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Abstract

In this report we study linear integral operators generated by a difference kernel.
The embedding results of Porter [8] for such operators are extended to Toeplitz
matrices which have analogous structure. This structure is preserved by a basic
collocation discretisation of such integral equations in the sense that it results in
a Toeplitz matrix equation. It follows that for this discretisation embedding can
be employed at the computational level.

This application of the theory is used in the numerical solution of a simple
two dimensional diffraction problem. When Green’s method is used to reduce
the dimension of the problem, embedding results can be applied to the resulting
one dimensional equation. Our computations show how a thorough study can be
completed numerically with embedding as a useful tool.
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Chapter 1

Background

In this chapter we review some developments which provide context and motivation
for this work. Our review is not comprehensive, we focus on the particular theory
and application pertinent here.

1.1 Embedding

In the Theory section of this report we are able to be quite precise about what we
mean by embedding. In a wider context embedding has come to mean that the
solution of a problem can be acquired directly from the solutions of other problems.
Although vague this implies a structural result for the mapping in question. A
class of equations which exhibit a lot of structure involve convolution operators
which lead directly to embedding results.

1.2 Convolution Equations

Gokhberg and Feldman [2] studied extensively convolution structure in a broad
sense, they derive results in both continuous and discrete systems. Here we are
concerned with integral operators generated by a difference kernel on a finite in-
terval which are referred to in [2] as truncated Wiener-Hopf integral operators.
They prove an embedding result for such operators which is suggested by an anal-
ogous result for Toeplitz matrices (or truncated discrete Winer-Hopf operators).
More extensive embedding results of Porter [8] for the same integral operators were
motivated by a particular application which we now describe.

1.3 Wave Diffraction

Many physical phenomena are described reasonably well by the scalar wave equa-
tion, for example surface waves on water, pressure waves in a fluid and electro-
magnetic waves. These correspond to increasing magnitudes of wave-number in



ratio to the dimensions of the geometry. One can take advantage of approxima-
tions that can be made for large wave-numbers (short wavelengths) which are well
established in the theory of electromagnetic wave propagation and referred to as
Fresnel (second-order) and Fraunhofer (first-order) analysis. The use of exact, or
near-field analysis, is necessary when the wave-number is smaller, like for water-
wave and acoustic scattering problems.

A fundamental problem in this area, which can be considered in 2D, is the
description of the diffracted field due to a plane wave incident on a thin barrier of
infinite extent in which there is a single gap. This problem has an exact solution
because the underlying boundary value problem is separable. However the solution
is expressed in terms of Mathieu functions, for example see Carr and Stelzriede [1],
which is unsatisfactory for computation because their evaluation is difficult. An
alternative computation is available by first reducing the problem using Green’s
method. This results in a one dimensional equation which involves an integral
operator generated by a difference kernel on a finite interval (the gap). In fact the
converse problem, diffraction around a finite thin straight barrier, can be reduced
in a similar fashion and results in an equation which involves the same operator.
These equations were shown to be useful for computation by Gilbert and Brampton
[6]. The application of embedding in these problems has been well established.

An early embedding result for the far-field pattern was given in the case of
the second problem by Lebedev and Polishchuk [4]. Further embedding results,
which relied on playing the problems off against each other, have been established
by Porter and Chu [7]. Embedding for the total field of the first problem in
isolation can now be verified as an instance of the more general embedding results
established by Porter [8] as a property of the integral operator with difference
kernel.

1.4 Recent Developments

In fact this 2D problem lends itself to interpretation as the surface of the ocean, so
numerical simulations would produce information useful in Engineering problems
such as the design of off-shore wind-farms, oil-rigs and coastal defences. Clearly
such an enterprise would require analysis of geometries more complex than the
single gap and its converse. This has motivated the study of various scattering
problems which have led to embedding results applicable to a wider class of equa-
tions which govern more complex diffracted fields. Biggs et al [11] study an infinite
thin straight barrier with several gaps and find embedding results for operators
with a difference kernel on a union of finite intervals. This work is paralleled by
Sakhnovich [9] who derives other embedding formula for such operators in a more
abstract setting. This theme is extended by Biggs and Porter when they consider
a perforated barrier with non-zero thickness [12] and two parallel thin perforated



barriers [13]. The class of equations for which embedding results are known to
apply are expanded by these papers, to those involving integral operators with a
matrix difference kernel and operators generated by sum-and-difference kernels.

1.5 Toeplitz Matrices

The embedding results considered in this report are connected to those of Sakhnovich
[9], which was shown by Porter in [8]. The results of Sakhnovich apply to inte-
gral operators however he also presents a discrete version applicable to Toeplitz
matrices which is attributed to A.L.Sakhnovich [3]. This result bears the same
relationship to the discrete case presented here as it does in the continuous case.

1.6 This Project

It can be beneficial to preserve structure when a continuous model is discretised
for computation. For example one is often able to determine salient information
about a solution, like symmetries or conserved quantities. We can place additional
demands on our numerical method to ensure such features remain during compu-
tation. This project has that theme. The structure in this case is very rich, and
as a result puts quite strict constraints on the discrete system.

In chapter 2, the theory section, we exhibit the structural components which
lead to the embedding formula of Porter [8]. These are given discrete analogues
so that we can derive an embedding result that applies to the analogous discrete
system.

Chapter 3 concerns itself with the formulation of an example problem. This is
the single gap diffraction problem and its converse which were mentioned earlier,
these problems are ideal for our purposes because the embedding results are very
well understood. The formulation is pretty standard, but the nature of this report
means that our exposition is thorough. At the end of the chapter we directly
apply the results of the theory section to the integral equation which governs the
diffracted field, we can thus give the embedding results specific to this problem.

In chapter 4 we detail the implementation of a very simple collocation method
for the numerical solution of the 1D integral equation which governs the diffracted
field. We can apply the results of the theory section to the discrete system which
results in a discrete embedding formula. For the purposes of comparison we also
implement a second method which is equally as simple as the first, but makes an
advantageous use of non-equal discrete intervals across the domain. This method
does not preserve embedding so we complement it with an approximate embedding
formula by discretising the continuous one. The performance of the methods is
compared using numerical error analysis so that conclusions can be drawn. Some



pictures of diffraction are included to illustrate this application of numerical meth-
ods.

Chapter 5 concludes the report and suggests avenues of investigation which it
has thrown up.



Chapter 2

Theory

This chapter establishes what we mean by convolution equations and embedding.
The development is abstract but we follow closely our motivational examples of
the integral equation with a difference kernel and the Toeplitz matrix equation.

Initially for convenience and later through necessity we assume the vector space
in which we work is over the field C.

2.1 The Generator of Convolutions

At the heart of our discussion is a definition which associates with each vector in
our space a linear transform on that space.

Definition.  If V is a linear space then we refer to T : V. — Hom(V,V) as a
Generator of Convolutions when, given any x,y € V and A\, u € C,

(i) T(\z + py) = XT'(z) + uT (y),
(ii) T(z)y =T (y)z,

(iir) T(T(x)y) = T(x)T (y)-

For example,

Lh=T()g = Wo)= [ @090 dt fighe Lo,

2. u=Thw = ui:Zvi_jwj, u,v,w € R",

7=0
3 h=T(flg = h) :/_00 f(z—1)g(t) dt, f.g.h € Ly(R) and



4. z=T(20)21 = 2z=2z21 2,20,21€C

generate convolutions on the indicated spaces.
Convolution is usually encountered as a binary operation defined on V, for
example here we would write

zoy=T(z)y.

