 0.00340488
0.25 -0.314139 -0.31824 0.00410118
0.5 -0.172985 -0.176774 0.00378869
0.75 -0.0706532 -0.0723606 0.0017074
1 0 0 0

e Solution for Four Elements

The stiflness matrix for four elements is

o O O O
o O O O O

7 —60 112 —68
0 —68 144 76
0 9 76 140 -84 11
0 0 0 -84 176 -92
0 0 0 11 -92 381

o O O o o O
o O O O o O
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We get the solution as shown in Table (3.14)

Table 3.14: Results for equation —% ((23: + 1)%) = 2?2 for Four Element.

x values  Exact values (u) Linar Finite values (U)  Error (u-U)

0 -0.516638 -0.521588 0.00495024
0.125 -0.405083 -0.410112 0.00502911
0.25 -0.314139 -0.319118 0.00497899
0.375 -0.237867 -0.24268 0.00481295

0.5 -0.172985 -0.177631 0.00464633
0.625 -0.117608 -0.12152 0.00391259
0.75 -0.0706532 -0.0739058 0.00325257
0.875 -0.0315377 -0.0330893 0.00155158
1 0 0 0

Similarly we can find the solution for eight and sixteen elements.



Chapter 4

Recovery of the Solution to the

first order Problem

In this chapter we describe how we can accomplish the solution of first order differential
equation i.e. recovery of velocity. In previous chapter we mentioned the approach that
replaced the velocity (y) with the velocity potential (u) as y = g—: and solved it for U. Now
we describe the approach that gives us Y from U which is an approximation to the exact

solution.

4.1 Discontinuous Solution (by differentiation)

e Linears
We can apply different approaches to find the apprximated velocity vector (V). One

way is to get the Y values from U for each element as follows

du Uiy = U;

=
dr w1 —x;

Here U is piecewise linear and the Y function is piecewise constant. So Y is not
continuous. We need to look for another way to go from U to Y (:dUch) which gives

us a continuous function which we also discuss in the next section.

e Quadratics

In this case recovery of Y from U by differentiation also gives us discontinuous func-

43
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tion. So we need to adapt these values for each node to get continuous function which

we discuss in next section.

4.2 Continuous Solution

Consider the following method to find the continuous solution for linear finite elements,

4.2.1 Least Squares for Linears

Let’s consider the following least square approach

2 1 2
dU

=/ (v-=2) 4

/0< dw) ’

Minimise it over Y, where Y = ) 7;¢; is continuous, requiring minimization of

y— —

dU
dzx

2

1 1
dU
e — — d
fo\Swei- G )
7=0
. Minimise over 3 values,
d [ [P U
dT?i /Ozyquj_dx dx =0
j=0
and generally, it is

! daUu
Yitj — —— | pidx =0
/0 ZJ: V) dr

The above equation can be written in the form

1 - 1 dU
XJ:( [ outsae) ;- [ a0

and in matrix form as

S
I
RS}
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11
where M is the element mass matrix. For one element M® = h ( i’ (15 >, y is a velocity
6 3
vector and
(U1 Uo)
U
du 1 1. dU 1Y =ls
gi = / ¢idx = —h— = Q(Izﬂ*%)
dx 0 2 dx

We can get an approximation to the velocity vector by applying the approach discussed
above. There are some solutions in section (4.3) for the test problems discussed in chapter
3.

4.2.2 For Quadratics

After finding the values of U in chapter 3, we need to find the Y values i.e y = Y for each

element, see the following

Y, — ZU@N x;)

where ¢ = (0,1, 2).

Fach element gives us three values of Y but after the first element we use only two values
for each element till the last element because we already have a value for the first node in
each element. Then we combine together to get the approximate solution for the velocity
vector, which is continuous. We give some solutions for the test problems from chapter 3

in section (4.4).

4.3 Linear Elements

We show the results for linear finite elements for test problem 1 and 2.

1. Linear Solution for First Test Problem
The tables (4.1), (4.2), (4.3) and (4.4) show the results for velocity y and the numerical

solution for the velocity Y by using linear finite elements for 2, 4, 8 and 16 elements.



