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Abstract

In this study we look at the waiting time phenomenon with regards to the

porous-medium equation and the thin-film equation. The study begins by

deriving an equation for the velocity using a conservation of mass principle,

and is used to analyse which initial data exhibit zero velocity at the bound-

aries at t = 0. An advection-diffusion equation for the velocity is then derived

to examine the behaviour of velocity during the waiting time period. This is

numerically solved using a simple mixed upwind finite difference scheme. A

moving mesh finite element method is then derived for the porous-medium

and thin film equations and an in depth discussion follows on the numerical

solutions. Finally the work is extended by studying the Richards’ equation

and applying the analytical methods used in the dissertation and the moving

finite element method to it. The results are then discussed.

I confirm that this is my own work, and the use of all material from other

sources has been properly and fully acknowledged.
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Chapter 1

Introduction

Partial differential equations (PDEs) are frequently used to describe physical

phenomena such as the propagation of sound or heat, fluid flow and physical

laws such as the conservation of mass, energy or momentum. Their solutions

provide an insight to the physical process they are modelling, by providing

information on some quantity throughout a domain. The domains can be

fixed, but more interestingly they can be dictated by their solution. These

types of problems are usually classified as moving or free boundary problems

and are ubiquitous in the mathematical description of physical processes.

Moving boundary problems have had little attention until recently, when

in the 1960s, due to their relevance in diffusion and heat flow processes, a

modern approach to the theory of non-linear PDEs brought new insight and

methods to investigate this phenomenon.

During this interest in moving boundary problems, a phenomenon was

discovered with regards to the time dependent PDEs, where the boundary

would initially wait for a period of time before it moved. This phenomenon

is called the waiting time and has been found to occur in several different

equations including the shallow water equation and the non-linear diffusion

equations.

1



This dissertation will investigate the waiting time phenomenon of the evo-

lutionary, degenerate, second and fourth order non-linear diffusion equations

by using a moving mesh finite element method [3].

We begin with a look at the applications of nonlinear diffusion. Both the

porous-medium equation (PME) and the thin-film equation (TFE) will be

presented in detail with a brief mention of the Richard’s equation.

In Chapter 3 we focus on the waiting time phenomenon and discuss the

existing literature. The results and methods presented in these papers will be

used for both analytical and numerical purposes throughout the dissertation.

Then, in Chapter 4, a conservation of mass law will be used in conjunction

with both the PME and the TFE to derive the velocity of u across the whole

region and importantly, with regards to waiting times, the velocities at the

boundaries of the domain.

The initial conditions play a very important role in whether the waiting

time phenomenon will occur, so in Chapter 5, using the velocity derived in the

previous chapter, the intitial behaviour of the boundary will be investigated.

This analysis gives particular cases for when the waiting time will occur, but

gives no clues as to the duration of the waiting time, or to the behaviour of

the boundaries for t > 0.

In Chapter 6, we examine the velocities for t > 0 by constructing an

advection-diffusion equation for the velocity in terms of v and u. We shall

use the results that the method of characteristics give and explain why they

are unsuitable for this problem, followed by a derivation of a numerical ap-

proximation and then finally a discussion of the results.

Then in Chapter 7, we shall derive the moving finite element method that

will be used to numerically solve both the PME and the TFE. Near the end

of the chapter, a discussion of the methods used to computationally solve

these equations will be offered.
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In Chapter 8, we present the numerical results obtained by using the

moving finite element method and explain them in detail, noting in particular

the shock formations and front movements that occur.

In the penultimate chapter, we shall focus our investigations on the

Richards’ equation. This involves the use of the analytical and numerical

methods described in the previous chapters. The numerical results shall be

briefly examined.

Finally a summary of the dissertation will be presented, including the

results from our investigations. Then we end on a discussion of possible

further work.
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Chapter 2

Non-Linear Diffusion

This dissertation is primarily concerned with one-dimensional non-linear dif-

fusion equations of the form

ut = (−1)n
(
D(u)

∂2n+1u

∂x2n+1

)
x

(2.1)

It describes physical situations such as the heat conduction in a one-

dimensional solid body, insect population dispersion and the spread of liquid

on a surface. In particular, problems in which the diffusion coefficient takes

the form D(u) = un, where n > 0 is a diffusion growth exponent, will be

investigated.

Equation (2.1) is derived from the generalised Reynolds equation

ut = (unpx)x (2.2)

with p being a pressure which determines the order of the equation. For

example, for the thin-film equation, we have

p = −∂
2u

∂x2

Here, p represents a pressure due to surface tension, for example, when mod-

elling the capillary effects of a thin liquid film on a solid surface.
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In this chapter we shall look at some applications of (2.2) in an attempt

to motivate interest in the generation of numerical solutions that exhibit the

waiting time phenomenon and also briefly examine the literature currently

available.

2.1 The Porous-Medium Equation

The PME is of the form

ut = (unux)x (2.3)

where n is as stated above and with u = 0 at the boundary.

There are many different applications by varying n that naturally arise in

the study of physical problems. When n = 1, the equation models the flow in

thin saturated regions in a homogeneous isotropic porous media [14]. This

equation is also known as the Boussinesq equation when an impermeable

boundary is set at x = 0.

When n ≥ 1, it provides a model for the percolation of a compressible gas

through porous media, neglecting gravity [19]. With n = 3, the equation (2.3)

models thin viscous liquid films spreading under gravity over a horizontal

plane [17].

In Chapter 9, we extend the second order differential equation by adding

an extra term. This equation is the nondimensionalised Richards’ equation

and is of the form

st =
(
sk−2uz + sk

)
z

where s = s(z, t) is the saturation of the wetting phase at height z.

This equation models the distribution of a wetting fluid within an arti-

ficially saturated porous medium, subject to capillary pressure and gravity,

[9], [23]. When k = 3, this equation models the flow of a dense non-aqueous
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phase liquids (DNAPLs). The equation is used to estimate the time that the

pollutant takes to reach the water table. This is an increasingly important

application due to the danger that soil contaminated with DNAPLs poses to

the environment.

The study of the waiting time phenomenon with regards to this problem

is an important and interesting extension to the literature that is currently

available. If the profile of the saturation of the liquid has to rearrange it-

self before the boundary moves, this will affect estimates on how long the

pollutant will stay at a certain depth until it starts seeping deeper into the

soil.

