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Abstract

Based on the 1981 paper "A Comparative Study of Computational Meth-

ods in Cosmic Gas Dynamics" by van Albada, van Leer and Roberts, Jr.

[23] we begin our investigation which continues their search to find a reli-

able computational method for cosmic flow problems. Our first aim was to

re-analyse their work in order to confirm their results and conclusions and

more importantly to better understand the problem at hand. This was done

with the aid of much more powerful processing capabilities enabling plot

animation and therefore much more detailed observations of the temporal

progression of the solution. This led to the conclusion that the transient

waves that occur in the system are much stronger than were previously

thought. Our second aim was to add to the comparison of methods: the

explicit approximate Riemann solvers, the Roe flux-splitting method and

the HLL scheme, an additional flux-corrected transport limiter and the in-

clusion of flux-limiters to Roe’s method. The result of the investigation is

an increase in the number of numerical methods available to solve the rep-

resentative astrophysical flow problem and a better understanding of how

the solutions the methods produce, progress over time.
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1 Introduction

There are many theoretical investigations where astrophysical modelling

leads to systems of conservation laws similar to the Euler equations for the

density of matter in space. Shu et al. [19] and Roberts [14] described such

a system for a spiral galaxy consisting of two alternating arms of high and

low density separated by discontinuities that are propagating shock waves.

It is the location and rendition of these shock waves that has a significant

impact on the overall solution, and so an accurate computation of the dis-

continuity in the flow field is of great importance. The results presented

in this study are specific to the computation of shocks in astrophysical flow

however the numerical treatment of shocks is valuable in many other areas.

For example; The Euler equations are used extensively in aerodynamics in

modelling the flow of air around an airfoil. These are typically three di-

mensional problems, although 2D and even 1D problems can result in a

discontinuity in the pressure. Unsteady problems also arise in modelling

wing flutter, or the flow patterns around rotating helicopter blades or the

blades of a turbine. At high speeds these problems also involve the gener-

ation of shock waves. The scales involved in all of these problems varies

considerably however the treatment of the shocks remains the same.

In van Albada et al.’s paper [23] a search is undertaken to find a reli-

able computational method for cosmic gas flow. In order to find a reliable

method a comparison of a sample of carefully selected methods is done

using a representative problem. The representative problem is a simpli-

fied version of the Shu and Roberts spiral galaxy system described above.

In [14] Roberts uses the one-dimensional equations for steady-state gas

that included a forcing term due to the spiral field of the stars to demon-

strate the ease with which mild stellar spiral structures can induce shocks.

Woodward [26] then showed that simplified, time-dependent versions of

Roberts’ equations could model the evolution of the flow. It is these sim-

plified, time-dependent equations of Woodward and his set of parameter

values that make up van Albada et al.’s representative test problem. Since

our investigation is an extension of [23] it seemed only natural for us to

use the same test problem. There are several distinguishing characteris-

tics of this problem that make it highly suitable for the investigation: the

major role of the source terms, the development of strong shocks and the

significant rotational effects of the system. For a method to model these

characteristics requires reliability and accuracy. Such a demanding test al-

lows for a comprehensive comparison of the virtues and failings of all our

sample methods. The details of the test problem are described in §2.

The comparison in [23] consisted of five algorithms: three commonly

used in astrophysics, two of which are first-order accurate, a second-order

accurate central differencing scheme and a second-order accurate upwind-

differencing scheme. A detailed description of the methods is outlined in

8



§3. In order to compare our methods with those of van Albada et al. we

first needed to recreate their results. Herein lies our first objective. This task

however, proved more challenging than first anticipated as the transients in

the system were much stronger than had previously been described in [23].

The result of this was that the testing procedure used in [23], where each

method was run for a fixed time (1200±150 steps), would produce some

solutions that had reached steady-state and some that had not. This meant

the comparison of values would be unfair and therefore unreliable. The

solution to this problem was simply to make sure each scheme had run for

long enough to have reached steady-state. This was done by introducing a

tolerance based on the root mean squared error (RMSE). Each scheme was

then run until it was within the defined tolerance (see §3.1 and §4). This

proved a much more versatile and reliable way to test and compare each of

the methods.

Our second objective was to compare and test van Albada et al.’s list of

methods with our sample of additional methods that consisted of two first-

order approximate Riemann solvers, an additional flux-corrected transport

method and the addition of flux limiters to one of the first-order approxi-

mate Riemann solvers. In §4 and §5 we analyse the results the additional

methods produce and compare them to the results produced from the meth-

ods used in [23], keeping in mind the purpose of this all is to answer the

question posed by van Albada et al. in the first place “What reliable, accu-

rate, efficient and easy-to-program method should be used for this calcula-

tion?”.
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2 Basic Equations

Shu et al. [19] describes how the perturbations in the flow of interstellar

gas resulting from a steady forcing F from spiral gravitational fields result

in the nonlinear response of the density. It is this response, that if strong

enough to exceed a critical value, forms the shock that is the basis of our

test problem. In this section we present a form of Roberts’ simplified equa-

tions that produce this very shock.

The fundamental isothermal equations of motion for gas flow may be writ-

ten by an observer in an inertial frame of reference as:

∂ρ

∂t
+∇ · (ρq) = 0, (2.1)

∂q

∂t
+ q · ∇q = −c2

ρ
−∇Φ, (2.2)

where t denotes time, ρ is the gas density, q is the velocity, c the (constant)

sound speed and Φ is the gravitational potential. The isothermal assump-

tion is used since interstellar gas cools by radiative processes on a much

shorter time-scale than that of any dynamical processes.

In the absence of the spiral forcing the gas flow is at a base state of

motion. An equilibrium state of purely circular gas flow where the total

smoothed central gravitational force field is exactly balanced by the inertial

force associated with the rotation of the disk as a whole. For purely circu-

lar flow we have angular velocity Ω(ω) at radius ω. A steady spiral field

with small pitch angle α is assumed to rotate rigidly with pattern speed

Ωp. A convenient coordinate system is one which rotates at this speed and

is aligned with the equipotential contours of the spiral. The coordinates

parallel and perpendicular to the equipotential contours are denoted by ξ

and η, respectively. The velocity components in this coordinate system are

written as

v = qξ,

u = qη.
(2.3)

If we assume that the spiral has a pitch angle α ≪ 1, the equilibrium veloc-

ities are approximately

v0 = ω(Ω− Ωp),

u0 = αω(Ω− Ωp).
(2.4)

In this approximation derivatives with respect to η (normal to the spiral

arms) are retained, but derivatives with respect to ξ (along the spiral arms)

are discarded.
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For a two-armed spiral the resulting equations can be written as the system

of conservation laws
∂u

∂t
+

∂f(u)

∂η
= s(u), (2.5)

where the vector of conserved quantities is

u =





ρ

ρu

ρv



 , (2.6)

the vector of fluxes is

f =









ρu

ρ(u2 + c2)

ρuv









, (2.7)

and the vector of source terms is

s =















0

2Ω(v − v0)ρ+
2

αω
ρA sin η̂

− κ2

2Ω
(u− u0)ρ















. (2.8)

The spiral phase η̂ is defined by

η̂ =
2η

αω
, (2.9)

and the epicyclic frequency κ by

κ2 =
2Ω

r

d

dr
(ω2Ω). (2.10)

In this approximation the flow is periodic; in terms of the spiral phase the

periodicity condition reads

u(η̂, t) = u(η̂ + 2π, t). (2.11)

The driving term (2/αω)ρA sin η̂ comes from the assumed gravitational

field of the stellar component.

For the test problem we adopt parameters thought to be appropriate for

the neighbourhood of the Sun in our own galaxy: Ω = 25 km s−1/kpc,

κ = 31.3 km s−1/kpc, Ωp = 13.5 km s−1/kpc, c = 8.56 km s−1/kpc, ω = 10

kpc and α = sin(6.7◦) ≈ 0.11667. For the amplitude A we choose A = 72.92

(km s−1)2, which makes the amplitude of the spiral force F , 2.0% of the

equilibrium for ωΩ2.
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In steady state Eq. (2.5) becomes

du

dη
=

u

u2 + c2

[

2Ω(v − v0) +
2A

αω
sin

2η

αω

]

, (2.12)

dv

dη
= − κ2

2Ω

u− u0
u

, (2.13)

A procedure for solving the steady state Eqs. (2.12) and (2.13) plus the peri-

odicity condition (2.11) is described in Roberts [14]. Insufficient details are

given to be able to recreate the solution however a very fine grid approx-

imation (6400 zones) to the exact solution is used as a reference solution

to compare our results with. The scheme used for this was the best per-

forming scheme from [23], the MacCormack method (pre-shock and de-

compression smooth zones). Some of the issues that occur with such an

approximation is a bias towards the MacCormack method run at a low res-

olution and the detrimental features reducing the accuracy of the method

will also be prevalent in the reference solution.

0   90   180   270   360
0

0.5

1

1.5

2

2.5

3

3.5

4

Spiral Phase

ρ

←  F=2.0 %

Figure 1: High resolution plot of the variation in gas density, ρ, as a function of the phase

angle η̂ with the parameters set to those defined in [26] and §2

Some of the noteworthy features visible in figure 1 are the shock at spiral

phase 131.68◦, the rapid decompression after the shock and the secondary

structure near a spiral phase of 270◦ which is caused by resonance effects. It

is the time-dependent version of this problem that challenges a numerical

method to cope with the shock, while also resolving the remaining smooth

structure of the flow. In the next section we discuss how we transfer our

continuous model and equations into discrete counterparts making them

suitable for numerical evaluation.
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3 Methods

We divide the spatial region (0, παω) into N zones centred at the grid points

equal to (i− 1
2)∆η, where i = 1, 2, ..., N and ∆η = παω/N (or ∆η̂ = 2π/N ),

and advance the approximate solution from time tn to time tn+1 (where

tn+1 = tn +∆t) by means of a decretised version of Eq. (2.5). The approx-

imate value of u at the point (ηi, tn) is denoted by un
i , fni and sni , and are

defined as f(un
i , ηi) and s(un

i , ηi) or, as explained in §3.8.2, s(un
i , ηi,∆t). In

all methods discussed here, un
i approximates the average value of the solu-

tion over zone i. A subscript i+ 1
2 denotes an interpolated numerical value

at the zone boundary η = i∆η, or a finite difference across this boundary; a

superscript n+ 1
2 denotes an approximate value tn+1/2 = (n+ 1

2)∆t.