In this context (i) and (74 ) are axioms of commutativity and associativity so that
V forms a commutative ring with respect to addition and convolution of vectors.
Note that the final axiom to get from commutative ring to field is invertibility
which we have illustrated by example 4.

Given T is non-standard we should explain our purpose in its introduction. We
define T" because it provides a natural way to explore the interaction of convolution
with its adjoint when V is a Hilbert space.

It turns out that Im(7") forms a commutative ring with respect to addition and
composition of linear transforms. This statement is entirely contained within the
definition of T" except for commutativity which is straightforward to verify. In fact
given (i7) it follows that (i) is equivalent to

(i) T(x)T(y) =T (y)T(z),

(730 ) = (4v) is trivial, (iv) = (i77) because for any z € V., T(T(z)y)z = T'(2)T(x)y
=T(z)T(z)y = T(x)T(y)z. This equivalence is useful in verifying that our exam-
ples fit the definition.

The examples given of 7" make it appear less pervasive than it actually is. In
finite dimensions one can solve T'(z) = K for T given x and suitable K. This
is achieved by choosing a basis set and writing T'(e;) = A;, the resulting linear
system consisting of the axioms for T together with Y z;4; = K. More general
existence and uniqueness results are not immediately obvious. However this does
point a direction for development which we do not pursue here.

2.2 Basic Embedding

The return we get for identifying convolution structure includes embedding formula
for the solutions of convolution type equations. Here we demonstrate the ideas
involved by giving some simple examples.

By solving the linear system A¢ = y we determine a vector in the inverse image
of y under A. We say that other solutions are embedded when we can use such
solutions to directly acquire vectors in the inverse image of vectors belonging to
a larger subset of V. Note that here we refer to A as of convolution type when
A=k—T(z)fork e Cand z € V.



1. Suppose that A and B are of convolution type, then we get a straightforward
embedding result from the fact that A and B commute. If A¢ = y it follows
that AB¢ = By so that B¢ is in the inverse image of By under A.

2. If y is such that T'(y) = 1 then A¢ = y implies AT (¢) = T(y) =1 so that A
is invertible and its inverse is given by T'(¢). Here we get the inverse image
of every vector in V.

3. If A=k —T(z) and ¢ is such that Ap = x then AT(p) =T(z) =k — A so
that A(1+7T(¢)) = k. If K # 0, A is invertible and its inverse is given by
(1 +T(4)).

In the next section the convolution structure is somewhat narrowed by a further
assumption whilst the type of equation considered is broadened.

2.3 The Adjoint of Convolution

If we suppose T is defined on a Hilbert space, we can consider T* : V —
Hom(V, V') which maps z to the adjoint of T'(x). This is a mild abuse of notation,
for although T is a linear transform, T™ is not the adjoint of T

It is straightforward to verify, through the definition, that

(v) T*(Ax+ py) = AT (z) + 5T*(y),
(vi) TH(T(x)y) =T"(x)T*(y).

T* does not generate convolutions on V. However noting that (vi) implies closure
under composition as well as commutativity (use (47) in (vi) ) we see that Im(T™)
forms a commutative ring. Although much structure is preserved in T, our next
assumption replenishes it fully.

From this point we assume there exists a self-adjoint, unitary conjugate linear
map (see appendix A), P, such that

PT*(z) = T(z)P

for all x € V. This is not true in general; however for examples 1 and 2 of section
2.1 it is easily verifiable that P defined by

l.g=Pf = g(r)=f(1-2) and
2. v=Pu = v, =TUp_;

satisfy the above. The following equivalence reveals how the convolution structure
returns to 7 when such a P exists.
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Theorem. IfT is injective and generates convolutions on V and if P is an invertible

conjugate linear map on V,
4
PT*(z) =T(z)P, Yz eV <+— Q(z)=T"Pz)=> Q generates

convolutions on V.
Proof.
=) Axioms (i) and (iv) are trivial, it remains to verify axiom (i) .
Qlz)y = T*(Pz)y
= P 'T(Pz)Py
= P~'T(Py)Pz
T* (Py)x
= Q)=

<) Assuming () is a generator of convolutions we can use (vi) to start the fol-
lowing string of implication

QY QP yz)z = QY (P 'Y)Q ()2 Vz,y,z€V

= T(PT*(y)z)z = T(y)T(Px)z

= T(2)PT*(y)x = T(2)T(y)Pz

= T(z)Hr = 0 Vz,z€V where H= PT*(y) — T(y)P
= T(Hz)z = 0

= T(Hr) = 0 VzeV

= H = 0 by assuming the injectivity of T'

=

PT*(y) = T(y)P VYyeV.

Our move now is in the direction developed by Porter in [8]. The motivation
was to find embedding formula for linear operators of the form

A=r—T() = T*(m).
Our previous examples are generalised in the following way,
1
Lh=Ag = ha)=rngle)~ [ flo =ttt on Ls(0.1),
0

where [(z) = f(z) and m(z) = f(—z), z € [0,1] and

n
2. u=Aw = u; = Kw; — g vi—jwj on R",
Jj=0

where [; = v;, i € {0,1...n}, my=0and m; =v_;,7 € {1,2...n}.

In this context our demand that P be self-adjoint and unitary means that P = P!
which enables us to write PA = A* P, this relation being critical in the following
theory.
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2.4 The Projection Property

The subset of V' to which our embedding method applies is defined as follows. If
there exists o € R so that X = o + T'(z) + T*(z) is the projection onto z, i.e.

X¢=(¢|z)x

for all ¢ € V, then we say that z has the projection property. It turns out that
we can find all such vectors for our core examples, although the arguments are
slightly lengthy.

1. Suppose that f has the projection property, then for all ¢ € Lo([0,1])

x 1 1
awm+Afw—wmw+/7wwwwﬁ=ﬂmﬂ¢mﬂmw

We first establish that f is continuous and o = 0. Choosing ¢ continuous and
not orthogonal to f and noting that f € Lo(]0,1]) we see the two indefinite
integrals, and hence the LHS, are continuous. This then implies the continu-
ity of f on the RHS. Now choose ¢ with a jump discontinuity in (0, 1), again
the indefinite integrals are continuous and we have also established that f is,
the only way to reconcile this with the discontinuity in ¢ is if o = 0. With
this information we can write the above equation as

/1 k(z,t)p(t)dt =0, 2 €[0,1] V¢ € Lo(]0,1]), where
0

by = L= J@I0), 1252120
T - a) - f@)f(1), 1>t>z>0.

This together with the continuity of f implies that & = 0 everywhere. Putting
k = 0 in the above, when ¢t = z we see that f(0) = f(0) = |f(=)|? for all
z € [0,1] which implies, for f # 0, that |f(z)|? = 1, z € [0,1]. Writing
y =z — t we can rearrange to find

fly+8)=f)fi), (y+1t) €l0,1].

This tells us that, on a restricted domain, f is a group homeomorphism
between R under addition and the unit circle in C under multiplication.
This is uniquely satisfied by the exponential map

flz)=e% z€[0,1]

to within some constant v € R.