As can be seen, the second order case (2.3), is very important due to its

broad range of applications, and has hence been studied extensively using

different analytical and numerical methods. Similarity solutions have been

found [4], as well as solutions that illustrate the behaviour of the waiting time

phenomenon [15] and solutions that have been constructed using singular

perturbation theory [12]. Numerical approximations include finite difference

moving mesh methods [5], fixed grid methods with multi-grid solvers and

the method that will be used throughout this thesis, namely the adaptive

mesh finite element method used for solving time-dependent PDEs. [2], [3].

2.2 The Thin-Film Equation

The TFE is of the form

ut = − (unuxxx)x

where again, n is as stated previously, and with u = 0 at the boundaries

being considered.

With the diffusion growth exponent n = 3, the equation models the lubri-

cation of a surface tension driven thin viscous liquid spreading on a horizontal
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surface with a no-slip condition at the solid/liquid/air interface, [4], [20].

The no-slip condition implies that an infinite force occurs at the interface,

but this is avoided when 0 < n < 3, and instead we have a Navier-type

slip condition. Mathematically this is shown by the fact that self similar

source-type solutions only exist if n < 3 [6]. These values of n apply to

problems concerned with the spreading or non-spreading of liquids. Another

application is the runoff of rainwater over soils and the spreading of fluid on

textiles. Momoniat and Mason addressed this in their paper [18] and called

it the spreading of a thin film with suction or blowing.

Again, there is a lot of literature with regards to the TFE, and as with

the PME, it has been solved using similar analytical and numerical methods.

Most importantly, using asymptotic methods and a multi-grid solver, Blowey

et al [6] [16] have some important results that will be used as a comparison

in chapters 5 and 9.

Continuing with the literature review, the next chapter shall focus on the

waiting time phenomenon by looking at the physical applications and the

recent developments in the field.
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Chapter 3

Existence of Waiting Times

The waiting time phenomenon can be defined as being the finite non-zero

time for which the free boundary is stationary. Typically, during this time,

the initial density profile redistributes itself before the boundary begins to

move.

This phenomenon was initially conjectured by Knerr [13] for the PME,

and then was further investigated by Lacey et al [15]. They noted two ap-

plications for the waiting time solutions of the PME. It had been observed

that regions of water vapour in dry powder remained localised for periods

of time before spreading out. The second application was discovered after

observations of a blob of viscous liquid placed at rest on a horizontal surface

had a stationary perimeter for a non-zero time interval before spreading out

under gravity. It is worth noting that the observer commented on the fact

that this stationary perimeter only occurred during certain initial profiles

of the liquid blob. Lacey et al. found that this was shown mathematically

with the self similar solution they constructed, and in Chapter 5, we shall

see that this plays an important role in selecting initial conditions for which

the waiting time phenomenon occurs.

The rest of the chapter will look at the important analytical and numerical
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results from the literature available for the PME and the TFE.

3.1 Waiting Times of the Porous Medium Equa-

tion

As mentioned previously, Knerr [13] proved the existence of waiting time

solutions. His work, (along with Aronson and Kamin) spurred on further

investigations which shall now be discussed in further detail as they contain

important results.

Lacey and Ockendon [15] initially looked at the waiting time solutions

of the PME by constructing similarity solutions that, when prescribed with

appropriate initial data, demonstrated a boundary that exhibited waiting

time behaviour and also continued to exist after the interface began to move.

Using a comparison theorem developed by Oleinik et al [21], they found lower

and upper bounds on the waiting time that significantly improved on results

found by Aronson et al [1]. They concluded that the dependence of waiting

times upon the global properties of the intitial data u0(x) was clear. Later on

in this dissertation, after deriving the velocity using a conservation of mass

argument in Chapter 4, we can analyse initial data to see whether the initial

velocity at the boundary is zero, implying a waiting time.

The next major development in the literature on this subject was Kath

and Cohens paper [12]. Their motivation was to improve on earlier works

by using a different method to approximate bounds for the waiting time.

They used singular perturbation theory in the limit of small n which allowed

them to construct solutions for initial conditions that were not solvable by

similarity methods.

Kath and Cohen discussed ’corner shocks’ which were used to indicate a

discontinuous jump in the first derivative of u wrt x. Coincidentally, when
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using the conservation of mass principle in Chapter 4, we arrive to a velocity

for the movement of the fluid v = −un−1ux. In Chapter 8 we shall investigate

numerical solutions where n = 1 and show that as the velocity changes

with time, if the waiting time behaviour is to occur, a shock appears at the

interface in the velocity just before the boundary begins to move, ending the

waiting time period. See, figure (8.3).

Kath and Cohen also mention corner layers which are when ux changes

significantly within ∆x. This is a direct result which has also been observed

in the numerical solutions computed in this dissertation. See figure (8.2).

The work of Gratton and Vigo [8] uses a power law type initial condition,

u ∝ xp. Using asymptotic methods, they found that by fixing n = 3 (from

the already defined PME equation (2.3)), the boundary exhibited different

behaviour for different values of p. This work is extended in Chapter 5 for

n > 0.

Gratton and Vigo numerically solved the PME using a three-level second

order implicit finite difference scheme, centred in both time and space. Their

numerical investigations gave ”... results in harmony with [the] theory”.

3.2 Waiting times of the Thin-Film Equation

The TFE has not been studied in as much detail as the PME but recently

there has been more interest in the behaviour of similarity solutions. Despite

this, there have been asymptotic solutions for small n [25](similar to Kath

and Cohens work on the PME), small time conjectures [16], constructing

simple waiting time solutions [25] and numerical solutions [6].

Smyth and Hill [25] comment on how in some respects the properties and

solutions of the TFE are similar to those of the PME. Using an asymptotic

solution of the TFE, they find that in contrast to the solutions for the PME,
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when 0 < n << 1, the solutions tended to have an infinite waiting time, yet

the solutions were not valid for large times.

As mentioned previously, Blowey, King and Langdons paper examines

small and waiting time behaviour for 0 < n ≤ 4. Their formal asymptotic

results will be compared with the results found in Chapter 5. The numerical

results that they found were computed on a fixed grid with a multi grid solver

and they will be used as a comparison to the results we get for the TFE.