Our sample of numerical methods1 includes

1. The Beam scheme (B) [16].

2. Second-order flux-splitting method (FS2) [24].

3. MacCormack’s [12] method (MC2).

4. Flux Corrected Transport (FCT) methods

i) MacCormack’s method

⋄ SHASTA [2]

⋄ Zalesak* [28]

ii) Lax-Wendroff [9] method (LW)

⋄ SHASTA

⋄ Zalesak*

5. Approxiate Riemann Solvers

i) Roe’s [15] method* (R*)

⋄ Flux-limiters* [17]

– minmod

– superbee

– van Leer

⋄ Source term decomposed* [11]

ii) Harten, Lax & va Leer* (HLL*) [6]

An asterisk (*) denotes the method is an addition to the original sample

used in [23].

1Godunov’s method (G) could not be attempted as the referenced ICASE report [5] in

[23], that includes the exact Riemann solution, is no longer available and there was insuffi-

cient time to reconstruct an exact solution ourselves.
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Of our sample, the B, R* and HLL* methods are of first order accuracy

meaning they approximate Eq. (2.5) with an error O(∆η). All of the first-

order methods and FS2 are based on upwind-differencing where the ap-

proximation of ∂f/∂η makes a distinction between the positive and neg-

ative contributions of the wave motion. The methods MC2 and LW are

of second-order accuracy meaning they approximate Eq. (2.5) with an er-

ror O(∆η2) and use central differencing which does not make the above

distinction. Note the addition of flux-corrected limiters and flux limiters

makes first-order methods second-order accurate.

Eq. (2.5) can be written in the form of the difference equations

un+1
i − un

i

∆t
+

hv
i+1/2 − hv

i−1/2

∆η
= s

n+1/2
i , (3.1)

with v = n for the first order methods and v = n + 1
2 for the higher order

methods. The higher order methods, with the exception of Roe’s method

with flux limiters, are two-step algorithms where time centring is achieved

using first-order accurate first steps at tn+1/2 and tn+1.

Since Eq. (3.1) has a numerical flux vector

hv
i+1/2 ≡ h(un

i−k+1, ...,un
i+k), (3.2)

that is consistent with the analytic flux in the sense

h(u, ...,u) = f(u), (3.3)

the scheme is said to be in conservation form (see Appendix §6.1). Any

scheme that can be written in this form is said to be conservative. The ben-

efits of having a conservative scheme for a homogeneous equation is that,

by the Lax-Wendroff theorem, if the numerical solution of a conservative

scheme converges, it converges toward a weak solution of the conserva-

tion law and thus most importantly has the exact shock speed. For a non-

homogeneous equation the situation is slightly more complicated but the

conservation property is still very important. With this in mind it is then

the particular choice of h that distinguishes one scheme from another. All

of the methods are usually stable under the Courant-Friedrichs-Lewy con-

dition, which says that the largest radial wave or signal speed in a cell must

not exceed the numerical signal speed ∆η/∆t. In the next section we de-

scribe the test conditions under which our methods will be implemented.
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3.1 Test Setup

We attempted to keep the testing as close to that used in [23] as possible.

Van Albada et al. uses Roberts’ exact solution to the steady-state equa-

tions (2.12) and (2.13) as a reference solution however as previously stated

we could not obtain an exact solution so a very fine grid approximation

is used. Since no exact time-dependent solution exists we are restricted to

testing the methods on the accuracy of the steady-state they produce. In

order to determine whether a scheme has reached steady-state we would

typically test for |(un+1 − uref)− (un − uref)| = 0 where uref is the reference

solution as defined earlier. However, as the solutions do not converge to

an absolute value and instead reach a steady oscillation about the reference

solution, the conventional test returns a false positive as it passes through

the reference solution. An alternative approach was therefore necessary.

The final computed solutions of van Albada et al’s first tests are displayed

as the root mean squared error (RMSE) as a percentage of the equilibrium

values excluding 8 points straddling the shock, including 5 points in the

decompression region. This is done to mainly indicate the accuracy in the
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16

ρ 
u

Iterations=1050          Time=1.05
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ρ 
u

Iterations=1200          Time=1.2

0   90   180   270   360
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16

Spiral Phase

ρ 
u

Iterations=1350          Time=1.35

Figure 2: A MC2 time evolution plot of ρu for tn =

1050, 1200 and 1350 as used in [23].

smooth part of the solution. In

keeping with van Albada et al’s

methods it is the RMSE as a

percentage of the equilibrium

value ρu that will be used to

test if the solution is within a

certain margin of error σ. The

reason for doing this is that

for a steady-state solution we

expect a uniform ρu distribu-

tion. Figure 3 highlights the

disrupting effects of the tran-

sient waves in the ρu distri-

bution for one of the methods

used in [23]. Transient waves

are mentioned in van Albada et

al. as they destroy the station-

ary solution for the Phoenical

SHASTA FCT method but are

not mentioned to cause prob-

lems anywhere else.

Although the transients aren’t

mentioned as a problem in the

other methods an alternative

more accurate way to approx-

imate the source term is suggested (for the direct integration of the source

15



term see §3.8.1) for maintaining stability in runs over 2,000 time-steps and

it is this that has proved the most effective method for reducing the tran-

sients. In [23] the use of a direct integration method in the source term

evaluation is used for stability in longer time runs only. We used it in all

of our schemes except for the decomposition of the source term in R*. This

was done to reduce the time it took to achieve steady-state. In general the

time taken to reach steady-state was halved when using the more accu-

rate source term evaluation. The results from using a more accurate source

term evaluation are shown in §4 along side the specific details of the testing

procedure.

Although we are testing the methods once they have reached steady-

state, evaluating the methods on the time required for them to reach the

steady-state starting, say, from uniform initial values (ρ, u, v)0i = (1, u0, v0),

is unfair because the better methods will perform the worst because the

transients will persist until they are damped out by the numerical viscosity

because of the periodicity of the flow, which is highest for the least accurate

schemes. As in [23] the fairest test to use is the reference solution itself as

the initial-value distribution, and compare how well the various methods

preserve it. However as later shown even when starting from the refer-

ence solution strong transient waves occur and it is some time before they

are damped out. This constitutes the first test performed. Five of the addi-

tional methods that performed well in this test were applied to the problem

with uniform initial values, mainly to determine their "robustness". This

constitutes the second test.

The results presented are based on a computational grid of 64 zones; All

of the methods use a constant time-step corresponding to a global Courant

number of 0.5. In this span the fastest moving signals can traverse the com-

putational domain about 10 times.

Even though conclusions about the accuracy with which the schemes

deal with transient phenomena should not be given because there is no

time-dependent exact solution to compare it with, we still present the num-

ber of steps required to reach our defined limit σ and also an elapsed time

e. The elapsed time although dependent on the efficiency of the writing

of the program and also the hardware of the computer system gives some

idea of the computational cost in running each method and its subroutines.

All methods presented are compiled and run using Matlab R2009b numer-

ical computing software on an Intel Core 2 Duo processor with 2 GB 1067

MHz DDR3 RAM.

16



3.2 The Beam Scheme (B)

There are essentially two approaches for identifying upwind directions,

namely the Godunov approach and the flux-vector splitting approach. The-

se two approaches are often referred to as the Riemann approach and the

Boltzmann approach. The beam scheme, used mainly in astrophysics, is

an example of the Boltzmann approach, where mass and momentum are

transported by pseudo-particles with a velocity distribution f(w). The ve-

locity distribution is the sum of the number of delta functions (the beams);

for present calculations we used three beams:

f(w) =
1

6
ρδ(w − [u− c

√
3]) +

2

3
ρδ(w − u) +

1

6
ρδ(w − [u+ c

√
3]) (3.4)

although the middle beam is not really needed for this isothermal problem.

Assuming that the velocity distribution is uniform and constant in each cell

during the time-step, we can compute the positive direction, f+(u), and in

the negative direction, f−(u):

f+(u) =



































































































f(u) =





ρu

ρ(u2 + c2)

ρuv



 u ≥ c
√
3

f(u) =









1
6ρ(5u+ c

√
3)

1
6ρ[4u

2 + (u+ c
√
3)2]

1
6ρv(5u+ c

√
3)









0 ≤ u < c
√
3

f(u) =









1
6ρ(u+ c

√
3)

1
6ρ(u+ c

√
3)2

1
6ρv(u+ c

√
3)









−c
√
3 < u < 0

0 u ≤ −c
√
3

(3.5.1)

and f−(u) is obtained from

f−(u) + f+(u) = f(u). (3.5.2)

The net flux across the cell interface at ηi+1/2, to be used in the scheme (3.1),

is

hn
i+1/2 = f+(un

i ) + f−(un
i+1). (3.6)

That Eq. (3.6) leads to upwind differencing becomes clear when we write

down the central difference of h needed in scheme (3.1):

hn
i+1/2 − hn

i−1/2 = f+(un
i )− f+(un

i−1) + f−(un
i+1)− f−(un

i ). (3.7)

The results obtained with the beam scheme are displayed in figures 6 and

7.
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3.3 Second-order Flux-splitting Method (FS2)

We can change any first-order upwind-differencing method into a second-

order method by advancing the cell boundary values in the numerical flux

vector and source terms to the intermediate time level tn+1/2. Doing so al-

lows the interaction between the cells to be fully ignored.