46CHAPTER 4. RECOVERY OF THE SOLUTION TO THE FIRST ORDER PROBLEM

Table 4.1: Linear finite elements to solve equation % =z and z? for 2 elements.

x  y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=EBExact (f(x)=2%) Y=LFE(f(x)=22) Error(z?)
0 1 0.973958 0.0260417 1 0.973958 0.0260417
0.5 1.125 1.08333 0.0416667 1.04167 1.08333 -0.0416667
1 1.5 1.19271 0.307292 1.33333 1.19271 0.140625
Table 4.2: Linear finite elements to solve equation % = z and 22 for 4 elements.
X y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=2?) Y=LFE(f(x)=22) Error(z?)
0 1 0.998512 0.0014881 1 0.998512 0.0014881
0.25 1.03125 1.00688 0.0243676 1.00521 1.00688 -0.00167411
0.5 1.125 1.03646 0.0885417 1.04167 1.03646 0.00520833
0.75 1.28125 1.15978 0.121466 1.14063 1.15978 -0.0191592
1 1.5 1.2619 0.238095 1.33333 1.2619 0.0714286
Table 4.3: Linear finite elements to solve equation % =z and 2? for 8 elements.

x y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=2%) Y=LFE(f(x)=x2) Error(z?)

0 1 0.999904 9.58824e-005 1 0.999904 9.58824e-005
0.125 1.00781 1.00068 0.00713245 1.00065 1.00068 -2.90044e-005
0.25 1.03125 1.00519 0.0260618 1.00521 1.00519 2.01353e-005
0.375 1.07031 1.01763 0.0526828 1.01758 1.01763 -5.15368e-005
0.5 1.125 1.04148 0.0835193 1.04167 1.04148 0.000186012
0.625 1.19531 1.08207 0.11324 1.08138 1.08207 -0.000692511
0.75 1.28125 1.13804 0.143209 1.14063 1.13804 0.00258403
0.875 1.38281 1.23295 0.149862 1.22331 1.23295 -0.00964361

1 1.5 1.29734 0.202657 1.33333 1.29734 0.0359904

Table 4.4: Linear finite elements to solve equation % = 2 and z? for 16 elements.

X y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=2%) Y=LFE(f(x)=x2) Error(z?)

0 1 2.366 -1.366 1 2.366 -1.366
0.0625 1.00195 0.634063 0.36789 1.00008 0.634063 0.366018
0.125 1.00781 1.09873 -0.0909128 1.00065 1.09873 -0.0980742
0.1875 1.01758 0.975918 0.0416598 1.0022 0.975918 0.0262789
0.25 1.03125 1.01225 0.0190003 1.00521 1.01225 -0.00704141
0.3125 1.04883 1.00829 0.0405423 1.01017 1.00829 0.00188673
0.375 1.07031 1.01808 0.0522289 1.01758 1.01808 -0.000505516
0.4375 1.0957 1.02778 0.067925 1.02791 1.02778 0.000135334

0.5 1.125 1.0417 0.0832975 1.04167 1.0417 -3.58178e-005
0.5625 1.1582 1.05932 0.0988849 1.05933 1.05932 7.9377e-006
0.625 1.19531 1.08138 0.113936 1.08138 1.08138 4.067e-006
0.6875 1.23633 1.10834 0.127987 1.10832 1.10834 -2.42057e-005

0.75 1.28125 1.14053 0.140718 1.14063 1.14053 9.27558e-005

0.8125 1.33008 1.17914 0.150939 1.17879 1.17914 -0.000346818
0.875 1.38281 1.22201 0.1608 1.22331 1.22201 0.00129451
0.9375 1.43945 1.27949 0.159964 1.27466 1.27949 -0.00483124

1 1.5 1.3153 0.184697 1.33333 1.3153 0.0180304
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2. Linear Solution for Second Test problem
We fixed the error occured in finding the solution of the second test problem by
applying linear finite elements for moving mesh. So the following tables (4.5), (4.6),
(4.7) and (4.8) show the results for exact velocity y and approximated velocity Y
recovered from the velocity ptential U. All the tables are self explanatory, showing

results for 2, 4, 8, and 16 elements.