After reviewing the literature, we shall now move on and derive an equa-

tion for the velocity using a conservation of mass law. For both the analysis

and the numerical method, this is a fundamental part of the dissertation.
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Chapter 4

Conservation of mass

In this chapter we shall derive the velocity of the boundary by using a con-

servation of mass principle. This states that the mass of a quantity in a

closed system will remain constant, regardless of the processes acting inside

the system.

The boundary velocity of the generalised Reynolds equation will be de-

rived with the initial condition u = u0.

We begin by integrating (2.1) w.r.t. x over the whole region and then

applying the Reynolds transport theorem [26] to get an equation of the form

d

dt

∫ b(t)

a(t)

udx =

∫ b(t)

a(t)

(
∂u

∂t
+

∂

∂x
(uv)

)
dx

=

∫ b(t)

a(t)

∂u

∂t
dx+ [uv]xN

x0

where a(t) and b(t) are the boundaries. Substituting in equation (2.2), leads

to
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d

dt

∫ b(t)

a(t)

udx =

∫ b(t)

a(t)

(unpx)x dx+ [uv]
b(t)
a(t)

= [unpx + uv]
b(t)
a(t)

Applying the boundary conditions u = 0 at a(t) and b(t) , we arrive to

the conservation of mass over the entire region ∀t.

d

dt

∫ b(t)

a(t)

udx = [unpx + uv]xN

x0
= 0

⇐⇒∫ b(t)

a(t)

udx = constant

To be able to calculate the interior velocities, we shall now consistently

define a local conservation of mass principle for any interval (xi−1(t), xi(t))

∫ xi(t)

xi−1(t)

udx = constant (4.1)

Applying Liebniz’ Integral rule to (4.1) ∀t, yields

d

dt

∫ xi(t)

xi−1(t)

udx =

∫ xi(t)

xi−1(t)

∂u

∂t
dx+ u(xi(t), t)

∂xi
∂t
− u(xi−1(t), t)

∂xi−1

∂t
(4.2)

giving

[unpx + vu]
xi(t)
xi−1(t) = 0

By setting xi−1(t) = a(t) leads to

unpx + vu = 0 (4.3)
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for all x = xi(t) Rearranging (4.3), we get

v = −un−1px (4.4)

To find the velocity at the boundaries, we must take

v = − lim
u→0

un−1px (4.5)

An equation for the velocity of the fluid has been derived by conserving

mass within the domain. This can be used to find out the behaviour of

the boundary at t = 0, which we shall investigate in the next chapter. We

shall also later on, construct an equation in terms of v and its derivatives

(see Chapter 6). This will enable the investigation of the behaviour of the

velocity during the waiting time. To see the behaviour of the velocity during

and after the waiting time, a moving finite element method using (4.4) will

be constructed in Chapter 7.
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Chapter 5

Initial Behaviour of the

boundary

In this chapter we shall look at the intitial behaviour at the boundaries

by using the velocity equation derived in the previous chapter. The initial

conditions we shall use for the numerical solutions of the PME and the TFE

were chosen so as to be comparable with previous numerical solutions by

Blowey et al. [6].

This has been investigated briefly for the PME, but in a lot more detail

for the TFE by Langdon [16], and Blowey et al. [6] for initial conditions of

the general form

u(x, 0) = A0

(
xB − x2

)α
As mentioned we shall use the initial data already studied. This is of the

form

u(x, 0) = 5

(
9

16
− x2

)α
(5.1)

For the initial data to remain positive, we shall require the initial domain to

be x ∈ [−0.75, 0.75].
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This initial data, combined with equation (4.5), can provide information

about the velocity of the fluid at the boundary at t = 0. The two equations

will be looked at in turn.

5.1 Analysis of the Initial data for the Porous-

Medium Equation

We start by differentiating the initial data and substituting it into equation

(4.5), we have

vB = − lim
u→0

un−1ux

= (5)n−110α lim
x→ 3

4

x

(
9

16
− x2

)nα−1

From this it is clear that there are three cases involved. They are

• If nα < 1, vB → +∞ as x→ 3
4
.

• If nα = 1, then vB = (5)n−1 30
4
α, finite and positive.

• If nα > 1, vB = 0.

We shall investigate when nα > 1 as this shows that there is a waiting

time before the boundary begins to moves. Figure (5.2) shows the initial

velocities between 0.5 and the boundary 0.75.

5.2 Analysis of the Initial data for the Thin-

Film Equation

For the TFE, as expected, we see a more varied behaviour. Letting p = −uxx
and substituting from the third derivative of the initial data (5.1), we get
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! = 2, n = 1
! = 1, n = 1
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Figure 5.1: Initial velocities of the PME using the intitial condions (5.1)

vB = lim
u→0

un−1uxxx = (5)n−160α(α− 1) lim
x→ 3

4

x

(
9

16
− x2

)nα−2

−(5)n−140α(α− 1)(α− 2) lim
x→ 3

4

x

(
9

16
− x2

)nα−3

The special case of α = 2, gives

vB = (5)n−1120 lim
x→ 3

4

x

(
9

16
− x2

)2n−2

we have the following behaviour

• if n > 1 vB = 0.

• if n = 1 vB = 90.

• if n < 1 vB → +∞.

Also, another special case is if α = 1, then vB = 0.

Suppose that α 6= 2 or 1. Then

17



• If nα > 3, vB = 0.

• If nα = 3, vB = −(5)n−130α(α − 1)(α − 2) and is therefore finite,

positive or negative, depending on n and α.

• If nα < 3, vB → ±∞ as x→ 3
4
,

0.5 0.55 0.6 0.65 0.7 0.75
!300

!250

!200

!150

!100

!50

0

50

x

v

 

 

! = 2, n = 1
! = 2, n = 2
! = 2, n= 0.5
! = 1, n = 1
! = 4, n=1
! = 3, n = 1
! = 3, n = 0.5

Figure 5.2: Initial velocities of the TFE using the intitial condions (5.1)

These results for the PME and the TFE coincide with Blowey, King and

Langdons results [16].

The analysis of the velocity equation at the boundary has resulted in

certain initial data having a waiting time period. In the next chapter an

advection-diffusion equation will be constructed to see the behaviour of the

velocity during the waiting time and we shall implement the results found in

this chapter.
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Chapter 6

Velocity advection-diffusion

equation

Using equation (4.4), an advection-diffusion equation in terms of v can be

derived to investigate the behaviour of the velocity during the waiting period.