12



2. If v has the projection property then for all ¢ € R”

k n n
Obk+ D k_jbi T Y Tj_kbj = vk Y biTj-
J=0 =k J=0

It is sufficient that this be true for the canonical basis so that choosing ¢ = ¢;
we find that v must satisfy

V] = UV, [ <E, (2.1)

o+ vy + Vg = Uy Vg, =k and (2.2)

Vi_f = UV, [ >k, (23)

for k € {0,1...n}. Clearly from 2.2 |vy|? = |v1]? = ... = |v,|? so that vy, =0

= v = 0. Pursuing non-trivial v we can assume v, # 0 for all k, hence
choosing | = 0 in 2.1 we can write vy = Dgvg which implies vg = 1 therefore
lvg|2 = |v1|? = ... = |v,|? = 1. This in fact fixes o because 2.2 now implies
0+ 1+4+1=1sothat o = —1. Choosing! =1in21and!=%k+11in 2.3
gives the recurrence vy = vjvg—; and vgy; = vivg which both imply that v
necessarily satisfies v, = U’f. In fact such a v is also sufficient to satisfy 2.1
and 2.2, which is easy to verify. Finally, v; can be any number with unit
magnitude, we choose v; = e /" where v € R is arbitrary. Thus we have
determined that
vi=e /M je{0,1...n}.

We can establish some elementary facts about vectors which have the projection
property. First we notice that X is self-adjoint so, from the end of the last section,
it commutes with P and hence X and P share eigenvectors. Clearly then, because
x is the sole eigenvector of X, it is also an eigenvector of P. Appendix A documents
properties of such eigenvectors which we shall use freely in the following. Note that
in both our examples we have contrived to write the projection type vectors so
that their eigenvalue under P is 7.

If v and w have the projection property then under suitable conditions we can
find « € C so that

14+ a(oc+T(v))]w=wv. (2.4)

To see this suppose that v and w have distinct eigenvalues under P of A\ and p
respectively. The following manipulation then hinges on the fact that T*(v)w =

13



T*(Pw)Pv = \pT™* (w)v.

(1=XB) (0 +TW)w = (o+T(v)+T*w)w - Nio +T(v)w - T* (v)w
(w|v)v —oXiw — A\aT (w)v — T*(Pw)Pv
= (w]v)v = Na(o + T(w) + T*(w))v + o Af(v — w)
(wv)yo—=Ap(v|w)w+ oXa(v — w)

(

(wl|v) +oAm)(v—w).

Assuming (v |w) 4+ oAz # 0 we get the desired result finding that

1 -\
(w|v)+oXu

o =

Operating on equation 2.4 with P we get the parallel result
[l +@(o + T (v)]Jw = v. (2.5)

These results are applicable directly in the context of example 1 in section 2.2.
However, it turns out these operators almost commute with the more general
convolution type operator; in fact the commutator is of finite rank. It is this
which enables us to construct embedding formula for the more general equation.

2.5 The Embedding Formula of Porter (1991)

Let us refer to the subset of V' with the projection property under a common ¢ as
S and suppose our linear operator A = k — T'(I) — T*(m) is injective. Our main
embedding result is the construction of an operator which maps the inverse image
under A of any two distinct vectors in S to the inverse image of a third.

To this end we suppose wp, w; and v € S N Im(A) with distinct eigenvalues
under P of pg, 1 and A. We construct Vj and V; so that Vywg = Viw; = v as we
did at the end of the previous section (equation 2.4); we write Vy = 1+ ag(0+T (v))
and Vi =1+ (0 + T'(v)).

Consider the commutator of V with A,

VoA — AVy = T*(m)Vy — VoT™*(m)
ag(T*(m)T (v) — T (v)T* (m))
= ap(T*(m)[o +T(v) + T*(v)] — [0 + T(v) + T*(v)]T*(m)),
which is the commutator of T™*(m) with a projection operator and hence of finite

rank as mentioned earlier. Suppose we label the solutions such that Ay = wy,
A1y = wy and A¢ = v, using the above result we see that

(VoA — AVo)tho = ol tho | v )T (m)v — ao(tho | T(m)v Y.

14



Now, Vo Ay = Vowy = v and collecting together multiples of v = A¢ in the above
and for convenience writing the constant as ¢y we have that

A(cod — Vorho) = ao( o | v )T™ (m)v.

Notice here that if (4o |v) = 0 we arrive straightaway at an embedding result.
More generally we can use the parallel result

Alcrd — Vi) = aq (1 |v)T™ (m)v,

to eliminate T*(m)v. Doing this and again collecting multiples of ¢, then using
the injectivity of A we find

cp = ar (P |v) Voo — ao( o | v ) Vi

for some ¢ € C. This is our main result. We have left ¢ in the formula although
it is found quite easily by the less direct route of taking the inner product of this
with wy or wy, so that

(¢ lwo) =ar(P|v){(o| Vo wo) — (o |v) (| Vitwo).

It is easy to verify that Vj"wy = Azgv and @V, wy = (g — @1)wp + @1 A\ and
on substitution this reveals

c{(plwo) = (a1 — ap)( o | v ) (1| wo).

Then (¢ |wo) = po{¢| PAo) = po( ¢ | A*Prpo ) = po(v| Pipo ) = po(tpo | Pv) =
Mio{ 1o | v) so that assuming v is such that (4 |v) # 0 (or {3 |v) # 0) we have
found

¢ = Ao th1 |wo ) (a1 — ag) = Ay (bo | wr ) (1 — ap).

The second result can be deduced directly because (1 |wg) = pof; (1o | w1 )
using the same reasoning as above. We can now write the embedding formula in
full, as

Mo (1 [wo ) (1 — ) = a1 (b1 | v)Vorho — ao(tbo | v) V1)1 (2.6)

As a corollary to the main result, we also give an embedding formula for the
inner products between vectors in S and their inverse image under A. We suppose
additionally that Ao = wo € S and take the inner product of 2.6 with ws. By
reasoning exactly as for the evaluation of ¢ we find that

ag (a1 — ag)fo (1 | wo ){ 2 |v)

fi )
+ ag(ag — an)p (P2 |wr ) (%o |v) (2.7)
+  ai(ag — a2)fa(to | w2 ) (1 |v) =0.

(

Equations 2.6 and 2.7 enable us to find ¢ and (¢ | wa ) given 1)y and v such that
al—ao#Oand (¢0|w1>7€0

15



2.6 Remarks

To summarise, we have introduced convolution as a set of commutative linear
transforms in one-to-one correspondence with an underlying inner product space,
V. Our main supposition is the existence of P, a conjugate linear similarity trans-
form between each convolution map and its adjoint. The idea of a generalised
convolution operator, A, being a linear combination of the identity, a convolution
map and the adjoint of a convolution map then becomes our focus. We define a
set S C V of vectors with the projection property and suppose V is such that
S is non-empty. Finally we use convolution structure and projection property to
construct an embedding formula for vectors in the inverse image of S under A.

It should be noted that the inverse image of vectors in the span of S are also
embedded in the same sense, the calculation being a little more cumbersome.

16



Chapter 3

A Diffraction Problem

Here we study a simple two-dimensional diffraction problem which we follow from
an elementary beginning through to computation. To set the scene, we consider
u(t) : R2 — R which satisfies the wave equation

d%u

2, _

We separate variables choosing the separation constant —k%, k € R, and writing
uk = ¢(z,y)7(t); ¢ and 7 then satisfy

(V24+k2) =0 and (25 +k>)7=0.

It follows that 7 = Ay, cos(kt) + By, sin(kt) for some Ay,By.

We refer to up as a quasi steady-state solution; it is everywhere periodic in
time with fundamental period w given by kw = 27w. A more general initial value
problem can be solved by integrating such solutions over k. This is not our aim
here however, the extra layer demonstrating nothing further about embedding as
well as being unnecessary for a myriad of interesting problems (i.e. those which
are quasi steady-state by nature).