Table 4.5: Results by solving equation —% ((2z + 1)y) = 22 for 2 elements.

x values  Exact values (y) Linear values (Y) Error(y-Y)

0 1 0.740278 0.259722
0.5 0.479167 0.498611 -0.0194444
1 0.222222 0.256944 -0.0347222

Table 4.6: Results by solving equation —% ((2z + 1)y) = 22 for 4 elements.

x values  Exact values (y) Linear values (Y) Error(y-Y)

0 1 0.854184 0.145816
0.25 0.663194 0.688506 -0.025312
0.5 0.479167 0.469468 0.00969817
0.75 0.34375 0.334909 0.00884075

1 0.222222 0.25371 -0.0314879

Table 4.7: Results by solving equation —% (22 + 1)y) = 22 for 8 elements.

x values  Exact values (y) Linear values (Y) Error(y-Y)
0 1 0.925543 0.074457

0.125 0.799479 0.815147 -0.0156674
0.25 0.663194 0.656595 0.00659966
0.375 0.561384 0.561588 -0.000204438
0.5 0.479167 0.478101 0.00106524
0.625 0.408275 0.407409 0.000866366
0.75 0.34375 0.344444 -0.000693876
0.875 0.282434 0.277335 0.00509873

1 0.222222 0.239135 -0.0169126
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Table 4.8: Results by solving equation —% (2 + 1)y) = 2?2 for 16 elements.

x values  Exact values (y) Linear values (Y) Error(y-Y)
0 1 0.96295 0.03705
0.0625 0.888817 0.897572 -0.00875548
0.125 0.799479 0.796498 0.00298088
0.1875 0.725675 0.726042 -0.000367152
0.25 0.663194 0.662797 0.00039698
0.3125 0.609125 0.609022 0.000102929
0.375 0.561384 0.561263 0.000120506
0.4375 0.518446 0.518373 7.33262e-005
0.5 0.479167 0.479111 5.58403e-005
0.5625 0.44267 0.44263 4.04946e-005
0.625 0.408275 0.408249 2.60083e-005
0.6875 0.375445 0.375412 3.36574e-005
0.75 0.34375 0.343778 -2.81752e-005
0.8125 0.312841 0.312661 0.000180272
0.875 0.282434 0.283046 -0.000612277
0.9375 0.252293 0.249956 0.00233675

1 0.222222 0.230896 -0.00867367

4.4 Quadratic Elements

In this section we recover velocity Y from U by using the quadratic finite elements. We are

trying to solve by increasing elements each time. Let us consider the the solution as follows

1. Quadratic Solution for First Test Problem
The recovery of velocity from velocity potential is shown by Table (4.9), (4.10), (4.11)
and (4.12) for 2, 4, 8 and 16 elements by quadratic approach.

Table 4.9: Results by solving equation % with f(z) = 2 and f(z) = 22 for 2 elements.

X y=Exact(f(x)=x) Y=QFE(f(x)=x) Error(x) y=Exact (f(x)=22) Y=QFE(f(x)=x2) Error(z2)

0 1 0.979167 0.0208333 1 0.991667 0.00833333
0.25 1.03125 1.04167 -0.0104167 1.00521 1.01042 -0.00520833
0.5 1.125 1.10417 0.0208333 1.04167 1.02917 0.0125
0.75 1.28125 1.25 0.03125 1.14063 1.1375 0.003125

1 1.5 1.4375 0.0625 1.33333 1.28125 0.0520833
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Table 4.10: Results by solving equation % with f(z) = 2 and f(z) = 22 for 4 Elements.