6.1 The velocity equation for the PME

By differentiating equation (4.4) w.r.t. t and substituting in the PDE of the

form ut = −(uv)x, we arrive to

vt + (2 + n)vvx = unvxx (6.1)

As can be seen, u is still part of the equation. This is unavoidable, and

hence to get a numerical solution we must solve for u also.

First off, it is simpler to deal with equation (6.1) by time splitting it into

two equations

vt + (2 + n)vvx = 0 (6.2)

vt = umvxx (6.3)

19



Clearly equation (6.2) is an advection equation, and (6.3) is a second

order diffusion equation.

We shall use the method of characteristics to solve the advection part of

the PDE by finding curves in the x− t plane that reduce the equation to an

ordinary differential equation (ODE). We shall look at the curves given by

dx
dt

= a(u) = a(u0) with the condition that du
dt

= 0.

Using the method of characteristics, the characteristic solution of equation

(6.2) is v = v(x0) on the line x = (2 + n)v(x0)t + x0, allowing crossing and

shock formation. This is evident as we are dealing with non-linear terms

in (6.2). However, the effect of (6.3) is to smooth the shock. By using the

results we had from analysing the initial data in the previous chapter, if we

set nα > 1, then we know that analytically, the velocity at the boundary

vB = 0, and hence the boundary waits.

Further quantitative analysis of this isn’t useful as it is very difficult to

implement the second equation (6.3). This acts as a damper or diffuser

and prevents any useful results using characteristic analysis on the advection

equation.

These analytical results on equation (6.2) coincide with Cath and Co-

hens [12] analysis of the corner shocks which occur at the time the boundary

begins to move after an initial waiting time.

To solve (6.1) numerically it helps to first transform (6.1) into the form

vt +
2 + n

2
(vx)

2 = unvxx

Now we can solve this using a standard upwind finite difference method

for the first derivatives w.r.t. t and x, and due to the damping effect of

the un term, we can simply take a central difference method for the second

derivative of v.
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Figure 6.1: Figure on the left shows the velocity that the moving mesh method

calculates (see Chapter 7) and the figure on the right shows the numerical

solution of equation (6.1). α = 4.5, n = 1.

vk+1
j − vkj

∆t
= (ukj )

n

(
vkj+1 − 2vkj + vkj−1

(∆x)2

)
− 2 + n

2

((
vkj
)2 − (vkj−1

)
∆x

)
where k is the time step t = k∆t and j is the spacial step x = j∆x.

Since we are solving for u on a moving mesh (see chapter 7), we must

interpolate the solution to the points close by. Fortunately u is smooth when

u is not small, so this can be calculated using a simple linear interpolation

technique.

The numerical solution shows some interesting results (fig. (6.1)). The

shock is formed and begins to move at a finite speed at approximately the

same time as the boundary starts to move when solving the PME using a

moving finite element method in Chapter 7.

It can be seen in figure (6.2) that the numerical solution of the advection-

diffusion equation begins to move before the shock breaks in the mesh velocity

plot. This shows the errors between the moving mesh method when solving

the PME and the finite difference method used for the advection-diffusion

equation. Analytically, we saw that for the PME, when nα > 1, a waiting
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Figure 6.2: Figure on the left shows the velocity that the moving mesh method

calculates (see Chapter 7) and the figure on the right shows the numerical

solution of equation (6.1). α = 1.5, n = 1.

time should occur. The numerical solution of the advection equation (6.1)

shows that we should have a short waiting time and then a shock forms and

the wave begins to move.

Using the same method for the TFE, we get an equation similar to (6.1),

but due to it having many high order derivatives of v and u, the numerical

solution of the equation would have been difficult to solve. A scheme such as

the Adams/Bashforth 3rd order, 3 level scheme could have been implemented.

We shall further discuss this in Chapter 10.

In the next chapter, we shall move on and derive the moving finite element

method [3] for the PME and the TFE using the velocity (4.4) derived from

the conservation of mass principle in chapter 4.
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Chapter 7

Moving mesh explanation

In this chapter we shall construct the moving finite element method that will

be used to numerically solve the PME and the TFE. It is an adaptive finite

element method for solving PDEs with moving boundaries using a moving

mesh. There are many advantages for using this method such as improved

efficiency and for these particular problems, the lack of a need to locally

remesh during computation.

Using the results from Chapter 4, if u 6= 0 it is possible to find the velocity

of any interior mesh point in the domain using the equation

v = −un−1px

With the mesh velocities obtainable, we can now update the mesh position

per time step by using a simple time-stepping method to solve v = dx
dt

for

each node, and then the solution can be retrieved from equation (4.1). The

mesh nodes will move so that within each interval, the conservation principle

is satisfied.

Note that to find the velocity at the boundaries, we must take

v = − lim
u→0

un−1px
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7.1 Finite Element Formulation

To solve this problem approximately using the finite element method, we

introduce a test function into (4.1) and find the weak form of (4.2).

So, using the previous result, we propose a weak conservation principle

with w being a test function advected with velocity v. w is continous and

once differentiable.

∫ xi(t)

xi−1(t)

wiudx = c (7.1)

where c is a constant determined by the initial data. The partition of

unity condition on w, is required for (7.1) to conserve mass

N∑
j=0

wj = 1

Differentiating (7.1) w.r.t. t leads to

∫ xi+1(t)

xi−1(t)

wi
∂

∂x
(unpx + vu) dx = 0

assuming that wi moves with v.

We assume that the test function will take the form of linear hat functions

φi. These are defined as

φj =


x−xj−1

xj−xj−1
, x ∈ (xj−1, xj)

xj+1−x
xj+1−xj

, x ∈ (xj, xj+1)

Integrating by parts and replacing w with φi, we get
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φi [u
npx + vu]

∣∣∣∣xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂φi
∂x

[unpx + vu] dx = 0

The term on the left vanishes since either φi = 0 or u = 0 at the two

boundaries, which results in

∫ xi+1(t)

xi−1(t)

u
∂φi
∂x

vdx = −
∫ xi+1(t)

xi−1(t)

un
∂φi
∂x

∂p

∂x
dx (7.2)

The resulting matrix system on the left hand side of equation (7.2) is

computationally difficult to solve as it is almost anti-symmetrical. To make

this easier we shall define the velocity potential ψ given by

v =
dψ

dx
(7.3)

Substituting the finite element approximation of ψ

ψ =
N∑
j=0

ψjφj (7.4)

gives us a symmetric matrix on the left hand side of (7.2) resulting in a

simpler system consisting of two weighted stiffness matrices

∫ xi+1(t)

xi−1(t)

u
∂φi
∂x

∂φj
∂x

ψjdx = −
∫ xi+1(t)

xi−1(t)

un
∂φi
∂x

∂p

∂x
dx

We shall now derive ψ individually for the PME and the TFE.