3.1 The Dual Scattering Geometries

We consider the spatial part of the diffracted field due to plane waves incident on
two simple geometries. Our barriers are thin, straight and hard, in the first case
of finite extent, in the second case of infinite extent with a finite gap. Figure 3.1
establishes the details. In the diagrams, I is an open interval in X (the z-axis)
centred on the origin, ¢; is the incident plane wave and ¢, its reflection through
X. ¢y and ¢, are the diffracted fields in the finite barrier and gap geometries. We
have written the solution, ¢, in each case as the sum of the diffracted field and the

known plane-wave solution when I = ().

17



bi bi

b= ¢+ o5 b =i+ dr + @y

1] T I

Figure 3.1: The complementary geometries.

3.2 The Solution in the Far-Field

In the far-field, I looks arbitrarily small. This gives physical plausibility to the
important demand we place on the diffracted field, that it satisfy the Sommerfeld

radiation condition,

\/F(% —ik) ¢rg — 0 as r— oo.

Solutions of the Helmholtz equation in two dimensions which satisfy this condition
are travelling toward the far-field and decaying like cylindrical waves (i.e. they look
as if they originate from a point source). Such solutions are also unique which is
a fact with immediate consequence for our problems.

It turns out that ¢, and ¢4 are anti-symmetric through X. Although this is not
obvious it reduces the problem so is introduced early for the sake of simplicity. It
is straightforward to verify that the gradient of either diffracted field is continuous
everywhere through X. If we then write it as the sum of odd and even parts, both
of which must satisfy the Helmholtz equation (because the operator (V2 + k2)
conserves such symmetry), we notice the even part has zero derivative everywhere
through X. But the function which is everywhere zero also has zero derivative
through X, satisfies the Helmholtz equation and Sommerfeld radiation condition,
by the uniqueness of this solution we see that the even part of either diffracted
field is zero.

3.3 The Solution Close to a Barrier Edge

It is important later that we understand the behaviour of the diffracted field as we
approach a barrier edge. Basic information is accessible to us by finding solutions
of the Helmholtz equation separated in polar co-ordinates centred on the endpoint
of a barrier in the limit r — 0. Choosing the separation constant (%, [ € R, and
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writing ¢; = p(r)o(0), p and o satisfy

26—2+ g—ir(k)?—lz =0 and a—2+l2 =0
Doz Tl TN p=7 06° 7=

Supposing the barrier lies along the line § = 0 we require that o'(0) = o'(27) =0
which leads to the constraint o = cos(l6), [ € {0, %, 1, % ...}. The equation for p is
Bessel’s equation in the variable kr; for physically plausible solutions we demand
that p remain bounded for all 7 > 0. This is violated by the Neumann functions

so that p is the Bessel function of order [ and we can conclude

¢ = AiJi(kr)cos(10), 1€ {0,1,1,2...},

from which it follows that

r~0 = ¢ =DBkr)cos(l0) +0('""?), 1€{0,3,1,3..}

by using the expansion of .J; for small arguments (e.g. from [10]).

These are a subset of the harmonic functions (solutions of the equation of
Laplace) in two dimensions. We have determined that the local behaviour of ¢
lies in the span of these functions and we note now a consequence of this which is
important to us because it informs our method of computation. Specifically the
gradient of ¢ 1 becomes unbounded as » — 0 so that for A 1 # 0 the gradient of
¢ is singular at » = 0. It is straightforward to confirm that the strength of the
singularity in the gradient of ¢ 1 past the barrier edge is characterised by

Op1 1
2
dy N

and in fact for other directions the strength is the same.

y=0,2—0

3.4 The Elliptic Partial Differential Equations

By the symmetry of the diffracted field established in section 3.2, we can consider
the upper half-plane, 2, alone. Demanding that ¢ have zero derivative normal to
the barrier and be continuous elsewhere we can write BVPs for the diffracted field
in the two geometries as follows.

(VZ+k*) ¢y = 0 inQ (VZ4+k*) ¢, = 0 inQ
\/F(a%—ik)qﬁf = 0 asr— \/F(a%—ik)qﬁg — 0 asr— o
¢f = 0 on X\[I] ¢pg+¢i = 0 onl
& (¢r+d) = 0 on [I] 2¢, = 0 on X\I

It is worth the comment that ¢;, the incident wave which is the source of the
diffracted field, appears only in the conditions on the finite interval in both the
BVPs.
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3.5 Reduction by Green’s Method

We can establish an integral representation of the diffracted field using Green'’s
method, for which we need a function GGy which satisfies

(V2+k2)G’0 = —0(x —xz0)0(y —yo) in £,
VR (4 —ik)Gy — 0 as R— oo,

where R? = (z — 29)? 4 (y — yo)?. Tt turns out that the first-kind Hankel function
of order zero has the required properties and therefore

1
Go(R) = ZHSI) (kR).
G is not unique in satisfying the above: if R2 = (z — z0)2 + (y +y0)? then we can
define

G = GU(R)+G0(R) and

~ ~

G = Go(R) - Go(R),

which share the required properties with Gy but are respectively symmetric and
antisymmetric through X. We also note here the symmetry relations

oG _ o6 oG _ oo
Jy oy’ Jy oo’

which are useful later. We aim to find an integral representation of the diffracted
field with integration being over the finite interval I and this can be achieved in
the complementary geometries with the converse choices G and G.

At the heart of Green’s method we substitute G and ¢5 into Green’s second
identity to generate the integral representation. That is

5 0G 04y
24 2 _ — =L
/Qqsfv G — GV2¢; dx mqsf - o
oG ,0b¢ .
= — = - — —G——— dz in Q.
¢ /X oy dy

The LHS follows from the delta-function property of G. There is no contribution
to the RHS integral from the boundary at infinity because both G and ¢y satisty
the Sommerfeld radiation condition, so the domain of integration becomes X on
which % = —3% . The representation further reduces because we chose G which
is anti-symmetric and hence zero on X so the second term in the RHS integral
does not contribute, then from the BVP we know that ¢y = 0 on X\[I] so that

we can restrict the domain to I, that is

oG
= — dx in Q,
br /I¢f 3y
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which is our desired integral representation of ¢;. Using G and ¢, in Green’s
second identity we find by similar reasoning that

/G3¢g dr in Q.

Of course, we do not know ¢; or %" on I; in fact we have reduced the total

problem to one of finding these.
Note that the analysis of section 3.3 reveals its significance, informing us that
% is potentially singular close to the barrier edge which here means the endpoints

of I.

3.6 The Reduced Equations

Let us defer ¢, for the moment; now we know ¢, on I from the BVP and the
idea in this section is to take the limit of the integral representation of ¢, as we
approach I and substitute its value there. This yields an integral equation for d)"
on I which we now denote by v to reflect its new found status at the centre of our

problem. The integral equation for v is

ngZ-:/Gvdw on I. (3.1)

The route to an equation for ¢ on I is not so direct, the above procedure being

¢f on I which does not make

unproductive essentially because what we know is
an appearance in our integral representation of ¢;. Bearing this in mind we take

the yg derivative of it and use the symmetry properties of G and G so that we can

write 5 o
G
ﬁ:/—q)f— dz on Q.
Yo I Y3
In the spirit of writing a one-dimensional equation we notice that g—; G= —(88—; +
0 0

k*)G when (z,y) € X and (zo,10) € . Making this substitution, taking the
differential operator outside the integral then taking the limit onto I we find that

;i 0? 9
— = 1. 2
o (6360 +k ) /G’l/) dr on (3.2)

We have given % its value on I and changed notation from ¢, to 4 on I which

like v is at our centre of focus. Boundary conditions for this equation can be found
from the BVP, by the continuity of ¢; along X we require that ¢» = 0 at the
endpoints of [I].