We choose w to be a vector of (not necessarily conserved) quantities de-

scribing the state of the gas, in particular

w =





ρ

u

v



 =





ρ

q



 . (3.8)

We then assume that the initial values for q form a piecewise linear distri-

bution

wn(η) = wn
i + (η − ηi)

(δw)ni
∆η

ηi−1/2 < η < ηi+1/2 (3.9.1)

with

(δq)ni = c · ave

(

qn
i+1 − qn

i

c
,

qn
i − qn

i−1

c

)

(3.9.2)

and

(δρ)ni = ρni · ave

(

2
(ρni+1 − ρni )

(ρni+1 + ρni )
, 2

(ρni − ρni−1)

(ρni + ρni−1)

)

(3.9.3)

where ave (a, b) is an averaging procedure2 to be specified later. The for-

mulation in Eq. (3.9.3) guarantees positivity for ρ when substituted in Eq.

(3.9.1). Thus we have
(

∂w

∂η

)n

i

=
(δw)ni
∆η

, (3.10)

allowing us to calculate (∂w/∂t)ni from the appropriate modification (see

Appendix §6.2) of Eq. (2.5). The cell averages are now advanced to tn+1/2

and boundary values are calculated (the source terms have already been

advanced, by Eq. (3.44) see §3.9.2):

w
n+1/2
i = wn

i +
∆t

2

(

∂w

∂η

)n

i

, (3.11.1)

w
n+1/2
(i±1/2)∓ = w

n+1/2
i ± ∆η

2
(δw)ni , (3.11.2)

u
n+1/2
(i±1/2)∓ = u(w

n+1/2
(i±1/2)∓). (3.11.3)

The time-centred fluxes at cell boundary i ± 1
2 can now be computed from

u
n+1/2
(i±1/2)− and u

n+1/2
(i±1/2)+ by any upwind-biased numerical flux formula.

2We have made the assumption that b = 2(ρni − ρni−1)/(ρ
n

i + ρni−1) and not b = 2(ρni −

ρni−1)/(ρ
n

i + ρni+1) as stated in [?] as we believe it to be a typo. Both were tested and the

difference is negligible.
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Here we use a formula, due to van Leer [25], based on flux-vector splitting

and therefore related to the flux in B; however, no particular velocity distri-

bution is used in its derivation. The forward and backward fluxes of mass

and momentum are defined according to

f+(u) =























































f(u) u ≥ c















ρ

4c
(u+ c)2

ρ

2
(u+ c)2

ρ

4c
(u+ c)2v















|u| < c

0 u ≤ −c

(3.12)

and (3.5.2), while h again is given by (3.6). The split flux (3.5.1) is smoother

than (3.5), having continuous first derivatives. Furthermore, the reduced

mass flux in (3.12) relative to (3.5.1) results in a reduced numerical diffu-

sion.

In FS2 we then use

h
n+1/2
i+1/2 = f+(u

n+1/2
(i+1/2)−) + f−(u

n+1/2
(i+1/2)+). (3.13)

The function ave (a, b) is chosen such that it tends to 1
2(a+ b) if a and b are

subsequent finite differences of a smooth solution, but tends to the smallest

value where the solution is not smooth (see van Leer, [22]). We specifically

choose

ave (a, b) =
(b2 + ǫ2)a+ (a2 + ǫ2)b

a2 + b2 + 2ǫ2
, (3.14)

where ǫ2 is a small non-vanishing bias of order O((∆η)3). This type of aver-

aging prevents central differencing across a discontinuity in the solution or

in its first derivative, which would lead to numerical oscillations. The bias

prevents the undesirable clipping of smooth extremum but otherwise has

negligible influence. In the actual computations we used ǫ2 = 0.008, but the

results are not very sensitive to the precise value of ǫ2. The results obtained

with the second-order flux splitting methods are displayed in figures 8 and

9.
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3.4 MacCormack Method (MC2)

The MC2 method is a variation of the two-step Lax-Wendroff [9] (LW)

method (see Appendix §6.3 for formulation of method) but is much simpler

in its application. The application of MC2 proceeds in two steps; a predic-

tor step which is followed by a corrector step. Typically the predictor step

uses a forward difference and the corrector step uses a backward difference.

This can be changed to a backward difference predictor and a forward dif-

ference corrector either way there is a slight bias in the solution due to the

one-sided differences. If desired, this balance can be reduced by alternat-

ing the direction of the predictor and corrector spatial differences from one

time level to the next. The alternating predictor corrector approach is taken

in [23] however through testing and comparison of the different variations

we found the best performing MC2 method (see Appendix §6.6) was the

forward backward difference MacCormack method (MC2FB).

The forward predictor step determines provisional values at tn+1 (source

term is advanced by Eq. (3.44))

ūn+1
i = un

i − ∆t

∆η
(fni+1 − fni ), (3.15)

followed by a backward corrector step which determines the final values at

tn+1

un+1
i =

1

2

[

un
i + ūn+1

i − ∆t

∆η
(f̄

n
i − f̄

n
i−1)

]

. (3.16)

The corrector corresponds to inserting

h
n+1/2
i+1/2 ≡ 1

2
(fni+1 + f̄

n+1
i ) (3.17)

into (3.1). This method is formally second order accurate in both space and

time.

Although MacCormack’s method is slightly dissipative, an explicit smooth-

ing term had to be added in order to control nonlinear instabilities in the

test problem. This was implemented by adding the term

dn
i = b

∆t

∆η
[νni+1/2(u

n
i+1 − un

i )− [νni−1/2(u
n
i − un

i−1)] (3.18)

to the right-hand side of Eq. (3.16). The coefficient b is an adjustable con-

stant of order unity. For our testing we set b = 1.0.

νni+1/2 = |un
i+1 − un

i |, (3.19)

for the artificial-viscosity coefficient was made on the basis of Liebovich’s

[10] experience with MC2 in two-dimensional calculations. The results ob-

tained with MC2 are displayed in figures 10 and 11.
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3.5 Flux-corrected Transport methods (FCT)

It is well know that higher order schemes (order 2 and above) suffer from

dispersive ripples when approximating steep gradients which is particu-

larly relevant in our case. And that lower order schemes or higher order

schemes with a zeroth order diffusive term added produce no ripples but

suffer from excessive numerical diffusion. FCT is a technique developed by

Boris and Book [1] which embodies the best of both of the above worlds.

Formally the procedure is as follows:

1. Update the solution using a low order scheme with numerical flux

hL. Where utd
i is the "transported and diffused" solution. One of

the simplest ways of doing this is by adding to the scheme of Lax-

Wendroff (see Appendix §6.3 Eq. (6.15)) or MacCormack (3.16) the

strong artificial diffusion term

dn
i =

1

8
(un

i+1 − 2un
i + un

i−1), (3.20)

2. Compute an anti-diffusive flux as the difference between a high order

numerical flux hH (MC2 or LW without the diffusive term) and the

low order flux used in stage one

hA
i+1/2 = hH

i+1/2 − hL
i+1/2 (3.21)

3. Limit the anti-diffusive flux in such a manner that no new extrema

are introduced in stage four

hC
i+1/2 = Ci+1/2hA

i+1/2 0 ≤ C ≤ 1 (3.22)

4. Correct the solution using hC
i+1/2

un+1
i = utd

i − 1

8
(hC

i+1/2 − hC
i−1/2) (3.23)

In their original paper, Boris and Book proposed the following limitation on

the anti-diffusive flux for their SHASTA [2] (Sharp and Smooth Transport

Algorithm)

hi+1/2 = min{8|hi−1/2|, |hi+1/2|, 8|hi+3/2|}sgn(hi+1/2) (3.24)

Zalesak [27] proposed an alternative flux limiting algorithm

Ci+1/2 =

{

min(1, Q−
i /P

−
i ) if P−

i > 0

0 if P−
i = 0

}

(3.25)

where , Q−
i and P−

i are defined in the Appendix §6.4. The results obtained

with the FCT methods are displayed in figures 12 to 19.
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3.6 Approximate Riemann Solvers

Whilst for some scalar conservation laws the Riemann problem is easily

solved, this is not the case for non-linear systems of conservation laws

where the kth wave may be a rarefaction, shock or contact discontinuity.

Up to now the only methods employed to solve this problem have been

non-upwind biased schemes based on the exact solution of the Riemann

problem (G). The solution must therefore be constructed in phase space to

link the two end states by a path of valid waves. Here an iterative proce-

dure is often required which, since this must be used at every cell boundary

at every time step, will make it the most computationally expensive task of

the whole method. To simplify the process and reduce this overhead ap-

proximate Riemann solvers, which do not employ iteration, are often used.

We wish to use a method that employs upwind bias on each characteristic

field. This can be achieved either by approximating the Riemann states and

applying the physical flux, or by approximating the numerical flux directly.

We look at the latter, and outline the distinguishing features of some of the

approximate Riemann solvers used.

3.6.1 Roe’s Method (R*)

Perhaps the simplest approximate Riemann solver is due to Roe. The solu-

tion is based on solving a localised Riemann problem to calculate the flux

at the interface of each grid zone. The basic premise of this problem is that

changes in a flow can be transmitted only through waves, and only at some

given speeds, which represent the eigenvalues of the governing non-linear

equation system. For a three equation system there are three wave speeds

corresponding to the speed the gas is travelling and the speed of sound rel-

ative to the gas speed in the upstream and downstream directions. Since

the solution to the equation set changes only across one of these waves, the

solution to the system in any point in space and time can be represented by

the summation of the states to the extreme left or right of the space, plus or

minus one or more of the state changes across the waves. To start it useful

to remember the system of conservation laws given in §2 by Eq. (2.5).

