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Abstract

The problem of having a restricted amount of data fpr a computational model is one faced

by many, including oceanographers, meteorologists and oil companies. How this problem

is overcome varies from discipline to discipline. In this dissertation we consider methods

for fitting the permeability data associated with a model for flow through porous media.

Optimisation techniques namely conjugate gradients and simulated, are presented as a

means for solving linear systems of equations which may be under or over determined.

We start by considering an inverse polynomial function for the permeability to achieve an

equation for the pressure, minimising either the least squares problem ‖Ax − b‖ or the

norm ‖x‖2 for the under and over determined cases. This, however, is a highly specific

case and so the second part of the dissertation is concerned with methods applicable

when both the pressure and permeability are approximated on a discrete mesh. This

is achieved by first looking at the pressure field and minimising the curvature of the

field, [2]. In one dimension we then consider the first order differential equation for the

permeability, which can be integrated and used to find an estimate for the permeability.

The equivalent method is outlined for the two dimensional case, which involves integrating

the permeability field along streamlines.

I confirm that this is my own work and the use of all material from other sources has

been properly acknowledged.
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Chapter 1

Introduction

In many areas where input data is required we often find that the amount of data that we

have is much less than the amount required to give a full solution to the problem. In these

cases we need to consider the best way to fill in the missing information required with

respect to the underlying model. When data is repeatedly received this can be achieved

by data assimilation, otherwise interpolation techniques are required, which try to find an

optimal solution (numerical or analytical) in some sense. The problem of having minimal

data is one faced by oil recovery companies: in order to find the best place to extract

the oil the permeability of the rock that it flows through needs to be estimated, often

with only a small amount of data which may be at random positions within the field

and many miles apart. The problem is governed by flow in a porous medium in which

the permeability varies. The primary variable is normally only the pressure but in the

situation we are considering here both the permeability and the pressure are required,

with relatively little data.
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1.1 Building a model for fluid flow through porous

media

Consider the equations which govern the flow of fluid through a porous media. The state

variables for fluid flow through a porous media are the porosity of the media, ψ, the

density, ρ, pressure, p, and velocity u of the fluid. The mass of the fluid is then given by

the integral

M =

∫

ω

ψ(x)ρ(x)d3x.

The mass balance law says that the rate of increase in a volume ω must equal the sum

of the rate of decrease by the flux through ∂ω and the rate of increase by creation. Given

that the rate of fluid creation is given by
∫

ω

qd3x,

then

d

dt

∫

ω

ρψd3x = −

∫

∂ω

ρu.ndS +

∫

ω

qd3x,

∴

∫

ω

∂

∂t
(ρψ)d3x = −

∫

ω

∇.(ρu)d3x+

∫

ω

qd3x,

∴

∫

ω

{

∂

∂t
(ρψ) +∇.(ρu)− q

}

d3x = 0.

But ω is an arbitrary volume and so

∂

∂t
(ρψ) +∇.(ρu) = q,

which is the mass balance equation in Eulerian form.

Darcy’s Law says that the velocity is proportional to the gradient of the potential

u = −
K

µ
(∇p+ ρg∇h),
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where K = K(x) is the permeability of the rock and µ the viscosity of the fluid.

During the course of this dissertation we will be concerned with the special case where

there is no creation/destruction of the fluid (q = 0). We shall consider a horizontal layer

(so we can take ∆h = 0) and take the density of the fluid is constant (ρ = constant).

Then

∇.u = 0,u = −
K

µ
∇p,

so ∇.

(

K

µ
∇p

)

= 0, (1.1)

or ∇. (k∇p) = 0, (1.2)

where k is the relative permeability, referred to as the permeability during the rest of this

dissertation. Equation (1.1) is the equation we work with.

The problem is then that the permeability is unknown and the pressure is only known

at a few positions within the field. The aim of this project is to look at ways of estimating

the solution to the oil field based on small amounts of data available.

1.2 Maximum Principle

A maximum principle says that (Protter [6]) if v(x1, x2, · · · , xn) satisfies the differential

inequality

L[v] ≡
n
∑

i,j=1

aij(x)
∂2v

∂xi∂xj
+

n
∑

i=1

bi(x)
∂v

∂xi
≥ 0 (1.3)
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in a domain D. Where L is uniformly elliptic and the coefficients aij and bi are uniformly

bounded. Then if v attains a maximum M at a point of D, v =M in D.

A similar result can be obtain for a minimum principle, by taking −v(x1, x2, · · · , xn)

as a solution to (1.3) and so D can not contain either a maximum or minimum of v.

Both these principles apply to equation (1.1), which means that the pressure field can

not contain a maximum or minimum with in the domain. Realistically this means that

the pressure flows through the domain and it contains no sources or sinks. In generating

test data for our simulation the maximum principle will be taken into consideration and

pressure gradients will be non-zero throughout the domain.

1.3 Remit

Finding the permeability in both one and two dimensions presents itself as a set of linear

equations. When this set of equations is square (that is the same number of unknowns

as linearly independent equations) the solution can easily be found using a number of

methods (including conjugate gradients or gaussian elimination and back substitution).

However when the system is either under-determined or over-determined rectangular

systems arise and there may be infinitely many solutions or no solution. In the former

case each of these solutions would satisfy the equation but we need one solution above all

others. During the course of this project we determine permeability and pressure fields or

approximations that satisfy the stationary diffusion equation given a small amount of data.