At this stage it is convenient to condense our notation and specify more pre-
cisely the incident plane wave. We suppose it arrives from a direction which makes
an angle « € [0, 7] with the z-axis, i.e.

bi = —ik(z cos a+ysin a)
i =€ .
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We define

f ($) _ efikmcosa
() =
which is the incident wave on I so that equations 3.1 and 3.2 are now written as

Kuvg = fa (3.3)
(D? +k?) K o = iksinaf,. (3.4)

The subscripts on % and v indicate their dependence on o, D = d/dz and K is
the linear integral operator defined on I by the kernel

k(w,w0) = S Hy (kla - o),

where we have used the fact that R = R = |z — | when (z,y) and (zo,y0) € I.
We note here that the uniqueness of the diffracted field implies the injectivity of
the operator K.

We now verify an elementary symmetry property of the solutions of these
equations. Consider U, the reflection in the line z = 0 defined so that g =U f =
g(z) = f(—x). Clearly the Helmholtz operator as well as our geometry is invariant
under U so we can suppose that UK = KU, which is straightforward to confirm.
Noting that U f, = fr—o and sin(m — ) = sina it follows from equations 3.3 and
3.4 that

Uvgy =vr o and Uty = Yr_q. (3.5)

So, we have established an integral equation for v, and an integro-differential
equation for 1,. The integral operator involved is of convolution type and it turns
out, using the above symmetry, that solving for a particular angle of incident wave
we can find embedded solutions for other angles. Along the embedding theme we
also establish a link which enables us to find 1, from solutions to the v, equation.
Before doing this we introduce a practical definition to characterise the scattered
wave in the far-field.

3.7 The Far-Field Diffraction Coefficient

If we take the view from the far-field the scatterer looks like a point source radiating
cylindrical waves, but with amplitude dependent on the incident angle o and
observation angle, §. We refer to this angular variation of amplitude as the far-field
diffraction coefficient. We find an expression for it by looking for the component of
the diffracted field which falls off most gradually with distance from the scatterer.
This involves a large argument asymptotic expansion of our integral representation
of the diffracted field.
Taking polar co-ordinates in €2 and cartesian in the integration domain we can

write

R? = 724 2% +y? —2r(zcos + ysinb)

R = 12422 4+4? — 2r(zcosf — ysinb).
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Asymptotically when 7 is much greater than /z2 + y2 ~ 1

R = r—zcosf—ysind+O(r=)
r~00 =~ )
R = r—zcosf+ysinf+O(r ).

The asymptotic expansion of H(gl) for large arguments (e.g. from [10]) leads di-

rectly to
1

R~oo = Go(R) = ———uePB+D L O(R3),
2V2rkR
We are now in a position to expand G and %—f asymptotically for r ~ co and hence
derive the far-field approximations to ¢ and ¢, sparing the reader the details we

find

L i3y [ / —ikz cos 0 } _3
= e +) <4k sinf e"hreost g b L O(r~2
o = T Ve Ve )
— = ilkr=2T) / —ikx cos 0 } _3
- ¢ ¢ Vo € dz » 4+ O(r 2).
%o V2rkr [ (r=2)

The curly braces separate out the angular dependent part of the field which we
now define as the far-field diffraction coefficients F' and I' corresponding to ¢; and
¢g. In terms of the Lo(/) inner product,

(e, 0) = (va| frzs) and F(a,0) =iksin0( o | fr_o)-

The symmetry property established in the previous section is also pertinent
here. Consider U again: this operator is clearly unitary so following on from
relations 3.5 we see that

MNa,0) =T (r—a,m—0) and F(a,0)=F(r—a,m—80).

3.8 The Dual Problems Linked

Here we give an algebraic equation relating ¥, to vy, vg and v,. We start by
establishing a property of K which we can state more generally for a linear integral
operator generated by a kernel of the form k(z,t) = s(z —t). We consider the
effect of differentiating K ¢ where ¢ € C'(I) is arbitrary. Suppose, without loss of

generality, I = [—1, 1] then we can manipulate as follows by a change of integration
variable,

d 1 d r+1

— — )ty dt = — —q)d

vl BRCEE0 i |, s@o ) dg

z+1

= [s(q)¢(z—q)]2F + / s(q)¢(z — q) dg
r—1
1

= s(z+1)p(=1) —s(z — 1)p(1) + / s(z —t)¢'(t) dt.

-1
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If ¢ is zero at the endpoints of the domain this implies that
DK¢ = KDg¢.

By factoring the differential operator in the 1), equation (equation 3.4) we can
commute one factor through K by using the above property which is valid because
1o is zero at the endpoints of I, and we find

(D +ik)K(D — ik)tpo = iksinaf,.

It is worth note that this manipulation is the first step in a subtle introduction of

the boundary conditions on 1. We can use the integrating factor e=%? which we

write here as fy, to invert the leftmost differential operator resulting in

K(D - ik)?/)a = COt(%)(fa - CafO)

where ¢, € C is unknown. From the injectivity of K, the substitution of Kv, for
fo and Kwvg for fy leads directly to

(D —ik)ho = cot(§)(va — cavo)- (3.6)
The alternative choice of differential factors leads to the parallel equation
(D +ik)po = tan(5)(davr — va), (3.7)

where again d, € C is unknown. Now, we can eliminate D1, between these to get
the desired algebraic relation. Before doing this though, we pin down ¢, and d,
by the second subtle use of our boundary conditions. Assuming 1, is zero at the
endpoints of [ it is straightforward to establish that

((D iik)¢o¢ | f?r—9> = <¢a | (D* q:ik)fﬂ'—0>
— k(o504 1) (| fr o) (38)

which is equal to zero at § = w,0. Hence by taking the inner product of equation
3.6 with fy and equation 3.7 with f, we find

(va —cavo| fo) = 0 and
(dovr —vo | fr) = 0.

Proceeding with the elimination of D1, between equations 3.6 and 3.7 then sub-
stituting for ¢, and d, using these relations we arrive at the main result of this
section, namely,

ik sin o vg | fo Yha = c0s*(%)(va | fo )vo + sin®($){(va | fx )vx — (vo | fo )va-
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A similar result holds for the far-field diffraction coefficient F'(«, ). Taking
the inner product of equation 3.6 with f,;_y and using relation 3.8 we find

sina(cos @ — 1)F(a,0) = sinf(1 + cos a)(T'(a, 0) — ¢ I'(0,0)), (3.9)

an algebraic equation for F'(a,0) in terms of I'(«,0), I'(0,6) and ¢,. Clearly we
might have started from equation 3.7 and in so doing found a parallel relation to
this involving d,. Between these we can eliminate I'(«, #) and on substitution for
cq and d,, it turns out that

2(cos a4 cos O)T'(0, 7) F(«, 0) = sinasin§(T' (e, m)T'(, 0) — T'(a, 0)T(0, 9)).