∂u

∂t
+

∂f(u)

∂η
= s(u).

In quasi-linear form
∂u

∂t
+A(u)

∂u

∂η
= s, (3.26)

where A(u) is the Jacobian matrix Jf = ∂f/∂u.
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Roe linearises this form of the equations in each interval (ηi, ηi+1) by re-

placing the Jacobian by interval-wise constant matrices Ã(ui,ui+1) which

satisfy his Property U, i.e. for any two adjacent states uL and uR:

⋄ Ã(uL,uR) is diagonalisable with real eigenvalues (hyperbolicity);

⋄ Ã(uL,uR) → A(u) as uL and uR → u (consistency)

⋄ f(uL − uR) = Ã(uL,uR)(uL − uR) (conservation)

The first two conditions are readily satisfied if Ã is taken to be the Jacobian

evaluated at an averaged state, i.e. Ã(uL,uR) = A(ū). Once Ã has been

obtained, it is diagonalised which results in a set of decoupled linear ad-

vection equations in each interval.

The flux differences fR−fL in each interval are then decomposed onto local

eigenvectors

∆f = fR − fL =

3
∑

k=1

α̃(k)λ(k)x(k) (3.27)

where α̃(k), λ̃(k) and x̃
(k) are the coefficient for ∆u, the eigenvalue and

eigenvector, respectively, corresponding to the kth characteristic field of Ã.

Roe’s original scheme updated the solution by upwinding and directly

adding these flux difference components.

It may be placed in the framework of intercell fluxes by integration

around the half cell (xi+1/2, xi+1)×(tn, tn+1) (similar to the derivation of

Godunov’s scheme [4]) resulting in the flux

hi+1/2 =
1

2
(fi+1 + fi)−

1

2

3
∑

k=1

α̃(k)|λ|(k)x(k). (3.28)

In this formulation Ã can be seen to be identified with the cell interfaces

(see Appendix §6.5 for term evaluation).

Because the resulting individual approximate Riemann problems are lin-

ear, their solutions contain only discontinuities and not expansion fans.

For this reason Roe’s original method is not entropy satisfying, although

a number of entropy fixes have since been proposed. The results obtained

with the R* are displayed in figures 20 and 21.
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3.6.2 HLL Method (HLL*)

For the purpose of computing a Godunov flux, Harten, Lax and van Leer

[6] presented a novel approach for solving the Riemann problem approxi-

mately. The resulting Riemann solvers have become known as HLL Rie-

mann solvers. In this approach an approximation for the intercell numeri-

cal flux is obtained directly. The central idea is to assume, for the solution,

a wave configuration that consists of two waves separating three constant

states.

If sRi+1/2 and sLi+1/2 are upper and lower bounds, respectively, for the

largest and smallest signal velocities resulting from the solution of the Rie-

mann problem centred at ηi+1/2, then the intermediate state is obtained

from conservation to be

uHLL
i+1/2 =

sRi+1/2ui − sLi+1/2ui

sRi+1/2 − sLi+1/2

− fi+1 − fi

sRi+1/2 − sLi+1/2

. (3.29)

Integrating this solution substituted into the conservation law over the half

cell (ηi+1/2, ηi)× (tn, tn+1) results in the HLL flux. Note the line of interest

is the vertical line η/t = 0 in the Riemann problem as it is this which gives

the flux

fHLL
i+1/2 =























fi
η
t ≤ sLi+1/2

fHLL
i+1/2 sLi+1/2 ≤

η
t ≤ sRi+1/2

fi+1 sLi+1/2 ≤
η
t

(3.30)

where

fHLL
i+1/2 =

sRi+1/2fi − sLi+1/2fi+1 + sLi+1/2s
R
i+1/2(ui+1 − ui)

sRi+1/2 − sLi+1/2

(3.31)

It now remains to specify the upper and lower bounds sRi+1/2 and sLi+1/2

1. One possibility is to evaluate them directly

sLi+1/2 =
ui + ui+1

2
− c, sRi+1/2 =

ui + ui+1

2
+ c (3.32)

2. or, as suggested by Davis to use the maximum eigenvalue evaluated

at the right state and the minimum eigenvalue evaluated at the left

state respectively.

sLi+1/2 = min(uL − c, uR − c), sRi+1/2 = max(uL + c, uR + c) (3.33)

3. Another alternative, suggested by Davis and also Einfeldt is to use

Roe’s averaged eigenvalues as estimates.

sLi+1/2 = ũi+1/2 − c, sRi+1/2 = ũi+1 + c (3.34)

The results obtained with the HLL schemes are displayed in figures 28 to

35.
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3.7 Flux Limiters (FL*)

Flux limiters are a class of schemes similar to the Flux-Corrected Trans-

port methods which encompass the Total Variation Diminishing (TVD) al-

gorithms of several authors. There are two main differences however be-

tween the approach adopted here and that of Boris and Book (and later

Zalesak). Firstly the FCT algorithm was essentially a two-step procedure,

whereas here we adopt a single-step approach; and secondly the FCT lim-

iter was constricted by unity whilst we allow a more generous upper limit.

In order to apply the flux limiters to Roe’s method we must first write the

scheme in flux form.

hi+1/2 =
1

2
(fi+1 + fi)−

1

2

3
∑

k=1

(1− φi(1− |ν|))α̃(k)|λ|(k)x(k) (3.35)

where ν = (∆t/∆η)λ(k). The flux limiter φ is a function of the ratio of con-

secutive gradients of the solution, i.e.

φi = φ(ri) (3.36)

where

ri =
δuni−1/2

δuni+1/2

(3.37)

The Flux Limiter framework encompasses the work of several authors, in-

cluding:

1. Roe’s minmod flux limiter which adaptively switches between Lax-

Wendroff and Warming and Beam

φmm(r) = max(0,min(1, r)) (3.38)

2. Roe’s compressive superbee limiter

φsb(r) = max(0,min(2r, 1)),min(r, 2)) (3.39)

3. Van Leer’s limiter which switches between non-conservative forms

of Lax-Wendroff and Warming and Beam

φvL =
r + |r|
1 + |r| (3.40)

All of the above limiters have the property

φ(r)

r
= φ

(

1

r

)

(3.41)

which is a symmetry property ensuring that the top of a discontinuity is

treated symmetrically to the bottom of a discontinuity. Not all limiters have

this property and neither do the FCT limiters mentioned in §3.5. The results

obtained with the addition of flux limiters to R* are displayed in figures 22

to 27.
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3.8 Source Terms

In Albada et al.’s study [23] a choice is made between two different ap-

proaches to evaluating the source term of Eq. (2.5). For runs less than

2,000 time-steps a point-wise method is used and for runs greater than

2,000 time-steps a direct integration method is used for greater stability.

The point-wise method is only applied to MC2 and LW and so time cen-

tring is achieved in a two step procedure. As previously mentioned for all

of our methods we chose to use the direct integration method for faster con-

vergence however both methods will be presented here as well as a third

method that decomposes the source term using the same technique as used

in the Appendix §6.5.

3.8.1 Point-wise method

If we take our discretised version of Eq. (2.5) with source term

un+1
i = un

i − ∆t

∆η
(h

n+1/2
i+1/2 − h

n+1/2
i−1/2 ) + ∆ts

n+1/2
i . (3.42)

Using a two-step predictor corrector algorithm corresponds to inserting

s
n+1/2
i+1/2 ≡ 1

2
(sni+1 + s̄n+1

i ) (3.43)

where s̄n+1
i is the predicted value at time level tn+1. The source term is then

evaluated at each point in the spatial region, hence point-wise.

3.8.2 Direct Integration Method

We start by integrating the following equation

∂u

∂t
= s, (3.44)

over a half time-step, then continuing by integrating

∂u

∂t
+

∂f

∂η
= 0, (3.45)

over a full time step, and finishing off with integrating Eq. (3.44) over a

half time-step again. The advantage of this method is that Eq. (3.44) can be

accurately integrated however this may not always be possible.
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For the current problem the analytic solution of (3.44) is

ρ(tn + τ, ηi) = ρni ,

u(tn + τ, ηi)− u0 = (uni − u0) cos(κτ)

+
2Ω

κ

(

vni − v0 +
A

αωΩ
sin η̂

)

sin(κτ),

v(tn + τ, ηi)− v0 = − A

αωΩ
sin η̂

+

(

vni − v0 +
A

αωΩ
sin η̂

)

cos(κτ)− κ

2Ω
(uni − u0) sin(κτ)

(3.46)

As stated in [23] the cause of the instability that arises is the same that

would make a linear first-order algorithm for integrating (3.44) unstable:

instead of choosing (u(tn + τ), v(tn + τ)) on the ellispe given by (3.46), the

linearised version will put it on the tangent to that ellipse, thus always

leading to an amplification of the disturbance.

3.8.3 Decomposition

A possible way to treat non-homogeneous terms is to approximate the r.h.s

term of Eq. (2.5), s, by:

s̃ =
1

2
[si + si+1] (3.47)

We now decompose the term into wave components through the β terms

as is done in equations (6.28 through to 6.61):

β̃(1) = ∆η
s̃3 − ṽ

λ̃(1)s̃1
β̃(2) = ∆η

s̃2 − (ũ− c)s̃1

2cλ̃(2)
β̃(3) = ∆η

−s̃2 + (ũ+ c)s̃1

2cλ̃(3)

(3.48)

The full scheme now reads

un+1
i = un

i − ∆t

∆η
(fni+1/2 − fni−1/2) +

∆t

2
(s̃ni+1/2 + s̃ni−1/2), (3.49)

where

fni+1/2 =
1

2
(fi+1 + fi)−

1

2

3
∑

k=1

(α̃(k) + β̃(k))|λ|(k)x(k) (3.50)

The results obtained with the decomposition of the source term are dis-

played in figures 28 and 29. The next section presents the results obtained

from applying the methods to the representative problem.
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4 Results

The first method attempted was that of MacCormack. To maintain consis-

tency with van Albada et al. the solution was plotted at tn = 1200±150. The

results from which were far from acceptable due to the large variation in
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Figure 3: A MC2 time evolution plot of ρ for tn =

1050, 1200 and 1350 as used in [23],

ρ, u and v over such a short

period of time. By animat-

ing the temporal progression of

our solution we found the dis-

ruption of the convergence was

because of strong transients.