X y=Exact (f(x)=x) Y=QFE (f(x)=x) Error (x) y=Exact (f(x)=z?) Y=QFE (f(x)=x2) Error (z2)

0 1 0.994792 0.00520833 1 0.998958 0.00104167
0.125 1.00781 1.01042 -0.00260417 1.00065 1.0013 -0.000651042
0.25 1.03125 1.02604 0.00520833 1.00521 1.00365 0.0015625
0.375 1.07031 1.0625 0.0078125 1.01758 1.01562 0.00195313

0.5 1.125 1.10937 0.015625 1.04167 1.03359 0.00807292
0.625 1.19531 1.16667 0.0286458 1.08138 1.07057 0.0108073
0.75 1.28125 1.24479 0.0364583 1.14063 1.11979 0.0208333
0.875 1.38281 1.38542 -0.00260417 1.22331 1.19062 0.0326823

1 1.5 1.41667 0.0833333 1.33333 1.28672 0.0466146

Table 4.11: Results by solving equation g—gwithf(x)zxcmdf(x)zx2 for 8 Elements.

x y=Exact (f(x)=x) Y=QFE (f(x)=x) Error (x) y=Exact (f(x)=22) Y=QFE (f(x)=x2) Error (z2)

0 1 0.998698 0.00130208 1 0.99987 0.000130208
0.0625 1.00195 1.0026 -0.000651042 1.00008 1.00016 -8.13802e-005
0.125 1.00781 1.00651 0.00130208 1.00065 1.00046 0.000195312
0.1875 1.01758 1.01562 0.00195313 1.0022 1.00215 4.88281e-005

0.25 1.03125 1.02734 0.00390625 1.00521 1.00439 0.000813802
0.3125 1.04883 1.04167 0.00716146 1.01017 1.00804 0.00213216
0.375 1.07031 1.0612 0.00911458 1.01758 1.01419 0.00338542
0.4375 1.0957 1.08073 0.014974 1.02791 1.02305 0.00486654

0.5 1.125 1.10807 0.0169271 1.04167 1.03506 0.00660807
0.5625 1.1582 1.13281 0.0253906 1.05933 1.04945 0.00987956
0.625 1.19531 1.16797 0.0273438 1.08138 1.06927 0.0121094
0.6875 1.23633 1.19792 0.0384115 1.10832 1.09049 0.0178223

0.75 1.28125 1.24089 0.0403646 1.14063 1.12008 0.0205404
0.8125 1.33008 1.25911 0.0709635 1.17879 1.14945 0.0293457
0.875 1.38281 1.28451 0.0983073 1.22331 1.19076 0.0325521
0.9375 1.43945 1.36458 0.0748698 1.27466 1.22956 0.0451009

1 1.5 1.38021 0.119792 1.33333 1.28454 0.0487956
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Table 4.12: Results by solving equation % with f(z) = x and f(x) = 22 for 16 Elements.