This relation has a deeper embedding property in that we get F(«,#) in terms
of T' for observation or incidence angles of 0 and 7 alone. In fact once F(«,0)
has been established, 3.9 can then be used to calculate I'(«, #) which leads to the
embedding result for I'. This can be decoupled from the equation for 1, as we
show in the next section.

3.9 Embedding

We identify here the structural components which lead to embedding. The princi-
pal difference between this problem and example 1 of the theory section is that the
interval, I, is taken here to be centred on the origin; in fact without losing general-
ity we can choose I = (—1, 1), I has been non-dimensionalised by the wave-number
k.

A problem, which turns out to be benign, is that v, € L2([—1,1]) due to its
singular nature. From the analysis of section 3.3 we know that V1 — z2 v, like
¢g on I, is a continuous function. This enables us to work around the issue by
considering a larger space, E, which contains Lo, defined as the set of functions
on [—1,1] for which all pairs f, g € E satisfy

1
/1 V1—22 f(x)g(z) dz < oo.

We continue to understand inner product as that defined on Ly only now we cannot
assume it remains bounded for all pairs in E. In this context, we define T so that

h=T(g = b= [ fla—t=1gle)

for z € [-1,1], that T generates convolutions on F is easily verifiable.

If P is such that ¢ = Pf = g(z) = f(—x) then P is self-adjoint and unitary
and that PT*(f) = T(f)P for all f € E is also straightforward. Finally, we
restrict S, a non-trivial subset of E with the projection property, to lie within
Lo([—1,1]). It turns out that S = {e="@+D ze(-1.1] : v € R} with o = 0. The
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qualification here is that vectors in S have the projection property only for the
subset Fy C E with which their inner product is defined. That everything in S is
continuous means that, given our definition of F, Ey = E.

The equation for v, can then be written in the notation of chapter 2 as

(k=T(1)=T*(m))p=veES (3.10)
where, for all z € [-1,1],

k = 0,
) = FH (kx+1)),
ml@) = $Hy (k(z+1),
Pp(x) = ekcosay (z) and
o) = ekesa,(a).

12k cos «

The eigenvalue of v under P is e and, if wg € S corresponds to an angle 3,

the constant «q is straightforward to evaluate, and we find
ap = ik(cos B — cos ).

By substituting these quantities into equation 2.6 we arrive at the embedding
result for v,. We can benefit from the symmetry relation 3.5 by choosing w; = Uwyg
which correspond to incident angles § and m — 8 for some 3 # w/2. We find, after
noting that (¢|wg ) = e *(0se=csAP (o 7 — ) and so on, that

2cos BT'(B, B) va = I'(B, a)(cos a + cos B — ik(cos? a — cos® B)T'(v)) vs
~D(B, 7 — @)(cos @ — cos B — ik(cos® @ — cos? B)T (v))Uwvg.
We can use equation 2.7 to get an embedding formula for I'. We choose ws cor-

responding to angle m — 6 and take the view that 6 is the observation angle, we
find

2cos f(cos @ +cosa) I'(B,0) I'(e,0) =
(cos B — cos a)(cos @ — cos B) T'(B,m — ) T'(B,0)
+ (cosf+cosa)(cos@+cos ) I'(B,m —0) ['(B, a).

In this context, the embedding formula enable calculation of v, for all & and
I'(«r,0) for all o0 directly from vg for some 3 # /2.

3.10 Remarks

In this chapter we have analysed the diffracted field due to plane waves incident
on two simple geometries. Green’s method has been employed to find an integral
representation for the diffracted fields, reducing the problem in each case to the
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solution of a one-dimensional equation on a finite interval. We find the link between
solutions of the two problems so it is possible to compute one from the other,
which begins the embedding theme. It is continued because the one-dimensional
equations involve the same integral operator which is of generalised convolution
type and we can apply the results of the theory section. This means we can express
the diffracted field due to a plane wave incident at any angle in terms of only one.
The corollary for inner products also has direct application here because it leads
to embedding formula for the far-field diffraction pattern.

The computational benefit of embedding is made clear through this example
problem. The solution of only one linear system is required in order to establish
the diffracted field and far-field pattern for all angles of incident plane wave.
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Chapter 4

The Numerical Solution

In this chapter we solve the diffraction problem numerically. This means that for
a given k and «, we compute approximations to the far-field diffraction pattern on
[0, 7] and the diffracted field on some subset of R2. The embedding results for o can
be discretised to give a computational saving independent of the numerical method
used. However, it is desirable that the discrete system preserves embedding. The
following commutative diagram, in the notation of the theory section, clarifies
what we mean by this,

Yo, 1 —= ¢

Yo, 1 T ¢
where arrows to the right represent embedding and arrows down represent dis-
cretisation.

This can be achieved by careful implementation of a basic collocation method,
which has the additional benefit of being extremely simple. We write a collocation
discretisation of equation 3.3 and it turns out we can identify the structural com-
ponents which lead to embedding. This enables us to write the discrete equivalent
of equation 3.10 and then direct substitution into 2.6 brings us to the discrete
embedding formula.

4.1 Discretisation

We choose to approximate functions on the interval [—1,1] at the set of points

27 —n .
= ——, 7€10,1...n},
S { n}
the half-width of a discrete interval being § = n%_l Equation 3.3 can then be
approximated by the matrix system
Ko = fa, (4.1)
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where

faj = fa(xj) and

- i x+90 (1) )
Kﬂ = 5/ HO (k|$] —t|) dt+0(5 ),
T;—0

in the sense that if v, satisfies 4.1 then v,; = va(z;) + O(6). In choosing this
discretisation we sidestep the singularities in v, at the endpoints, at least in the
purely theoretical sense that v, remains bounded for all finite n. The practicalities
of floating point representation mean that we need to return to this issue later.
We should comment that the approximation in the definition of K is only because
some approximate method must be used for the evaluation of the integrals.

This discretisation has preserved, in a natural way, the system’s invariance
under reflection in z. If we define U by (N]vi = vp,_; so that ﬁml =Xp_; = —T;,
then it is straightforward to verify that UK = K ﬁ, hence, assuming the injectivity
of K ,

Ufo=fra = Uby="0ra.

4.2 Discrete Embedding

The matrix K has Toeplitz structure as can be seen by writing the elements as
: 1)
Kj==[ H"E25( —1)—t]) dt + O(5
31—5_60(|(J—)—|) + 0(57),

because the integrals, and hence their approximations, are dependent only on the
difference 5 — . The structural elements which lead to embedding in this system
are exactly those of example 2 of the theory section, to summarise we define T', P
and S so that

J
v=TwWw = wu;j = Z Vj—iWi,
i=0
u=Pv = wu; = v,_; and
veS = v = eIm 4 e R

This enables us to write equation 4.1 as

(k =T(1) =T*(m))p=veES
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where

0
_; [S
b= 5 [ k8 ) e+ 0@), e (01}

. 0
m; = %/ﬁé”(k(%j—t)) dt+0(5%), je{1,2...n}, mo=0,

efzk cos adn fa and

— e—zk cos adn 504-

The eigenvalue of v under P is e??$¢%529 Ty the notation of the theory section,
we suppose wy € S corresponds to incident angle 3, the constant agy can then be

evaluated, we find

ap=1-— efi26k(cos B—cos a)

As in the continuous case, we take advantage of the symmetry and choose wy =
Uwq corresponding to angle m — . Substitution of these quantities into equation
2.6 reveals, after a little manipulation,

2sin(20k cos B)L(B, B)ba = L(B,a)[sin(26k cos a) + sin(20k cos B) +
i(cos(28k cos ar) — cos(20k cos 3)) (2T (v) — 1)]vg
— T(B,m — @)[sin(26k cos ) — sin(20k cos B) +
i(cos(2dk cos ) — cos(20k cos 5)) (2T (v) — 1)]617/3,

where we have written T'(q, 8) for 26(, | fﬂ,5> so that T = ' + O(6). The
embedding formula for I can be arrived at by similar substitution into equation
2.7. We choose ws corresponding to angle m — 6 and calculation reveals

2% sin(2(5k cos ﬁ)(ezﬁék cosf 67i25k cosa) F(,B,,B)
(e—i26k cosa e—i?ék cosﬁ)(ei%k cosf ei26k cos 3

T(a,0) =
) D(8,m—a) T(8,0)
)

r
+ (ez’25kcosﬁ _ efi26kcoso¢)(ei25k cosf _ ,—i20kcos f(ﬁ,ﬂ' —0) f(,@,a)

It is not difficult to check that these discrete embedding formula agree with the
continuous case to first order in J.