This is difficult to see from fig-

ure 3 and in general would not

be picked up without anima-

tion. A better way to illus-

trate it is with the distribution

of ρu as shown in §3.1. It is

important to recall that all of

the results that have been plot-

ted in figures 4-5 are based on

the RMSE of the smooth values

straddling the shock. The rea-

son for this is that no scheme is

expected to perfectly model the

shock and the area of interest

is the accuracy with which the

pre-shock and decompression

zones are modelled. It is there-

fore important to continue to

analyse the data in this way to

maintain consistency within both sets of data (ours and Albada et al.). Fig-

ure 4 gives a much clearer picture of what is happening. The scheme is

converging to a steady oscillation that is within 1% of the reference solu-

tion. Notice the marked improvement resulting from the use of the direct

integration of the source term. This increase in the rate convergence was

also seen when applied to LW. Although the graphs give a better under-

standing of what is happening it was our wish to use this information to

form a more reliable testing method.

Using a simple peak finding algorithm (see figure 5) it was possible to

include a realtime bound, σ, on the accuracy of the scheme. Using this

bound meant that when run, each scheme’s maximum RMSE of ρu was

known to be within that bounded value. Once reached the values of ρ, u

and v would then be returned and output to file along with the number of

time-steps n and the elapsed time e.
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Figure 4: Plot comparing the use of the direct integration method for source term evalua-

tion.
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Figure 5: Plot highlighting the capabilities of the peak finding algorithm.

Since the RMSE values the methods produce are mainly an indication of

the accuracy in the smooth part of the solution the analysis of the shock will

come from visual inspection of the plots. With this in mind we should ask

the, question what kinds of solution features cause numerical problems?

To begin with, many numerical methods have difficulties when a wave

speed equals zero. In one dimension, wave speeds equal zero at sonic

points. For our particular problem the sonic point is located at a spiral phase

η̂ = 155.53◦. In other words f′(u∗) = A(u∗) = 0, where u∗ is the solution at

the sonic point. Sonic points usually signal a change in the wind direction.

Unless specific steps are taken, many numerical methods produce signif-

icant errors near sonic points. Besides sonic points, shock waves, contact

discontinuities, expansion fans, and other non-smooth features are major

stumbling blocks for our numerical methods. Typical symptoms include

oscillations, overshoots, and a smearing that spreads the discontinuity over

a region of several cells.
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4.1 Test One

4.1.1 The Beam Scheme
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Figure 6: Numerical results (circles) ob-

tained with the beam scheme (B), starting

from the reference solution (line) and run

until the RMSE of ρu is within 1%.
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Figure 7: The beam scheme time series plot

of the RMSE of ρu.

From figure 6 we can see there is

strong numerical diffusion occurring

when it encounters the shock which

results in the density maximum be-

ing severely underestimated. The

consequence of the maximum den-

sity being under-shot is barely sub-

sonic values of u. This related re-

sponse is evidence the solutions are

coupled.

Note the displacement of shocks in

the downstream direction is a typi-

cal problem encountered by upwind-

differencing methods. Notice how

the zone immediately before the

shock is not influenced by the down-

stream subsonic region.

The non-uniform distribution of ρu

across the discontinuity is further ev-

idence the shock it is not being mod-

elled accurately. Only the most gen-

eral features of the smooth region are

represented. This result coincides with

that of van Albada et al.
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4.1.2 Second-order flux-splitting method
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Figure 8: Results of the second-order flux-

splitting method (FS2) run until the RMSE

of ρu is within 1%.
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Figure 9: The second-order flux-splitting

method (FS2) time series plot of the RMSE

of ρu.

FS2 produces an oscillation-free,

sharp rendition of the shock show-

ing the efficiency of applying dissi-

pation through the averaging func-

tion Eq. (3.14) is well worth the ad-

ditional programming effort.

Notice how only one point in the

plot of ρu struggles with the approx-

imation of the discontinuity when

compared to the previous values of

the beam scheme. The accuracy with

which the shock is modelled is evi-

dence that flux-splitting is a very

good approach to take when mod-

elling shocks. This result coincides

with that of van Albada et al.
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4.1.3 MacCormack’s method (FB)
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Figure 10: Results of the MacCormack

method (MC2) run until the RMSE of ρu is

within 1%.
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Figure 11: The MacCormack method (MC2)

time series plot of the RMSE of ρu.

Visually our results confirm those

presented in [23]. The MacCormack

method produces a reasonably nar-

row shock that is in the right place.

MC2’s representation of the smooth

region either side of the shock is the

best out of all of the methods how-

ever, as previously explained this is

expected since the reference solution

is calculated using MC2 and the test-

ing is therefore biased towards the

results produced by MC2.

Van Albada et al. describes oscilla-

tions occurring before the shock in

both the density ρ and the velocity

component u. From figure 9 these

observations are not obvious, how-

ever it is clear the pre-shock oscilla-

tions are still occurring as they are

visible in the plot of ρu. This sug-

gests that the solutions presented in

[23] are still converging to a steady

oscillation.

One thing that was noticed with the

animation of the solution was that

the transients that occur in the tem-

poral progression propagate only in

the forward direction. This may be

the reason the forward backward

predictor corrector sequence perfor-

med better.
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4.1.4 SHASTA

Flux Corrected Transport (LW)
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Figure 12: Results of the SHASTA flux-

corrected transport (LW) method (FCTLWS)

run until the RMSE of ρu is within 1%.
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Figure 13: The SHASTA flux-corrected

transport (LW) method (FCTLWS) time se-

ries plot of the RMSE of ρu.

Similar to the previous methods the

results from the SHASTA flux-correc-

ted transport method confirm those

in [23]. Large oscillations before the

shock are translated across the rest

of the system resulting in an unsatis-

factory solution. While this method

is instantly discarded in [23] the next

figure shows there are potential ben-

efits to using flux-correcting limiters

in our methods.
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4.1.5 SHASTA

Flux Corrected Transport (MC2)
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Figure 14: Results of the SHASTA

flux-corrected transport (MC2) method

(FCTMC2S) run until the RMSE of ρu is

within 1%.
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Figure 15: The SHASTA flux-corrected

transport (MC2) method (FCTMC2S) time

series plot of the RMSE of ρu.

Since we had already written a pro-

gram for the MacCormack method

the addition of a flux-correcting lim-

iter was straight forward. Figure 14

shows a fair rendition of the smooth

region and also a sharp, narrow, well

positioned shock, however, we must

keep in mind that the performance

in the smooth region is once again

biased due to the use of MC2 in the

reference solution.

Although oscillations still occur they

are damped. This can also be gauged

on the amount of disturbance in the

plot of ρu which is slightly less than

in LW.
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4.1.6 Zalesak

Flux Corrected Transport (LW)

             
100

110

120

130

140
v

Iterations=3282          Time=3.282

             
0

10

20

30

40

u

             
0

1

2

3

4

ρ

0   90   180   270   360
10

12

14

16

Spiral Phase

ρ 
u

Figure 16: Results of the Zalesak flux-

corrected transport (LW) method (FCTLWZ)

run until the RMSE of ρu is within 1%.
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Figure 17: The Zalesak flux-corrected trans-

port (LW) method (FCTLWZ) time series

plot of the RMSE of ρu.

The Zalesak Flux-Corrected Transp-

ort method produces almost identi-

cal results to MC2 although not quite

as accurate as shown in table 1. The

addition of the strong diffusive term

is anti-diffused by the flux-correcting

method but not enough to the point

where the density maximum match-

es that of the reference solution and

it is therefore under-shot. The corre-

sponding u values are therefore also

underestimated.

Considering that the complexity of

Zalesak’s algorithm requires more

programming effort and the result a-

chieved is slightly worse than MC2

the Zalesak algorithm should be de-

emed unsuitable for this problem ho-

wever, since the solution is so close

to MC2’s, the rate of convergence

should be included as a contributing

factor. The number of steps it takes

to achieve steady-state is nearly half

the number of steps it takes for MC2

to converge to steady-state. This re-

sult however is inconsistent with the

rest of our findings.

35



4.1.7 Zalesak

Flux Corrected Transport (MC2)
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Figure 18: Results of the Zalesak flux-

corrected transport (MC2) method

(FCTMC2Z) run until the RMSE of ρu

is within 1%.
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Figure 19: The Zalesak flux-corrected trans-

port (MC2) method (FCTMC2Z) time series

plot of the RMSE of ρu.

The results from the application of

the Zalesak FCT method to MC2 re-

turns near identical results to its ap-

plication to LW however it does not

benefit from an increased rate of con-

vergence. It is therefore discarded as

an appropriate method for the prob-

lem.
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4.1.8 Roe’s method
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Figure 20: Results of Roe’s method (R*) run

until the RMSE of ρu is within 1%.
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Figure 21: Roe’s method (R*) time series plot

of the RMSE of ρu.

Roe’s method is by far the best perf-

orming first-order method. The den-

sity peak, although slightly displac-

ed downstream, is sharper and much

closer to the reference solution than

any of the other first-order methods.

There is a slight under-shoot of the

peak density so the shock rendition

is not of the same quality of FS2 but

is much better than MC2.

Although the shock produced is sha-

rper the representation of the smooth

region is quite poor. It is for this rea-

son that R* does not perform well in

terms of RMSE even with the addi-

tion flux limiters.