7.1.1 Getting ψ - Porous-Medium Equation

For the PME p = u and we take the finite element approximation of u to

be
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u =
N∑
j=1

ujφj (7.5)

We are now left with

∫ xi+1(t)

xi−1(t)

u
∂φi
∂x

∂φj
∂x

ψjdx = −
∫ xi+1(t)

xi−1(t)

un
∂φi
∂x

∂φj
∂x

uj

which leaves us with the symmetric matrix system to calculate the velocity

potential ψj,

K(u)ψ = −K(un)u

Where K is a weighted tridiagonal matrix.

7.1.2 Getting ψ - Thin-Film Equation

As previously defined, u is piecewise linear. To approximate uxx, we use a

weak form of

p = −∂
2u

∂x2
(7.6)

Integrating equation (7.6) w.r.t. x, and taking the weak form,

∫ xi+1(t)

xi−1(t)

φipdx = −
∫ xi+1(t)

xi−1(t)

φi
∂2u

∂x2
dx

= −
[
φi
∂u

∂x

]xi+1

xi−1

+

∫ xi+1(t)

xi−1(t)

∂φi
∂x

∂u

∂x
dx

The first term on the right hand side vanishes as either φi = 0 or due to the

boundary conditions stated earlier. Taking the finite element approximation

of u, defined in equation (7.5) and of p

p =
N∑
j=1

pjφj
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we are left with

∫ xi+1(t)

xi−1(t)

φiφjpjdx =

∫ xi+1(t)

xi−1(t)

∂φi
∂x

∂φj
∂x

ujdx

and we have the matrix system

Mp = Ku

This system will be solved for p, where M is the mass matrix and has the

standard form.

We can now continue with method for the TFE in a similar fashion as

with the PME, by first solving for p. Then we are left with the following

system to solve for ψ

K(u)ψ = −K(un)p

As can be seen an extra system has to be solved when computing the

numerical solution of the TFE. Once we have solved for ψ we follow the

same method for both equations.

We integrate and take the weak form of (7.3) giving

∫ xi+q

xx−1

φivdx =

∫ xi+q

xx−1

φi
dψ

dx
dx

Using the finite element approximation of ψ from (7.4) and taking the

finite element approximation of v

v =
N∑
j=0

vjφj

we get the following equation to solve

∫ xi+q

xx−1

φiφjvjdx =

∫ xi+q

xx−1

φi
dφj
dx

ψjdx
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This leaves us with the system

Mv = Aψ (7.7)

where A is defined as

A =



0 −1
2

0 0 . . . 0

1
2

0 −1
2

0 . . .
...

0 1
2

0 −1
2

0
...

...
. . . . . . . . . . . .

...
...

. . . 0 1
2

0 −1
2

0 . . . . . . 0 1
2

0



Now that we have v, we can update the mesh velocities using a time-step

method. For the sake of ease, we shall use the explicit Euler scheme. This

gives us

xi = xi + ∆tvi

The scheme unfortunately requires very small time-steps to ensure sta-

bility.

Finally, u must be solved on the new mesh. This is achieved by solving

(7.1), where c is defined as follows

c =

∫ xi+1(t0)

xi−1(t0)

φiu0dx

using the initial data u0. Since c consists of the initial data only, it naturally

remains the same for t ≥ 0 This is due to it being defined as the total mass in

the initial data, and this mass is kept constant by the conservation of mass

principle.
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So to get u back, we solve the system

Mu = c

7.2 Implementing the method for computa-

tion

To solve these systems, the code was written in C++ for the PME, and

for the TFE, FORTRAN was used due to its computational effiency and

hence increase in speed. This was necessary as the time-steps for the TFE

were approaching 10−10− 10−12 and hence, a large number of iterations were

required to study the behaviour of the numerical solution.

Due to oscillations and numerical instabilities, we had to use a number

of adjustments to how the moving finite element method was implemented

computationally. We shall look at these in turn.

7.2.1 Lumping of the mass matrix

Lumping is a method used primarily to reduce the computational expense of

having to invert a matrix without a loss of accuracy.

In order to obtain a fully explicit scheme, the mass matrix is diagonalised

or ’lumped’. Using the linear hat functions, lumping the matrix is achieved

by adding all elements in each row of the mass matrix and placing the sum

in the diagonal. Then, the lumped matrix replaces the mass matrix in the

system. For more information on lumping, consult [22], [24] and for a more

in depth discussion on the consequences of the use of lumping see [27].
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7.2.2 Upwind method

When discretising a domain using piecewise linear elements, it is clear that

the finite element method uses a similar ’stencil’ as a central finite difference

scheme.

This lead to the advection-diffusion behaviour of the velocity having nu-

merical instabilities. An upwind finite element method was instead imple-

mented. This lead to less oscillations, yet small localized oscillations were still

occurring in the neighborhood of the steep gradient. For more information

on this method see [10].

7.2.3 Smoothing method

Due to the small oscillations mentioned previously in the velocity of the

numerical solution of the TFE, a smoothing method was used.

vi =
1

4
vi−1 +

1

2
vi +

1

4
vi+1

This smoothing method eliminated some of the small oscillations that

were occurring, and prevented blow up of the velocity. Unfortunately, due

to the smoothing, the result was that we were computing a less accurate

numerical solution. The smoothing of the moving front would have caused

a lower velocity and hence a slightly longer waiting time, as was witnessed

when comparing our results with Blowey et al [6].
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Chapter 8

Numerical Results I

We now present numerical solutions using the methods described in Chapter

7. By also using the results in Chapter 5, we shall only examine results

where a waiting time occurs. Bahattacharya [2] investigated the instant

movement solutions without a waiting time using the same moving finite

element method.