4.3 Implementation

Calculation of the Approximating Matrix

We calculate the elements of K using the approximation that the kernel function is
constant (provided it is continuous) over each discrete interval. The kernel function
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is continuous except at 0 so that if j # [, Hél)(k|25(j —0)—t]) = Hél)(k|25(j -
D)) + O(9) for t € [—6,d]. Hence we can write

. [
%/ 5Hé”(k|2a(j — 1) —t]) dt = i0HS (K[20(7 — 1)]) + O(8%), j #L.

We can approximate the integral when j = [ (where the integration domain strad-
dles the logarithmic singularity) using the expansion of H(gl) for small arguments
e.g. from [10], z ~ 0 = Hél) = Z(In(%) 4+ v) + 1 4+ O(z?) from which it follows
that

i [? i
5 /6H(§”(k|t|) dt = 26 (5 - %(m(ak/zx) ~1 +7)> +0(62).

Singularities in the Solution

As we have mentioned, the singularities in v, at the endpoints are formally avoided
because the discrete domain is strictly inside [—1,1]. Computationally we can
monitor vy9 and vy, to ensure that rounding errors do not begin to dominate our
calculation as we increase n.

A more satisfactory way of eliminating this problem is available to us by a
simple change of variables. This hinges on the fact established in chapter 3 that
() = V1 — 22 v,(z) is a continuous function. For brevity we write the kernel
as s(z — t) and see that

/_ls(x—t)va(t)dt - /_1 e

= / s(z — cos B)uq(cos 0)do.
0

Hence the singularity is removed by the ¢ = cosf transform. It follows that the
collocation method for equal @ intervals is the preferred method of solution for
this equation. However, such a change of variables is non-linear so has no discrete
analogue, arbitrary functional values at equal € intervals not being any linear
combination of those at equal x intervals. As a result the discrete embedding
results cannot be applied to this system.

In the following we will refer to the equal x and 8 discretisations as methods 0
and 1. Both are implemented and analysed in order to make a comparison.

We note that making the cos 6 transform but remaining with equal z intervals is
equivalent to considering the function u, and kernel s(z—t)/v/1 — 22 for which the
embedding results do continue to hold. Practically though this has no advantage
over the equation for v,, the change being only cosmetic.
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Rounding Errors

There is some hazard due to rounding errors when we compute the constants in
the discrete embedding formula. Consider evaluation of

cos(20k cos a)) — cos(20k cos f3).

The result is O(6?) but is the difference between terms of O(1). In this case the
rounding error can be avoided by calculation in the alternative guise

—25in?(8k cos o) + 2sin®(5k cos B).
Similarly we note that

e i2kcosa _ o=i20kcos B — _9¢in?(§k cos o) + 2sin?(0k cos )

—isin(20k cos a) + ¢ sin(20k cos 3).

4.4 Numerical Error Analysis

Given our ignorance of the true solution, the nature of the error in the computed
solution is investigated numerically. We split our analysis into near-field and far-
field parts. This is justified by the fact that the integral representation of the field
is dominated by a logarithmic singularity in the near-field and tends to a plane
wave as we move toward the far-field. Considering these two extremes separately
we aim to be comprehensive without attempting an analysis of the complete field.

Error in the Near-Field

We choose to measure the near-field error by considering the RMS error on I where
the solution is known. We can compute the approximate field at any point on 1
by virtue of the integral representation, and then comparison with the exact field
enables us to compute the error. If we write 0, for the piecewise constant function

naturally extended from v, then our error measure can be written
E(k,a,n) = [|Ka = fall = |Idg = qll;

the norm being that on Ly([0,1]). In order to estimate E numerically we discretise
I as usual, but now with m discrete intervals. A solid estimate can then be made
by increasing m until the evaluations stop changing significantly.

As we expect, both methods exhibit first-order behaviour in the near-field, i.e.

Ei(k,a,n) = a;i(k,a)n ' +0(n"?), i=0,1, n>k

Figure 4.1 illustrates such dependence by the example of Ey(16,0.37,n) which is
typical.
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Figure 4.1: n dependence of the near-field RMS error, Ey, k = 16, o = 0.37.

The functional form of E; enables us to compare the near-field error between
the methods by comparing the error constant a;(k,a). We estimate a;(k,a) by
the method of least-squares fitting. Figure 4.2 shows a;(k, ) for k& € (0,100) and
a = 0.3m.

For small k we see that method 1 gives smaller errors than method 0. As we
increase k the error constant increases approximately linearly, the gradient being
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Figure 4.2: k dependence of the near-field error constant, o = 0.37.
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Figure 4.3: o dependence of the near-field error constant.

dependent on . The « dependence is illustrated by Figure 4.3, for small k& we
see that a;(k, @) is approximately constant for « € [0, 7]. Method 0 exhibits less
dependency on « and as a result gives smaller errors than method 1 for large k.

Error in the Far-Field

The diffracted far-field is given, in the limit, by I". In this section we investigate
the error in I" to complete our comparative study of the numerical methods. There
is no analytic solution here, so in order to investigate the behaviour of the error
we compute the solution for large n, say N, and treat it as if it were exact. Here
we use N of about 5 times the largest n considered; using larger N does not effect
the results presented in any significant way.

Given a particular «, I' is defined for observation angle between 0 and 7 and
we consider the RMS error in I' on this interval. In terms of the Ly([0, 7]) norm
we can write this as _

IT" —T]
ok

FE can be estimated numerically in the same way as for the near-field, the primary

E(k,a,n) =

difference here is that we do not know I
The first order behaviour is again very clearly exhibited by method 0. However,
although method 1 is first order asymptotically for large n, the dependence is not
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Figure 4.4: n dependence of the far-field RMS error, E1, k = 32, a = 0.37.

so clear as can be seen from Figure 4.4 which is typical. This deviation from first
order error grows with k. We can still compare the error constants between the
two methods,

Ei(k,a,n) = bi(k,a)n™ " +O(n™?), i=0,1, n>k.

But now for £ 2 1 and moderate n we note that E; produces an overestimate of
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Figure 4.5: k dependence of the far-field error constant, o = 0.3.
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the error.

The general trends in the far-field error are similar to the near-field which is
clear from Figures 4.5 and 4.6. The most immediate difference is that b; is about
an order of magnitude smaller than a;. This tells us that method 1 produces
significantly more accurate results in the far field.