X y=Exact (f(x)=x) Y=QFE (f(x)=x) Error (x) y=Exact (f(x)=22) Y=QFE (f(x)=x2) Error (z2)
0 1 0.999674 0.000325521 1 0.999984 1.6276e-005
0.03125 1.00049 1.00065 -0.00016276 1.00001 1.00002 -1.01725e-005
0.0625 1.00195 1.00163 0.000325521 1.00008 1.00006 2.44141e-005
0.09375 1.00439 1.00391 0.000488281 1.00027 1.00027 6.10352¢-006
0.125 1.00781 1.00684 0.000976563 1.00065 1.00055 0.000101725
0.15625 1.01221 1.01042 0.00179036 1.00127 1.00113 0.00014445
0.1875 1.01758 1.0153 0.00227865 1.0022 1.0019 0.000301107
0.21875 1.02393 1.02018 0.00374349 1.00349 1.003 0.000486247
0.25 1.03125 1.02702 0.00423177 1.00521 1.0045 0.000703939
0.28125 1.03955 1.0332 0.00634766 1.00742 1.0063 0.00111287
0.3125 1.04883 1.04199 0.00683594 1.01017 1.00878 0.0013916
0.34375 1.05908 1.04948 0.00960286 1.01354 1.01143 0.00210571
0.375 1.07031 1.06022 0.0100911 1.01758 1.01513 0.00244548
0.40625 1.08252 1.08464 -0.00211589 1.02235 1.0188 0.00354614
0.4375 1.0957 1.09733 -0.0016276 1.02791 1.02397 0.00394694
0.46875 1.10986 1.10742 0.00244141 1.03433 1.02882 0.00551554
0.5 1.125 1.12207 0.00292969 1.04167 1.03569 0.00597738
0.53125 1.14111 1.13912 0.00198851 1.04998 1.04188 0.0080953
0.5625 1.1582 1.15573 0.00247679 1.05933 1.05071 0.00861816
0.59375 1.17627 1.16842 0.00784788 1.06977 1.05841 0.0113668
0.625 1.19531 1.18698 0.00833616 1.08138 1.06943 0.0119507
0.65625 1.21533 1.20097 0.0143583 1.09421 1.0788 0.0154114
0.6875 1.23633 1.22148 0.0148466 1.10832 1.09226 0.0160563
0.71875 1.2583 1.23678 0.0215198 1.12377 1.10346 0.0203105
0.75 1.28125 1.25924 0.022008 1.14063 1.11961 0.0210164
0.78125 1.30518 1.27584 0.0293323 1.15895 1.1328 0.0261454
0.8125 1.33008 1.30026 0.0298205 1.17879 1.15188 0.0269124
0.84375 1.35596 1.31816 0.0377958 1.20023 1.16723 0.0329976
0.875 1.38281 1.34453 0.0382841 1.22331 1.18948 0.0338257
0.90625 1.41064 1.36373 0.0469104 1.2481 1.20715 0.0409485
0.9375 1.43945 1.39205 0.0473987 1.27466 1.23282 0.0418376
0.96875 1.46924 1.41256 0.056676 1.30305 1.25297 0.0500793
1 1.5 1.44284 0.0571643 1.33333 1.2823 0.0510295
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2. Quadratic Solution for Second Test Problem
The following tables (4.13), (4.14), (4.15) and (4.16) give us the results for 2, 4, 8 and

16 elements by using quadratic approach.

Table 4.13: Results by solving equation —- ((2z + 1)y) = 2? for 2 elements.
x values  Exact values (y) Quadratic values (Y)  Error(y-Y)

0 1 0.927885 0.0721154
0.25 0.663194 0.686538 -0.023344
0.5 0.479167 0.445192 0.0339744
0.75 0.34375 0.353547 -0.0097973

1 0.222222 0.225338 -0.00311562

Table 4.14: Results by solving equation —% (22 + 1)y) = 22 for 4 elements.
x values  Exact values (y) Quadratic values (Y)  Error(y-Y)

0 1 0.973733 0.0262669
0.125 0.799479 0.809882 -0.0104026
0.25 0.663194 0.64603 0.017164
0.375 0.561384 0.565946 -0.00456213
0.5 0.479167 0.474829 0.0043379
0.625 0.408275 0.414902 -0.0066264
0.75 0.34375 0.346927 -0.00317665
0.875 0.282434 0.295623 -0.0131896

1 0.222222 0.233805 -0.011583
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Table 4.15: Results by solving equation —% ((2z + 1)y) = 22 for 8 elements.

x values  Exact values (y) Quadratic values (Y)  Error(y-Y)

0 1 0.991845 0.0081547
0.0625 0.888817 0.892426 -0.00360984
0.125 0.799479 0.793007 0.00647168
0.1875 0.725675 0.727765 -0.00208987

0.25 0.663194 0.659971 0.0032238
0.3125 0.609125 0.61174 -0.00261577
0.375 0.561384 0.560897 0.000486572
0.4375 0.518446 0.521957 -0.00351112

0.5 0.479167 0.480754 -0.00158723
0.5625 0.44267 0.448019 -0.00534887
0.625 0.408275 0.412336 -0.00406035
0.6875 0.375445 0.383522 -0.00807682

0.75 0.34375 0.350878 -0.007128
0.8125 0.312841 0.324515 -0.0116744
0.875 0.282434 0.293326 -0.010892
0.9375 0.252293 0.268426 -0.0161336

1 0.222222 0.237632 -0.0154098

Table 4.16: Results by solving equation —% (22 + 1)y) = 2?2 for 16 elements.