The solutions are plotted against the time dependent moving nodes, not-

ing that the central node at x = 0 never moves due to it being the centre

of mass. This is due to the symmetry of the initial conditions that we are

solving both the TFE and the PME and the lack of any source term to either

end of the domain ( See Chapter 9 for an example of the effects of a source

term).

8.1 Porous-Medium Equation Results

We shall begin by looking at the PME with two sets of values for α and n

and comment on the observable features.

The results when using α = 4.5 and n = 1 are shown in figures (8.1)
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Figure 8.1: Numerical solution of the PME with n = 1, α = 4.5
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Figure 8.2: Close up of the moving boundary of the numerical solution of the

PME with n = 1, α = 4.5

32



!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

x

v(
x,
t)

Figure 8.3: Velocity’s of the nodes of the numerical solution of the PME with

n = 1, α = 4.5
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Figure 8.4: Movement of the boundary of the PME with n = 1, α = 4.5
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- (8.4). In figure (8.1) we see the expected waiting time occuring and also

a clear profile redistribution behind the stationary boundary. This profile

redistribution is more clearly seen in the close up of the boundary area in

figure (8.2). The cover layer phenomenon observed in Kath and Cohens

paper [12], can be clearly seen.

Figure (8.3) is really where our main interest lies and its the velocities

advective profile that causes a shock to occur, and consequently, an imme-

diate movement of the boundaries. In Chapter 6 we looked at solving an

advection equation and concluded that, due to the limited fixed grid method

used, it only gave information throughout the waiting time, but did not give

any information on the movement of the boundaries after the waiting time.

See Chapter 6 and the results in figure (6.1).

As can be seen, the velocities are positive when x > 0 and negative as

x < 0. Over time a steepening front develops as t increases, which eventually

becomes a shock. Also note that as in figure (6.1), the velocity is being

diffused. After the shock we have a linear velocity that shall eventually

tend to zero as t → +∞. Figure (8.4) shows the movement of the positive

boundary and estimates a waiting time of duration t = 0.31.

Note that the moving finite element method coped very well with solving

the PME, even when using the Euler method for the time-stepping. The

time-steps to solve this without having an unstable solution were of order of

magnitude 10−4 for 61 nodes.

We shall now look at another numerical solution with α = 0.5 and n = 7.

This again, using the results from Chapter 5, should give us a waiting time

period due to the condition nα > 1. With the value α = 0.5, we get an

entirely different profile for the intitial condition, compared with (8.1). This

is an example of a non-zero contact angle, and due to the this, the waiting
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time is a lot shorter because the required profile redistribution takes less time

and hence the velocity forms a shock quicker.
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Figure 8.5: numerical solution to the PME with n = 7, α = 0.5

Interestingly, in figure (8.6) due to the different contact angle, we do not

see a corner layer present.

Figure (8.7) again shows a shock forming as the waiting time ends and

the boundary begins to move. Due to setting n = 7, the diffusion is much

stronger and this is most apparent in the velocity.

The waiting time is approximately 0.375× 10−3 as can be seen in figure

(8.8), but is not as clearly defined as in the previous example.

8.2 Thin-Film Equation Results

We shall now concentrate on the numerical solutions of the TFE. It was

expected that the velocity behaviour during the waiting time would be far

more complicated and this can be seen occurring in figure (8.9). We observe
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Figure 8.6: Close up of the moving boundary of the numerical solution to the

PME with n = 7, α = 0.5
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Figure 8.7: Velocity of the nodes of the numerical solution to the PME with

n = 7, α = 0.5
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Figure 8.8: Movement of the boundary of the PME with n = 7, α = 0.5

oscillations due to shocks forming within the domain rather than at the

boundaries, as with the PME. As mentioned in Chapter 7, we used smoothing

on v to supress the large oscillations, but by doing this we affected the shock

formations and therefore the estimate for the waiting time was not as well

approximated as for the PME.

Interestingly these oscillations in the velocity did not cause much disrup-

tion in u as can be seen in figure (8.9). Here we see similar results as with

the PME, with a profile redistribution during the waiting time.

The velocity shows that certain nodes in the fluid move in the opposite

direction. As can be seen in the high peaks, a shock forms within the domain,

rather than at the boundary. We then get a movement akin to an advection

equation, with the wave moving towards the boundary. The shock then

reaches the boundary, and then as with the PME, we have a movement of

the boundary.

Figure (8.11) shows the movement of the right hand boundary. Using

these values of α and n gave us a chance to compare results with Blowey, King
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and Langdons [6] results. The results gave a profile of u at a certain time-

step. There was a slight difference in the results as the waiting time computed

with the moving finite element method was slightly longer. This is most likely

due to a smoothing of the shock, and hence the boundary in the solution we

computed had not moved quite as far as what their numerical results showed

This shall be discussed in more detail in Chapter 10, as there are changes to

the methods used that could improve the results. Unfortunately due to time

restrictions, these could not be implemented for this dissertation.
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Figure 8.9: Numerical solution of the TFE with n = 1, α = 4.5

We shall now very briefly comment on the final results which show more

clearly what is occurring in the velocity during the waiting time.

As the shock begins to form it moves towards the boundary. It is diffused

and clearly, the effects of the smoothing cause a few irregularities as it reaches

the boundary. Figure (8.14) shows the waiting time as being approximately

0.285.
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Figure 8.10: Velocity of the nodes of the numerical solution to the TFE with

n = 1, α = 4.5
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Figure 8.11: Movement of the boundary of the TFE with plot n = 1, α = 4.5
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Figure 8.12: Numerical solution to the TFE with plot n = 1, α = 6.5
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Figure 8.13: Velocity of the nodes of the numerical solution to the TFE with

plot n = 1, α = 6.5
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Figure 8.14: Movement of the boundary of the TFE with plot n = 1, α = 6.5
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In this chapter we have numerical solutions of both the PME and the

TFE when the waiting time occurs. We have confirmed analytical results

such as shock formation and waiting time occurrence and we have found

that during the waiting time, the velocity acts similarly to the advection-

diffusion equation that we numerically solved in Chapter 6. Importantly we

also saw the movement of the boundary after the waiting time.