Approximate Embedding

Here we consider how embedding effects the accuracy of the results obtained.
Method 0 is of course unaffected by the use of the discrete embedding formula.
However, we expect that discretising the continuous embedding formula, which is
required for method 1, will introduce additional error in the numerical solution. To
this end we consider method 2 which uses the solution calculated using method 1
at a = 0 together with the approximate embedding formula to obtain the solution
for other a.

With £ < 1 the approximate embedding formula makes no significant contri-
bution to the near-field or far-field error, we find method 2 is first order with error
constant almost exactly that of method 1. In the near-field we find that £ 2> 1
implies, again, the same first-order error behaviour as method 1, there is however
noticeable growth in the second-order error term as the example in Figure 4.7
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illustrates.

As we increase k past 1 the far-field error changes more dramatically. Method
2 does not exhibit the deviation from first order found in method 1 (which we
illustrated in Figure 4.4). Instead the first-order error term diminishes with £ and,

as in the near-field, the second-order term increases, and in fact here it starts to

dominate. This behaviour is illustrated at & = 32 in Figure 4.8 which is typical,

we have plotted E; and F so that comparison can be drawn.
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Figure 4.8: n dependence of the far-field RMS error, k£ = 32, o = 0.37.

The main point we take from these results is that the approximate embedding

formula complicate the far-field error behaviour when k& 2 1, but the scale of

impact is quite small when compared with the differences between methods 0 and

1 in the far-field. For & < 1 and in the near-field the impact of approximate

embedding is very small.
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4.5 Remarks

To summarise, we have discretised the integral equation for v, in order to ap-
proximate it numerically. This has been done using a basic collocation method,
but in two ways; one which draws on results of the theory section and preserves
embedding, and one which is more satisfactory because it naturally removes the
singularities from the computations, but which relies on approximate embedding.
When embedding is used in the computations, the two methods are indistinguish-
able in terms of computational cost, and error analysis shows that the second
discretisation produces less error in its solution even though the embedding for-
mula is approximate.

The use of Green’s method to reduce an elliptic BVP leads naturally to ad-
vantages in computation. Apart from a decrement in the dimension of the linear
system, the method provides an integral representation of the solution. Such a
representation can be used to reconstruct the solution at any point on its domain,
this being done in a natural way rather than by interpolation through nodal val-
ues. It is this which enables us to analyse the error in these problems because the
field reconstructed from a solution computed with a fine mesh can be successfully
compared with one generated on a coarse mesh.

4.6 Diffraction Patterns

In this section we exhibit some numerical solutions of the diffraction problem. They
illustrate a range of phenomena which are well described by our quasi steady-state
near-field analysis of the wave equation in 2D.
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Figure 4.13: Re(¢) on [-3,3] x [-3,3], k = 16, a = 0.77.
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Figure 4.14: |¢| on [—10,10] x [-10, 10], £k = 8, o = 0.5.
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Figure 4.15: |¢4| on [—-20,20] x [-43,0], k¥ = 10,40,160, o = 0.57.



Chapter 5

Conclusions

5.1 Overview

In this report we have derived an embedding result in an abstract setting which
coincides with a result of Porter [8] in the continuous case and provides an anal-
ogous result for Toeplitz matrices in the discrete case. The application of this to
the numerical solution of a simple diffraction problem illustrates how structure is
preserved by a basic collocation discretisation of the governing integral equation.
Our investigation into this numerical method has shown that, for this application,
another discretisation is preferable in terms of accuracy, even though it relies on
an approximate embedding formula.

5.2 Numerical Methods

We labour some important asides which have not been the focus of this work.

e The embedding formula lead to computational savings. Even with a fast ma-
trix solver, the embedding formula (approximate or exact) used to generate
new solutions is quicker compared to solving a new equation. The benefit
is especially felt in the far-field calculations, the embedding formula require
evaluation of a few inner-products compared with solving a linear system if
they are not used.

e Green’s method is a very useful front-end for numerical methods. Addition-
ally to reducing the dimension of the problem, it enables computation, in a
natural way, of the approximate solution at any point in its domain. The
benefit of this has been highlighted here because it enables reliable numerical
error analysis.
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5.3 Further Work

This study has led to the identification of a few areas where further investigation
may be useful.

e The core of the project was the theoretical work which stands alone now
the intended application has been shown to be un-beneficial. As a general
framework this is currently unsatisfactory because there exists a result for
the principle examples (1 and 2 of the theory section) which it does not yet
describe. Specifically, if A = k — T'(I) — T*(m) is invertible and x # 0 then
the inverse is finitely generated by, i.e. expressible in terms of, ¥y and
which satisfy

A’(,b() =] and A*’(,bl =m.

This is analogous to example 3 of section 2.2 which applies to the simpler
convolution type operator. In the continuous case this result is attributable
to Gokhberg and Feldman [2] (mentioned already in section 1.2), in fact
they discover it by analogy with its discrete counterpart. Porter [8] shows,
again in the continuous case, that this result can be derived from the main
embedding formula we give in this report, which suggests the results are
intimately connected.

Unifying the discrete and continuous versions of this result thus seems a
distinct possibility, and can only lead to a deeper insight into the nature of
these embedding results and hence their extensions and applications.

e It may be that there exist other methods of discretisation which, when ap-
plied to integral operators generated by a difference kernel, lead to a Toeplitz
matrix equation. If such a method also exhibited desirable error characteris-
tics the discrete embedding formula could find application. If one considers
implementing Galerkin’s method using a finite set, say {w;}, to approximate
the solution of Ap = f where A = k — T(I) — T*(m) in the notation of the
theory section, one quickly arrives at the discrete equation

n

D [RCwi fwi ) + (LT (wiywy ) + (T* (wyywi [ m)] ¢ = ( f | wy),

i=0
. n
where j € {0,1...n} and ¢= Zqﬁiwi.
i=0

Which places quite specific demands on {w;} so that a search can be con-
ducted in a systematic way.

e The numerical error analysis showed some interesting results for the approx-
imate embedding formula, in some circumstances improving the accuracy
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over the non-embedded calculation. Such results may be worth investigating
analytically because once understood they could lead to numerical methods
with improved error performance for such equations.

46



Appendix A

Conjugate Linear Maps

A.1 Introduction

We list here some elementary properties of a conjugate linear map defined on a
unitary space. By conjugate linear we mean that for all z,y € V and A,y € C

ANz + py) = Nz + Ay,

A.2 The Adjoint
We define the adjoint of A, which we write as A*, so that
(Asly) = (A*y|o)

for all z,y € V. It is easy to show that A* is also conjugate linear. If T is a linear
transform on V then AT and T A are conjugate linear and (AT)* = T* A* because

(ATz|y) = (A%y|Tz)
= (T*A*y|z).

If T is conjugate linear, AT and T A are linear and (AT)* = T*A* because
(ATz|y) = (A%y|Tz)
= (z|T*A%y).
A.3 Unitary Conjugate Linear Maps

If P is conjugate linear and P*P = I we refer to P as unitary. If P has an
eigenvector v with eigenvalue A\ then

(v]v)=(P*Pv|v) = (Pv|Pv)=IX\v|v).
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ie. A #1=0v=0.

If, then, v # 0, Pv = Av = P*Pv = A\P*v = v = AP*v = Av = P*v. So that
eigenvectors of P are eigenvectors of P* with the same eigenvalue. A consequence
of this is that if v, w are eigenvectors of P with eigenvalues A, i, then

Novlw) = (Polw) = (P*w|v) = ulw|v).
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