x values  Exact values (y) Quadratic values (Y) Error(y-Y)

0 1 0.997705 0.00229458
0.03125 0.941167 0.942245 -0.00107789
0.0625 0.888817 0.886784 0.0020324
0.09375 0.841874 0.842661 -0.000787368
0.125 0.799479 0.798074 0.00140485
0.15625 0.760936 0.761631 -0.000695042
0.1875 0.725675 0.724777 0.000897804
0.21875 0.693225 0.694016 -0.000790709
0.25 0.663194 0.662797 0.000397904
0.28125 0.635254 0.636327 -0.00107276
0.3125 0.609125 0.609288 -0.000163062
0.34375 0.584569 0.586112 -0.00154289
0.375 0.561384 0.562212 -0.000828374
0.40625 0.539394 0.541598 -0.0022039
0.4375 0.518446 0.520073 -0.00162671
0.46875 0.498409 0.501468 -0.00305881
0.5 0.479167 0.481744 -0.00257778
0.53125 0.460617 0.464727 -0.00411046
0.5625 0.44267 0.446366 -0.00369557
0.59375 0.425246 0.430608 -0.00536141
0.625 0.408275 0.413266 -0.00499026
0.65625 0.391694 0.398508 -0.00681386
0.6875 0.375445 0.381915 -0.00646945
0.71875 0.359479 0.367949 -0.00846977
0.75 0.34375 0.351889 -0.00813891
0.78125 0.328216 0.338547 -0.0103308
0.8125 0.312841 0.322844 -0.0100031
0.84375 0.29759 0.309989 -0.0123983
0.875 0.282434 0.294499 -0.0120656
0.90625 0.267343 0.282017 -0.0146735
0.9375 0.252293 0.266622 -0.0143291
0.96875 0.23726 0.254417 -0.0171575

1 0.222222 0.239018 -0.0167959




Chapter 5

Discussion

Comparison of the results.

5.1 Exact solution for y

e First Problem

To find the exact solution of J
Yy
-7 — 5.1
Y~ @) (1)

in (0,1), with y =1 at x = 0. Let us consider f(x) = z and integrate (5.1),giving

xr
= 14
y="75+

by applying boundary conditions, giving

y="5+1 (5.2)

the exact solution for y.

Now let us consider y = g—; and % =latzx=0and u=0at x =1, giving

du?

By integrating (5.3) twice and applying boundary conditions, giving

93



CHAPTER 5. DISCUSSION

a3 n 4
Uu=—+x— -
3 3
the exact solution for wu.
Let us consider f(z) = 22, giving
du? o
a2 "

Now by integrating (5.5), the exact solution for y is

and for v is

Second Example

To solve the following equation
d 2
- —((2 ly) =
(e 1)) =
in (0,1) with y =1 at x = 0 and integrating (5.8), giving

73

-2z + 1)y 3+B

by applying boundary condition, we get

_3—:/63
C 6x+3

Y

Consider y = % in equation (5.8), giving

d du 9
-2+ 1)=) =
dx <( v )dx> v

integrating (5.11) twice and applying boundary conditions, we get

3z T 2

5
- — 0 - —_ - 2 1 — . 1

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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5.2 Results

5.2.1 Linear and Quadratic continuous Solution for y (Problem-1)

All the graphs shown below give us enough information to understand about the results.
By comparison of linear and quadratic results it is clear that linear approach is not good
as compared to quadratic in case of first test problem. Quadratic finite elements gives us

better results.

Linear Solution od dyidx=f(x), for 2 elements Quadratic Solution of dy/dx=f(x), for 2 elements
15 15
Exact Exact
Nurnerical Numerical
1.4 1.4
13 13
> >
o 1.2 o 12
=
11 11
1 1
a9 L . . . . . n n . 09 . n n . . . . . n
0 01 02 03 04 05 06 07 08 09 |1 0 01 02 03 04 05 0B 07 08 03 |1
X

(a) Linear finite Elements for f(z) = z. (b) Quadratic finite Elements for f(z) =

xX.
Linear Solution of dyldx=f(x}, for 4 elements Quadratic Solution of dyldx=f(x), for 4 elements
18 18
Exact Exact
Murnerical Murnerical
14 1.4
13 13
> -
o 12 o 12
11 1.1
1 1
I ol
a a1 0.2 03 04 05 06 07 08 08 1 a 0.1 02 03 04 05 06 07 08 08 1
X X
(¢) Linear finite Elements for f(xz) = z. (d) Quadratic finite Elements for f(z) =
x.