We shall now move on to the Richards’ equation which models the flow of

DNAPLs through soil, this requires a minor adjustment to the moving finite

element method. Additionally, the analytical methods that we have used in

this dissertation will be applied to this equation.
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Chapter 9

Application: Richards’

Equation

Non-linear diffusion was studied extensively by physicists modelling water

flow in soils in the first half of the 20th century and one of the most important

equations for soil moisture movement is the Richards’ equation. It was based

on work by Buckingham, and Gardner and Windtsoe [7] and deals with

capillary pressure, but was left to Richards to formally express the nonlinear

PDE to model this behaviour. It is derived from combining Darcy’s law with

the continuity equation to model unsaturated, non-steady state flow of water

in the vertical direction.

The Richards’ equation is a second order non linear diffusion equation

and in that sense is similar to the PME.

st = [D(s)sx + κ(s)ρg]z (9.1)

where s(z, t) is the saturation of the wetting phase, κ(s) is the relative per-

meability to the wetting phase, and D(s), the diffusion constant is of the

form
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D(s) = −κ(s)
dψ

dz
(s)

where ψ us the capillary pressure. g is gravity which is acting downwards

(negative z direction) and ρ is the density of the fluid being modelled. We

assume that the specific water capacity of the soil is constant throughout the

domain.

We shall take the same steps to non-dimensionalise equation (9.1), as in

Grindrod’s paper [9] and we arrive to the equation which shall be the basis

of the remainder of this chapter. He assumed that ψ(s) ∝ s−1 and κ(s) ∝ sk,

for some k > 0. Rescaling z and t we find

st = [D(s)sz + κ(s)]z (9.2)

with D(s) = sk−2 and κ(s) = sk.

Setting k = 2, we have the Burgers equation. However, we shall concen-

trate on k = 3 as this is a good model for Creosote contamination in soil and

there is an exact similarity solution involving Airey functions [9].

The aim of numerically solving this equation is to model the flow of

DNAPLs in soil after infiltration. They can cause serious environmental

problems and may contribute to groundwater contamination if they reach

the water table.

The equation is very similar to the PME, and does not require a large

change to the moving mesh method algorithm that was used in Chapter 7.

We shall examine the initial conditions as we did in Chapter 5 to obtain

estimates of the values of the parameter α required for the waiting time

phenomenon to occur.

But first, using the conservation of mass principle, we derive the velocity

as in Chapter 4.
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v = −
(
sz + s2

)
(9.3)

and at the boundary the velocity is

vB = − lim
s→0

(
sz + s2

)
(9.4)

9.1 Boundary behaviour at t = 0

Since the Richards’ equation is of the same order as the PME, we expect the

same general behaviour, a waiting time to exist for certain initial conditions.

The initial condition that shall be used is defined as follows

s(z, 0) =

 (1− z2)
α

if z ∈ [−1, 1];

0 if |z| > 1.
(9.5)

Analysing the initial conditions using the same method as in chapter 5,

we substitute in (9.5) and its derivative into (9.4).

So,

vB = − lim
s→0

(
sz + s2

)
= lim

z→zB

(
2αz

(
1− z2

)α−1 −
(
1− z2

)2α)
We shall look at both the left and right boundary, denoting v+

B be the

boundary velocity for zB = 1, and v−B be the boundary velocity for zB = −1.

As can be seen we have three cases,

• if α > 1, v+
B = 0, v−B = 0,

• if α = 1, v+
B = 2, v−B = −2,

• if 0 < α < 1, v+
B → +∞ as zB → 1, v−B → −∞ as zB → −1.

See figure (9.1) and (9.2) for a plot of these results.

To observe the waiting time phenomenon using equation (9.5), we shall

solve equation (9.2) for α > 1. To solve this numerically we must slightly

alter the method derived in Chapter 7.
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Figure 9.1: Shows vB as it tends to v−B = −1
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9.2 Finite element formulation

We shall implement the same method as in chapter 7, but since equation

(9.2) is different from the PME, as seen in the previous section, the velocity

is also of a different form. These differences actually only alter the finite

element method when finding ψ, so to avoid repetition, only this shall be

separately derived.

We propose a weak conservation principle with w being a test function

advected with velocity v and c is a constant determined by the initial condi-

tions. w is continuous and once differentiable.

∫ zN

z0

wisdz = c (9.6)

where c = constant. As previously, the partition of unity condition is required

for equation (9.6) to conserve mass

N∑
j=0

wj = 1

Differentiating (9.6) w.r.t. t leads to

∫ zi+1(t)

zi−1(t)

wi
∂

∂z

(
ssz + s3 + vs

)
dz = 0

We assume that the test function will take the form of linear hat functions

φi as in Chapter 7.

So replacing w with φi and as before, we integrate by parts to get

φi
[
ssz + s3 + vs

] ∣∣∣∣zi+1(t)

zi−1(t)

−
∫ zi+1(t)

zi−1(t)

∂φi
∂z

[
ssz + s3

]
dz = 0
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The first term on the left vanishes since either φi = 0 or s = 0 at the two

boundaries, so

∫ zi+1(t)

zi−1(t)

s
∂φi
∂z

vdz = −
∫ zi+1(t)

zi−1(t)

∂φi
∂z

(
ssx + s3

)
dz

=

∫ zi+1(t)

zi−1(t)

s
∂φi
∂z

∂s

∂z
dz +

∫ zi+1(t)

zi−1(t)

∂φi
∂z

s3dz (9.7)

Again we define the velocity potential and its finite element approxima-

tion and substitute this into (9.7)

∫ zi+1(t)

zi−1(t)

s
∂φi
∂z

∂φj
∂z

ψjdz = −
∫ zi+1(t)

zi−1(t)

s
∂φi
∂z

∂φj
∂z

sjdz +

∫ zi+1(t)

zi−1(t)

∂φi
∂z

φ3
js

3
jdz (9.8)

Now we have a symmetric matrix on the left hand side of (9.8) , resulting

in the system

K(s)ψ = −K(s)s+Bs3

where B is defined as

B =



0 1
4

0 0 . . . 0

−1
4

0 1
4

0 . . .
...

0 −1
4

0 1
4

0
...

...
. . . . . . . . . . . .

...
...

. . . 0 −1
4

0 1
4

0 . . . . . . 0 −1
4

0



Once we have ψ we continue as we did for the PME, solving for v and

then updating the mesh positions. Finally we solve for s.
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9.3 Numerical Results

The numerical results presented here are not compared to any known solu-

tions. The solutions that Grindrod [9] constructed using Airey’s functions,

were not available and this will be commented on in Chapter 10. The pro-

gram was known to be stable for the PME and was converging to known

solutions without waiting times [2]. We conjecture that the solution will

converge to some solution even though there are no known solutions of (9.2)

that have the intitial conditions (9.5).