One thing to note is the distribution

of ρu still has some visible oscilla-

tions albeit very small. This implies

that although the RMSE (as a per-

centage of the equilibrium value) is

within 1 percent it is yet to reach ste-

ady state.
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4.1.9 Roe’s Method

Minmod flux limiter
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Figure 22: Results of Roe’s method (R*) with

minmod flux limiter applied (RFLM*) run

until the RMSE of ρu is within 1%.
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Figure 23: Roe’s method (R*) with minmod

flux limiter applied (RFLM*) time series plot

of the RMSE of ρu.

Roe’s method with the minmod flux

limiter is one of the best performing

second-order methods and the best

performing flux limiter for this prob-

lem. The shock is sharp and narrow,

and both the decompression and sub-

sonic regions are well represented.

Although the smooth zones features

are more prominent they are still not

of the same quality as MC2 and as

previously this hinders the overall re-

sult of the method.
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4.1.10 Roe’s Method

Superbee flux limiter
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Figure 24: Results of Roe’s method (R*) with

superbee flux limiter applied (RFLS*) run

until the RMSE of ρu is within 1%.

0 2 4 6 8 10
0

1

2

3

4

5

Time

R
M

S
E

 (
%

 o
f e

qu
ili

br
iu

m
 v

al
ue

)

RMSE Bound=1
Peak Threshold=0.5

Figure 25: Roe’s method (R*) with superbee

flux limiter applied (RFLS*) time series plot

of the RMSE of ρu.

The addition of the superbee flux li-

miter to Roe’s method produces very

similar results to the minmod flux li-

miter but cannot compete in smooth

zone representation. The limiter

over-shoots the smooth zone just be-

fore the shock.

Since each of the limiters corresponds

to a boundary of the TVD region of

the scheme it is clear from these re-

sults that the accuracy of the scheme

depends on which boundary is cho-

sen. Since the superbee limiter is at

the top most boundary the amount

it allows for variation is the largest

out of the limiters. This results in the

largest over-shoot in the smooth re-

gion. This may also give it the best

approximation to the maximum den-

sity value but this is not visible at

this grid resolution.
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4.1.11 Roe’s Method

Van Leer flux limiter
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Figure 26: Results of Roe’s method (R*) with

van Leer limiter applied (RFLV*) run until

the RMSE of ρu is within 1%.
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Figure 27: Roe’s method (R*) with van Leer

flux limiter applied (RFLV*) time series plot

of the RMSE of ρu.

Similar to the addition of the super-

bee flux limiter the addition of the

van Leer flux limiter to Roe’s method

produces accurate results but over-

shoots the smooth zone just before

the shock.

This further confirms our observa-

tions regarding the correlation betw-

een the TVD region and Roe’s rep-

resentation of the smooth zone. The

van Leer flux limiter is approximately

central in the TVD region and the re-

sults shown here are central in their

approximation to the smooth zone

compared to the minmod flux lim-

iter. Since this may not be the case

for all problems the choice of limiter

must be seen as a disadvantage as it

is additional implementation that is

needed just as the diffusion term co-

efficient must be chosen for MC2.
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4.1.12 Roe’s Method

Source Term Decomposed
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Figure 28: Results of Roe’s method (R) with

the source term decomposed (RSD) run until

the RMSE of ρu is within 1%.
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Figure 29: Roe’s method (R) with the source

term decomposed (RSD) time series plot of

the RMSE of ρu.

With the source term decomposed,

the shock propagates downstream

very quickly (within 100 steps).

Strong transient waves then begin to

oscillate and as illustrated by figure

29 intensify until the solution is de-

stroyed. It is our belief that this is

due to the implementation of the

code, which could not be completely

debugged due to time constraints,

not the method.

This is unfortunate because the re-

sult expected should have hopefully

allowed the source terms to also cope

with the shock which would have re-

sulted in the distribution of ρu being

completely uniform.

41



4.1.13 HLL Scheme

Algorithm 1
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Figure 30: Results of the Harten, Lax & van

Leer scheme (HLL) with algorithm 1 (HLL1)

run until the RMSE of ρu is within 1%.
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Figure 31: Harten, Lax & van Leer scheme

(HLL) with algorithm 1 (HLL1) time series

plot of the RMSE of ρu.

For the HLL scheme the shock ren-

dition is narrow but also slightly dis-

placed downstream. The scheme en-

counters difficulties when when it a-

pproximates the solution across the

sonic point. The downstream sub-

sonic region cannot numerically in-

fluence the upstream supersonic re-

gion by sound waves moving upstr-

eam, while the numerical diffusion

across those waves vanishes in the

sonic point (wave speeds are zero at

sonic point). The solutions on either

side therefore are not strongly cou-

pled. This is also the case in van Al-

bada et al’s Godunov method. It is

typical for schemes to produce prob-

lematic solutions about sonic points.

The overall smooth region represen-

tation either side of the shock is poor.

The peaks and troughs of the smooth

features are under and over approx-

imated respectively. As with B only

the general smooth features are rep-

resented. The HLL scheme combined

with using algorithm 1 to find the

shock speed is therefore unsuited for

this type of problem.

Although the schemes performance

is poor in general the uniformity of

the distribution of the ρu values is

very good. It is almost on par with

the results produced by FS2. This

suggests that a methods overall per-

formance is not correlated to the in-

stability of the distribution but rather

the accuracy with which the shock is

rendered.
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4.1.14 HLL Scheme

Algorithm 2
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Figure 32: Results of the Harten, Lax & van

Leer scheme (HLL) with algorithm 2 (HLL2)

run until the RMSE of ρu is within 1%.
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Figure 33: Harten, Lax & van Leer scheme

(HLL) with algorithm 2 (HLL2) time series

plot of the RMSE of ρu.

The use of algorithm 2 to calculate

shock speeds resolves the issue oc-

curring at the sonic point. The shock

is closer fitting as a result however,

the peak density is underestimated

and also slightly displaced as with

algorithm 1.

The solution, similar to algorithm 1,

provides a poor representation of the

smooth region of the flow either side

of the shock, which implies that it

is the HLL method that cannot cope

with modelling the smooth flow as

a pose to the type of algorithm used

for wave speed calculation.
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4.1.15 HLL Scheme

Algorithm 3
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Figure 34: Results of the Harten, Lax & van

Leer scheme (HLL) with algorithm 3 (HLL3)

run until the RMSE of ρu is within 1%.
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Figure 35: Harten, Lax & van Leer scheme

(HLL) with algorithm 3 (HLL3) time series

plot of the RMSE of ρu.

The results produced by the HLL

scheme using algorithm 3 to calcu-

late the wave speeds are very sim-

ilar to those of method B. The use

of Roe’s averaged variables to cal-

culate wave speeds results in strong

numerical diffusion which causes the

density maximum to be under esti-

mated and also displaced downstre-

am several zones.
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4.1.16 Numerical Results

RMSE (% of equilibrium value)

Scheme ρ u v
∑

ρu n tn e σ

B 5.03 5.71 0.23 10.97 0.61 2,397 2.40 39 2%

5.19 5.56 0.27 11.02 0.49 6,765 6.77 133 1%

FS2 1.10 2.68 0.19 3.97 1.24 2,283 2.28 78 2%

1.14 2.16 0.24 3.54 0.78 7,236 7.24 213 1%

MC2 1.35 1.84 0.15 3.34 1.23 1,791 1.79 15 2%

1.48 2.27 0.17 3.92 0.23 4,987 4.99 50 1%

FCTLWS 4.14 4.14 0.18 8.46 1.22 1,600 1.60 14 2%

3.93 4.41 0.30 8.64 0.49 5,257 5.26 56 1%

FCTMC2S 4.00 3.93 0.24 8.17 1.26 1,776 1.78 15 2%

3.90 4.37 0.32 8.59 0.48 4,468 4.47 43 1%

FCTLWZ* 2.88 2.10 0.36 5.34 1.29 2,088 2.09 39 2%

3.03 1.79 0.35 5.17 0.59 3,282 3.28 74 1%

FCTMC2Z* 3.29 1.88 0.38 5.55 1.13 2,095 2.10 64 2%

2.79 1.24 0.29 4.32 0.43 4,368 4.37 105 1%

R* 1.64 2.89 0.31 4.84 1.35 1,087 1.09 40 2%

1.68 2.87 0.19 4.74 0.69 6,367 6.37 261 1%

RFLM* 2.12 3.78 0.30 6.20 1.10 1,679 1.68 65 2%

2.02 2.74 0.17 4.93 0.43 5,173 5.17 210 1%

RFLS* 3.02 2.64 0.34 6.99 1.33 1,114 1.11 43 2%

2.76 3.59 0.25 6.60 0.44 4,029 4.03 167 1%

RFLV* 2.16 2.57 0.13 4.86 1.42 1,597 1.60 62 2%

2.23 2.92 0.19 5.34 0.45 4,976 4.98 208 1%

HLL1* 2.96 4.12 0.33 7.41 1.48 1,478 1.48 27 2%

3.19 4.13 0.32 7.64 0.57 4,252 4.25 84 1%

HLL2* 1.75 3.12 0.30 5.17 1.54 1,281 1.28 23 2%

1.77 2.91 0.28 4.96 0.56 3,665 3.67 73 1%

HLL3* 4.63 5.23 0.22 10.08 1.06 2,787 2.79 52 2%

4.75 5.08 0.27 10.10 0.70 9,564 9.56 217 1%

Table 1: Test 1. RMSEs in the smooth region of the numerical solution, obtained with

14 schemes after the RMSEs are within 2 and 1 percent of the equilibrium values with a

Courant number of 0.5, using a high resolution MC2 solution as the initial-value distribu-

tion. The results correspond to the figures 5-35 after n steps at tn = n∆t, where ∆t = 10−3

and e is the elapsed time as described in the previous section.
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4.2 Test Two

RMSE (% of equilibrium value)

Scheme ρ u v
∑

ρu n tn e σ

FS2 2.10 3.68 0.19 5.97 1.36 4,102 2.28 78 2%

2.14 1.66 0.24 4.04 0.63 6,922 7.24 213 1%

MC2 1.48 1.79 0.20 3.97 1.51 4,066 4.07 44 2%

1.60 2.24 0.19 4.03 0.52 6,708 6.71 94 1%

R* 1.95 5.00 0.31 7.26 1.67 1,281 1.28 53 2%

1.65 2.79 0.27 4.08 0.69 3,006 3.01 131 1%

RFLM* 2.23 2.65 0.28 5.16 1.64 3,416 3.42 120 2%

2.14 2.31 0.21 4.66 0.61 5,468 5.47 201 1%

RFLV* 2.27 3.13 0.24 5.64 1.56 4,162 4.16 148 2%

2.22 2.85 0.25 5.32 0.70 5,571 5.57 204 1%

Table 2: Test 2. RMSEs in the smooth region of the numerical solution, obtained with

14 schemes after the RMSEs are within 2 and 1 percent of the equilibrium values with a

Courant number of 0.5, using a uniform initial-value distribution. The results correspond

to the figures 5-34 after n steps at tn = n∆t, where ∆t = 10−3 and e is the elapsed time as

described in the previous section.