Figure 5.1: Graphs showing the results for linear and quadratic finite elements of first test
problem for 2 and 4 elemets.
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(a) Linear finite Elements for f(z) = z. (b) Quadratic finite Elements for f(z) =

x.
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(c¢) Linear finite Elements for f(x) = z. (d) Quadratic finite Elements for f(x) =
x.

Figure 5.2: Graphs showing the results for linear and quadratic finite elements of first test
problem for 8 and 16 elemets.
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5

xact Exact
Numerical 1 13 Humerical

X
(a) Linear finite Elements for f(z) = 2%. (b) Quadratic finite Elements for f(z) =
z2.
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(¢) Linear finite Elements for f(z) = 2. (d) Quadratic finite Elements for f(z) =
2
x.

Figure 5.3: Graphs showing the results for linear and quadratic finite elements of first test
problem for 2 and 4 elemets.
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Quadratic Solution of dyldx=F{x?), for & elements

Linear Solution of dyidx=f(x?}, for 8 elements
14
Exact

Nurmerical

Hact
Nurmerical

z?. (b) Quadratic finite Elements for f(z) =

(a) Linear finite Elements for f(z) =
1'2 .
Linear Solution of dyldx=f(x2), for 16 elements Quadratic Solution of dyldx=f(x2), for 16 elelments
26 1.4
1 act

(¢) Linear finite Elements for f(z) = 2. (d) Quadratic finite Elements for f(z) =
x.

Figure 5.4: Graphs showing the results for linear and quadratic finite elements of first test

problem for 8 and 16 elemets.
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5.2.2 Linear and Quadratic continuous Solution for y (Problem-2)

The comparison of the results for linear and quadratic finite elements of second test problem

tells us

e Graphs show that numerical values for Y get better as we increase the number of

elements.

e Linear results are really good except for end values for 16 elements.

e Quadratic results are better at the start of any number of elements.

Linear Solution for -didx(@x+1)y}=x’ for 2 elements.
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(a) Linear finite Elements. (b) Quadratic finite Elements.
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(c) Linear finite Elements. (d) Quadratic finite Elements.

Figure 5.5: Graphs showing the results for linear and quadratic finite elements of second
test problem for 2 and 4 elemets.
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Linear Solution for -dldx[(2x+1)y]=x2 for 8 elements.
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(a) Linear finite Elements.
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(c) Linear finite Elements.
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Quadratic Solution of -didx(@x+1}y)=x, for 8 elements
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(b) Quadratic finite Elements.

Quadratic Solution of -dfdx((2x+1)y)=x2, for 16 elements
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(d) Quadratic finite Elements.

Figure 5.6: Graphs showing the results for linear and quadratic finite elements of second

test problem for 8 and 16 elemets.

5.3 Conclusion

We have showed that when linear elements approach does not work very well to recover the
values of velocity (Y) from potential velocity (U), then we need to apply quadratic finite

elements approach to get better accuracy.

Chapter two gave the theory of finite elements for second order differential equations.
This chapter investigated the method of Linear Finite elements and deficencies in this
method for our purpose and provided an alternative Quadratic elements method to find the

numerical solution.

Chapter Three provided the Linear and Quadratic approaches to solve the first order differ-
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ential equations as well as the Sturn-Liouiville type differential equations. In this chapter

we solved test problems to investigate the numerical results.
Chapter Four introduced the results for moving boundary and discussed the possible be-

haviour that can arise as the boundary moves. We also discussed the numerical results of

the test problem and compared them with the exact solutions to investigate the errors.

5.4 Future Work

Our next target is to find the solutions for higher order differential equations.
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