Initially when running the program, the velocity began to oscillate just

before the shocks were forming at the boundaries. This was remedied using

a smoothing function discussed in chapter 7. Minor oscillations are still

apparent and this calls for further study of solving (9.2) using the moving

mesh method. This shall be discussed more in the final chapter.

The additional s3 term in (9.2) clearly affects the density distribution.

Initially the density profile is symmetrical along the y-axis at z = 0, but

after a few time-steps, the additional term moves the centre of mass to the

left. This is not seen in the numerical solutions of the PME, where the

solution stays symmetrical ∀t and thus the centre of mass is always in the

centre. Fig. (6.2)

This behaviour can also be observed in the velocity plot. The velocities

are much higher in the domain to the left of the centre of gravity, compared

with to the right. Also in the velocity plot, we can clearly see the two shocks

forming just before the waiting time ends. The shocks form at different times

to each other due to the differing velocities being applied to them. Clearly,

the larger velocities at the left of the centre of mass are causing a shock to

appear in a shorter time interval, hence a smaller waiting time compared

with the boundary at z = 1.

As an example of an application of this numerical solution, we shall define
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Figure 9.3: Numerical solution of s and the corresponding mesh velocites v

showing two seperate shocks forming at different times, α = 3.0

the water table at z = −3. The solution can predict the time at which the

moving liquid (DNAPL) reaches the water table and interacts with the water,

therby contaminating it.

Figure (9.4) shows the solution for α = 3.0 up until the boundary reaches

z = −3. It reaches this value at t = 6.55. Physically, the contact angle of the

initial data is influenced by α, and hence a lower value would cause the fluid

to reach the water table at a quicker rate. Hence, as shown for the PME, the

initial profile of s affects the waiting time.

This investigation has been limited to certain values of n and α and does

not use initial conditions derived from analytical solutions. It is hence limited

in this sense but the application is interesting enough alone for the further

study of this problem.
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Figure 9.4: Numerical solution of s as it approaches the water table set at

z = −3 α = 3.0
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Chapter 10

Conclusions and Further Work

10.1 Summary

This dissertation has illustrated the various techniques for finding out prop-

erties of the waiting time of the solutions of parabolic PDES, specifically the

PME and the TFE. The motivation for studying the waiting times began

with B. Bhatachyras dissertation [2] where she briefly commented on waiting

times after implementing a moving mesh method on the 4th and 6th order

non-linear diffusion equations based on a conservation of mass principle, and

also the subsequent derivation of the advection-diffusion equation for the ve-

locity. This final chapter serves as a summary of the work presented and

suggests possible future avenues of study.

We began by defining the PME, TFE and the Richards’ equation and

explains the possible applications to each as a motivation for further study.

We continue with a brief description of the literature that is available for

them and mention some key analytical and numerical results. In Chapter

3 we begin to focus on the main topic of the dissertation. We examine

the literature currently available on the waiting time phenomenon, looking

again at the analytical and numerical results presented and also mention a
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few physical processes that these equations can be applied to. We derive a

velocity which satisfies the conservation principle within each interval in the

domain in Chapter 4. This derivation is fundamental for the remainder of the

dissertation. In Chapter 5 we do an analysis on specific initial data for both

the 2nd and 4th order equations, and find the conditions that predict that

a waiting time will occur based on the initial velocity at the boundary. We

then derive an advection-diffusion equation for v using the velocity equation

from Chapter 4. Using the method of characteristics we show that a shock

will appear, and then we numerically solve this equation using a fixed grid

finite difference method. We find that this numerical solution is only useful

during the waiting time and therefore it doesn’t give us any information on

what happens to the numerical solution once the boundary begins to move.

In Chapter 7 we use the conservation principle from Chapter 4 and we

derive a moving mesh method and construct a finite element formulation for

its solutions. Chapter 8 presented the numerical results from the previous

chapter and we explained what was happening for each separate solution. We

found that we had very similar behaviour to the advection-diffusion velocity

equation and once the boundary began to move, the velocity became nearly

linear across the domain and tended to zero as t → +∞, ∀x. In Chapter 9

we extended the analytical and numerical methods to the Richards’ equation

and found that the numerical solution, as expected, was non-symetrical, and

this gave us a separate waiting time for each boundary. In general though,

we observed similar behaviour compared with the PME.

10.2 Further Work

In this section we shall look at some of the possible extensions to what was

investigated in this dissertation and also consider how certains parts could
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be improved on.

10.2.1 Advection-Diffusion velocity equation for the

TFE

As mentioned in Chapter 6, the advection-diffusion equation derived for the

velocity had high order derivatives which would have been difficult to solve

numerically. This was therefore not looked at due to time constrictions. If

a numerical solution were to be obtained, an approximation to the waiting

time could be found and we may also see more clearly what happens to the

velocity just before the final shock forms at the boundary.

10.2.2 Improving the stability of the TFE finite ele-

ment method

At the end of Chapter 7 we briefly discussed the use of an upwind finite

element method. We were still able to see the shocks forming, and the

movement towards the boundary, but the oscillations were not giving us as

clear a picture as was wanted. This needs to be investigated further due

to the possibility of computing a more stable numerical solution and an

improvement to the approximation of the waiting time.

10.2.3 Richards’ Equation

Richards’ equation was only touched upon in chapter 9 for the case k = 3.

It gave a new insight into the waiting time phenomenon as the two bound-

aries had differing behaviour due to the weighting factor of the extra term

in the Richards equation, compared with the PME, causing it to be non-

symmetrical in the line x = 0.
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We also encountered localised oscillations near the boundary as the shock

formed, and again as for the TFE, we used the smoothing method to supress

these to give a clearer understanding of what was occuring. The smoothing

does affect the overall solution though, and with some adjustment to the com-

putational adaptation of the moving finite element method, the smoothing

could be eliminated, thus giving a more accurate waiting time.

The use of initial conditions that have been derived from exact analytical

solutions would give a chance to compare the numerical solution to the exact

solution to see the accuracy of the method and wether it converges to the

exact solution or not.

The equation is used in soil science and would benefit further study due

to its important environmental applications in the flow of pollutants in con-

taminated soils.
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