RMSE (% of equilibrium value)

Scheme ρ u v
∑

ρu n tn σ

FS2 2.10 3.68 0.19 5.97 1.36 4,102 2.28 2%

2.14 1.66 0.24 4.04 0.63 6,922 7.24 1%

FS2 [23] 2.40 4.80 0.20 7.40 7.00 2,400 2.39 n/a 1

MC2 1.48 1.79 0.20 3.97 1.51 4,066 4.07 2%

1.60 2.24 0.19 4.03 0.52 6,708 6.71 1%

MC2 [23] 3.10 3.90 0.19 7.19 7.00 2,400 2.39 n/a

Table 3: Comparison of the results taken from [23]’s test 2 and the results in table 1 for FS2

and MC2.

1n/a is an abbreviation for not available
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5 Conclusion

Our first objective was to recreate the results produced in van Albada et al.

and confirm their conclusions in order for us to make our own comparisons

and conclusions with the updated list of methods. In order decide whether

or not our conclusions agree it is appropriate to first define those of van

Albada et al. based on their first test.

1. The best second-order method (FS2) outperforms the best first-order

method (G) by a huge margin, on a grid with a resolution comparable to

what is feasible in two-dimensional calculations.

2. The success of the second-order method FS2 derives from the simple

and effective averaging procedure that replaces central differencing.

3. The second-order central differencing scheme (MC2), while accu-

rate in rendering the smooth parts of a solution, cannot compete with the

second-order upwind-differencing method in shock representation.

In response to this we can say the following three statements in confi-

dence based on the results of our first test

1. The best second-order method (FS2, since we are taking into account

the shock rendition also) no longer outperforms the best first-order method

(R*) by a huge margin, on a grid with a resolution comparable to what is

feasible in two-dimensional calculations. The difference is now within 1

percent compared to the previous 7 percent.

2. The success of the second-order method still derives from the simple

and effective averaging procedure that replaces central differencing.

3. The second-order central differencing scheme (MC2), while suffi-

ciently accurate in rendering the smooth parts of a solution, cannot com-

pete with the second-order upwind-differencing method in shock repre-

sentation still holds.

Our second test reinforces all three of the above conclusions and also

shows that the stronger transients that result from an initial distribution

do not dampen the solutions the methods produced in the first test. While

firm conclusions about the accuracy of these schemes applied to transient

phenomena should not be given, since the solutions obtained cannot be

calibrated with a time-dependent exact solution, we can say in confidence

that using the RMSEs to test for a steady-state solution results in a more

reliable comparison than using a fixed time run comparison. Van Albada

et al. states the RMSEs “do not do not differ much from scheme to scheme”

after 2,400 time-steps. Our results suggest that even without the use of

the exact solution as an initial-value distribution (test 2), which eliminates

the error in using a high resolution approximation to the exact, a marked

difference is visible between the accuracy of shorter and longer runs. A

reason for this may be the precision and accuracy that the floating point

calculations were made with are much lower than those used in our testing.

One final interesting observation is that as mentioned in our test setup, the
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better scheme would would fair worse since the numerical viscosity would

be is most for less accurate schemes. The underlying trend of the results

confirmed.

We have two major concerns about our model and testing procedure.

The first being the use of an approximation as reference solution. An exact

solution is essential. Although the results we obtained are informative and

representative of the methods there is clear bias towards the scheme that

was used for the reference solution (MC2). This therefore also implies that

there is a bias against the remaining methods. Since this bias is the same

for all of the methods the results presented are still useful however it is

necessary to take this factor into account when assessing the values of the

methods that use MC2 in tables 1 and 2. Our second concern is that in

order to determine the oscillations peak values our peak finding algorithm

would have to read through a time series of values and return a peak after

a defined threshold. This procedure lead to a value being returned beyond

the maximum. This compromises the reliability of the comparisons and

should be taken into account in the future.

We attempted the implementation of some implicit schemes but again

due to time constraints could not include them in our study (see [13]). Some

suggestions for future direction are the implementation of the methods pre-

sented implicitly and also an investigation into some more modern meth-

ods such as the MPDATA scheme. For the FCT methods used here and in

[23] the evaluation of the anti-diffused term is done by taking the difference

between a high order method (MC2 or LW) and a low order method (MC2

and LW with a diffusing term). An alternative approach to this would be

to use R* for the lower-order method or some first-order alternative and

MC2, LW, FS2 etc. as the higher order method or some alternative. In

order to summarise our results it seems appropriate to ask the same ques-

tion we started with “What reliable, accurate, efficient and easy-to-program

method should be used for this calculation?”

On the basis of our present test results we can make three suggestions

⋄ For flow problems involving shocks of importance we recommend

the second-order upwind-differencing method FS2.

⋄ For problems involving shocks where the smoother regions are of

more importance we recommend the MacCormack method MC2.

⋄ For efficiency and a balance between smooth region and shock rendi-

tion we recommend Roe’s method (R*). Note to improve the accuracy

of both smooth regions and shocks the addition of the flux limiter to

Roe’s method via the flux form requires very little additional pro-

gramming effort. The choice of limiter can be related to the gradi-

ent of the pre-shock and decompression zones. For higher gradients

upper TVD bound limiters (superbee) and lower gradients either no

limiter or lower bound limiters (minmod).
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6 Appendix

6.1 Conservation Form

If we sum the conservative form over our computational domain it is eas-

ily seen that the numerical flux differences ’telescope’ (remembering the

source term has already been advance by Eq. (3.44) and therefore it is a

homogeneous case we are considering)

N
∑

i

un+1
i =

N
∑

i

un
i − ∆t

∆η

N
∑

i

(hv
i+1/2 − hv

i−1/2) + ∆t
N
∑

i

sni

=

N
∑

i

un
i − ∆t

∆η

N
∑

i

(...+ (hv
1/2 − hv

−1/2) + ...) + ∆t

N
∑

i

sni

=
N
∑

i

un
i − ∆t

∆η
(hv

k+1 − hv
k) + ∆t

N
∑

i

sni

Rearranging gives,

∑N
i un+1

i ∆η −∑N
i un

i ∆η

∆t
−∆η

N
∑

i

sni = −(hv
k+1 − hv

k) (6.1)

and thus the numerical solution mimics the analytic conservation property

d

dt

∫ ηk+1

ηk

u(η, t)dη −
∫ ηk+1

ηk

s(η, t)dη = −(f(uk+1)− f(uk)) (6.2)

6.2 Modification of Equation Eq. (2.5)

The modification of Eq. (2.5) in order to obtain (∂w/∂t)ni is not explicitly

described in [23]. We felt it necessary to include for completeness.

We start with Eq. (2.5) in component form

∂ρ

∂t
+

∂

∂η
(ρu) = s1, (6.3)

∂

∂t
(ρu) +

∂

∂η
(ρ(u2 + c2)) = s2, (6.4)

∂

∂t
(ρv) +

∂

∂η
(ρuv) = s3. (6.5)

We then manipulate Eqs. (6.3, 6.4 and 6.5) such that

∂ρ

∂t
=

∂w1

∂t
= − ∂

∂η
(ρu) + s1 = (−ρ)

∂u

∂η
+ (−u)

∂ρ

∂η
+ s1 (6.6)
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(6.4)− u · (6.3) = ρ
∂u

∂t
+ c2

∂ρ

∂η
+

∂

∂η
(ρu2)− u

∂

∂η
(ρu) + s2 (6.7)

= ρ
∂u

∂t
+ c2

∂ρ

∂η
+

∂

∂η
(ρu2)−

[

∂

∂η
(ρu2)− (ρu)

∂u

∂η

]

+ s2 (6.8)

= ρ
∂u

∂t
+ c2

∂ρ

∂η
+ (ρu)

∂u

∂η
+ s2 (6.9)

Rearranging Eq. (6.9)

∂u

∂t
=

∂w2

∂t
= −c2

ρ

∂ρ

∂η
− u

∂u

∂η
+ s2 = −c2

∂

∂η
(ln ρ)− u

∂u

∂η
+ s2 (6.10)

Finally

(6.5)− v · (6.3) = ρ
∂v

∂t
+

∂

∂η
(ρuv)− v

∂

∂η
(ρu) + s3 (6.11)

= ρ
∂v

∂t
+ (uρ)

∂

∂η
v + s3 (6.12)

Rearranging Eq. (6.12)

∂v

∂t
=

∂w3

∂t
= −u

∂v

∂η
+ s3 (6.13)

6.3 Lax-Wendroff Scheme

To apply the Lax-Wendroff scheme to a non-linear system it is first written

in two-step predictor corrector form (remembering source terms have al-

ready been advanced by Eq. (3.44)):

First a Lax-Friedrich predictor

ū
n+1/2
i+1/2 =

1

2

[

(un
i+1 + un

i )−
∆t

∆η
(fni+1 − fni )

]

, (6.14)

followed by a second stage Leapfrog corrector

un+1
i = un

i − ∆t

∆η
(f̄

n+1/2
i+1/2 − f

n+1/2
i−1/2 ), (6.15)

6.4 Zalesak Flux-Corrected Transport Algorithm

We seek to limit the anti-diffusive flux hA
i+1/2 such that

hC
i+1/2 = Ci+1/2hA

i+1/2, 0 ≤ Ci+1/2 ≤ 1 (6.16)

and such that hC
i+1/2 acting in concert with hC

i−1/2 will not allow

un+1
i = utd

i − 1

8
(hC

i+1/2 − hC
i−1/2) (6.17)
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to exceed some maximum value umax
i nor fall below some minimum value

umin
i .

We define three quantities:

P+
i = the sum of all anti-diffusive fluxes into grid point i (6.18)

= max(0,hA
i−1/2)−min(0,hA

i+1/2) (6.19)

Q+
i =

1

8
(umax

i − utd
i ) (6.20)

R+
i =







min(1, Q+
i /P

+
i ) if P+

i > 0

0 if P+
i = 0







. (6.21)

Similarly we define three corresponding quantities:

P−
i = the sum of anti-diffusive fluxes away from grid point i (6.22)

= max(0,hA
i+1/2)−min(0,hA

i−1/2) (6.23)

Q−
i =

1

8
(utd

i − umin
i ) (6.24)

R−
i =







min(1, Q−
i /P

−
i ) if P−

i > 0

0 if P−
i = 0







. (6.25)

We come now to determine the quantities umax
i and umin

i . We choose a sfae

choice although other alternatives are available in [27]

umax
i = max(utd

i−1,utd
i ,utd

i+1) (6.26)

umin
i = min(utd

i−1,utd
i ,utd

i+1) (6.27)

6.5 Roe Decomposition

Remembering that we are looking to find the state averaged variables for

the numerical flux vector as defined by Eq. (3.28)

hi+1/2 =
1

2
(fi+1 + fi)−

1

2

3
∑

k=1

α̃
(k)
i+1/2|λ̃

(k)
i+1/2|x̃

(k)
i+1/2,

where α̃(k), λ̃(k) and x̃
(k) are the coefficient for ∆u, the eigenvalue and

eigenvector, respectively, corresponding to the kth characteristic field of Ã.

6.5.1 Eigenvalues

In order to calculate the flux vector as defined by Eq. (3.28) we need to find

the eigenvalues of our system.
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Let

u =





ρ

ρu

ρv



 =





ρ

m

n



 , (6.28)

and

f =









ρu

ρ(u2 + c2)

ρuv









=
1

ρ









mρ

m+ ρ2c2

mn









, (6.29)

where ∂f/∂u is the Jacobian

Jf(ρ,m, n) =









∂x1

∂ρ
∂x1

∂m
∂x1

∂n

∂x2

∂ρ
∂x2

∂m
∂x2

∂n

∂x3

∂ρ
∂x3

∂m
∂x3

∂n









(6.30)

now

A(u) =
∂f

∂u
=

1

ρ2











0 1 0

−m2 + ρ2c2 2mρ 0

−mn nρ mρ











=









0 1 0

c2 − u2 2u 0

−uv v u









(6.31)

The eigenvalues of A are then given by

det(A− λI) = 0 (6.32)

where λ are the eigenvalues and I is the identity matrix

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0

c2 − u2 2u− λ 0

−uv v u− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (λ− u)(λ− (u+ c))(λ − (u− c)) = 0 (6.33)

The eigenvalues are: λ(1) = u, λ(2) = u+ c and λ(3) = u− c

6.5.2 Eigenvectors

Formally, if A is a linear transformation, a non-null vector x is an eigenvec-

tor of A if there is a scalar λ such that

Ax(k) = λ(k)
x
(k) (6.34)
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where x = (x, y, z)T. For λ(1) = u









0 1 0

c2 − u2 2u 0

−uv v u

















x

y

z









= u









x

y

z









(6.35)

after some manipulation x(1) = (0, 0, 1)T . For λ(2) = u+ c









0 1 0

c2 − u2 2u 0

−uv v u

















x

y

z









= u+ c









x

y

z









(6.36)

after some manipulation x(2) = (1, u + c, v)T. For λ(3) = u− c









0 1 0

c2 − u2 2u 0

−uv v u

















x

y

z









= u− c









x

y

z









(6.37)

after some manipulation x(3) = (1, u − c, v)T

We define X to be a matrix with these eigenvectors as columns

X =









0 1 1

0 u+ c u− c

1 v v









(6.38)

Note we can now easily diagonalise A with X−1AX = Λ or A = XΛX−1

where Λ is a diagonal matrix with λ(k) on the diagonal.

6.5.3 The Parameter Vector

Suppose that the components of the vectors u and f may be written as

quadratic functions of the components of another vector say Z . We shall

call this the parameter vector

z =
√
ρ









1

u

v









, (6.39)

whence

u =









(z1)
2

z1z2

z1z3









, f =









z1z2

(z2)
2 + c2(z1)

2

z2z3









, (6.40)
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Using the identity

∆(pq) = p̄∆q + q̄∆p (6.41)

we may write

∆u = B̃∆z, ∆f = C̃∆z (6.42)

where ∆(·) = ·R − ·L and B̃ and C̃ are constant matrices.

For our isothermal system then

∆u =









∆(z1)
2

∆z1z2

∆z1z3









=









2z̄1 0 0

z̄2 z̄1 0

z̄3 0 z̄1









·









∆z1

∆z2

∆z3









(6.43)

and

∆f =









∆(z1z2)

∆((z2)
2 + c2(z1)

2)

∆(z2z3)









=









z̄2 z̄1 0

2c2z̄1 2z̄2 0

0 z̄3 z̄2









·









∆z1

∆z2

∆z3









(6.44)

i.e.

B̃ =









2z̄1 0 0

z̄2 z̄1 0

z̄3 0 z̄1









, C̃ =









z̄2 z̄1 0

2c2z̄1 2z̄2 0

0 z̄3 z̄2









, (6.45)

Thus we have

∆f = C̃∆z = C̃(B̃−1∆u) (6.46)

and when compared with

∆f = Ã(uL, uR)∆u (6.47)

gives a choice of

Ã(uL, uR) = C̃B̃−1 (6.48)

where

B̃−1 =
1

2z̄21









z̄1 0 0

−z̄2 2z̄1 0

−z̄3 0 2z̄1









, (6.49)

and so

Ã(uL, uR) =

















0 1 0

(c2 − z̄22
z̄21

)
2z̄2
z̄1

0

0
z̄3
z̄1

z̄2
z̄1

















, (6.50)
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remembering for our system

A(u) =









0 1 0

c2 − u2 2u 0

−uv v u









, (6.51)

and comparing with Ã gives us the Roe averaged variables

ũ =
z̄2
z̄1

=

√
ρRuR +

√
ρLuL√

ρR +
√
ρL

(6.52)

ṽ =
z̄2
z̄1

=

√
ρRvR +

√
ρLvL√

ρR +
√
ρL

(6.53)

Note that for this example ρ̃ is arbitrary and indeed not required.

6.5.4 Coefficient Evaluation

The coefficients α̃(k) are given by

α̃(k)X̃ = ∆u. (6.54)

We are therefore solving the following system









α(1)

α(2)

α(3)

















0 1 1

0 ũ+ c ũ− c

1 ṽ ṽ









= ∆









ρ

ρu

ρv









, (6.55)

by the simple manipulation of

α(2) + α(3) = ∆ρ, (6.56)

α(2)(ũ+ c) + α(3)(ũ− c) = ∆(ρu), (6.57)

α(1) + ṽα(2) + ṽα(3) = ∆(ρv), (6.58)

to obtain the coefficients

(6.58)− ṽ · (6.56) → α(1) = ∆(ρv)− ṽ∆ρ, (6.59)

(6.57)− (ũ− c) · (6.56) → α(2) =
∆(ρu)− (ũ− c)∆ρ

2c
, (6.60)

(6.57)− (ũ+ c) · (6.56) → α(3) =
−∆(ρu) + (ũ+ c)∆ρ

2c
. (6.61)
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6.6 MacCormack Method Comparison Table

The table consists of the results for

⋄ MacCormack Backward Predictor Forward Corrector (MC2BF)

⋄ MacCormack Forward Predictor Backward Corrector (MC2FB)

⋄ MacCormack Time Alternating (MC2TA)

RMSE (% of equilibrium value)

Scheme ρ u v
∑

ρu n tn e σ

MC2BF 1.36 1.90 0.15 3.41 1.22 1,792 1.79 14 2%

1.50 2.36 0.17 4.03 0.22 4,993 4.99 53.56 1%

MC2FB 1.35 1.84 0.15 3.35 1.23 1,791 1.79 15 2%

1.48 2.27 0.17 3.92 0.23 4,987 4.99 50 1%

MC2TA 1.36 1.86 0.15 3.37 1.24 1,791 1.79 15 2%

1.49 2.30 0.17 3.96 0.23 4,989 4.99 50 1%

Table 4: Comparison of MC2BF, MC2FB and MC2A’s RMSEs in the smooth region of the

solution within 2 and 1 percent of the equilibrium values with a Courant number of 0.5,

using reference solution as the initial-value distribution. .
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