First however, in chapters 2 and 3, we shall look at two methods for optimization which

can be applied to solving a system of equations Ax = b, namely Conjugate Gradients

and Simulated Annealing. Then we shall move on to look at one and two dimensions for
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a specific form of k. Finally we shall consider a numerical solution, first approximating

the pressure, using the principle of minimum curvature, and then the permeability using

the resulting pressure values.
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Chapter 2

Conjugate Gradients

The method of conjugate gradients takes an arbitrary starting point and minimises the

quadratic form associated with the system Ax = b (Shewchuck [7]). It is an advance

on steepest decent methods. In the conjugate gradient method steps are taken down

the paraboloid of the quadratic form in which search directions are never repeated and

therefore convergence is guaranteed in n steps where n is the size of the problem.

2.1 Quadratic Forms

Conjugate gradients uses the fact that, when the matrix A is a symmetric matrix, a

solution to the system Ax = b is a critical point of the quadratic form. The quadratic

form associated with the system of equations Ax = b is given by

f(x) =
1

2
xTAx− bTx,
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which if we differentiate we can see has a critical point at Ax = b.

f ′(x) =
1

2
ATx+

1

2
Ax− b,

= Ax− b if A is symmetric (AT = A),

= 0 for critical points.

The shape of f(x) depends on the form of the matrix A, see figures 2.1, and therefore

also effects the ability of conjugate gradients to find a solution. A singular matrix has a

line of solutions running through the the bottom of the ‘valley’. For an indefinite matrix

the quadratic form has a saddle point and as such the methods of steepest decent and

conjugate gradients will not work. However, if the matrix A is also positive-definite, then

this solution is also a minimum of f(x). To see this suppose A is symmetric and let x be

a point that satisfies Ax = b as well as minimising f(x).

f(x+ e) =
1

2
(x+ e)TA(x+ e)− bT (x+ e),

=
1

2
xTAx+ eTAx+

1

2
eTAe− bTx− bTe,

= f(x) +
1

2
eTAe.

Provided A is always positive-definite the second term is always positive for e 6= 0 and so

x minimises f .

2.2 Conjugate Gradient Method

The method of conjugate gradients is a combination of the method of steepest descent

and the method of conjugate directions. In the method of steepest descent a series of

steps are taken which slide down to the bottom of the paraboloid of the quadratic form,

7



A B

C D

Figure 2.1: A: positive-definite matrix, B: negative-definite matrix, C: singular matrix

and D: indefinite matrix.
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f . Each step is taken in the direction in which f decreases most quickly, which is the

direction opposite to ∇xf(x(i)) = Ax(i) − b at the point xi. The direction of steepest

decent is also equal to the residual r(i) = b − Ax(i) which indicates how far we are from

the correct value of b. So if we start at an arbitrary point x(0) then the next step will be

given by

x(1) = x(0) + αr(0). (2.1)

The size of step, i.e. the size of α, is chosen to mimimise f along a line defined by the

directional derivative

0 =
d

dα
f(x1)), that is

= f ′(x(1))
T d

dα
x(1),

= f ′(x(1))
T r(0),

that is α is chosen so that the residual and directional derivative are orthogonal.

To determine α, note that f ′(x(1)) = −r(1) then we have

rT(1)r(0) = 0,

(b− Ax(1))
Tr(0) = 0,

(b− A(x(0) + αr(0))
Tr(0) = 0 by 2.1,

(b− Ax(0))
Tr(0) − α(Ar(0))

Tr(0) = 0,

(b− Ax(0))
Tr(0) = α(Ar(0))

Tr(0),

rT(0)r(0) = αrT(0)(Ar(0)) since r(0) = b− ax(0),

α =
rT(0)r(0)

rT(0)Ar(0)
.

9



In general the steepest descent method is

r(i) = b− Ax(i),

α(i) =
rT(i)r(i)

rT(i)Ar(i)
,

x(i+1) = x(i) + α(i)r(i).

The problem with the method of steepest descent is that it can find itself taking

directions it has already searched along making it inefficient, which is where the method

of conjugate directions improves the algorithm. A set of orthogonal search directions

d(0), · · · ,d(n−1) are generated and exactly one step is taken in each of these directions.

Since each direction need only be considered once the method is guaranteed to converge

in n steps, where n is the size of the problem (apart from the effects of rounding error).

Consider the two dimensional example shown in figure 2.2. It can be seen that e(1)

(the error e(i) = x(i) − x) is orthogonal to d(0). In order to find α(i) this fact is used and

α(i) = −
dT(i)e(i)

dT(i)d(i)

.

Unfortunately, in order to find the size of step needed we need to know the distance

from the solution (which if we knew we would know the solution) and so α(i) cannot be

computed. This problem can be solved by using a set of directions that are A-orthogonal

instead of orthogonal, that is use

dT(i)Ad(j) = 0, giving

α(i) = −
dT(i)r(i)

dT(i)Ad(i)

To compute the set of search directions suppose we have set of n linearly independent

vectors u(0), · · · ,u(n−1). Then d(i) is constructed by taking u(i) and subtracting out any

10



Figure 2.2: The method of conjugate directions

components that are not A orthogonal to to the previous d vectors,

d(0) = u(0)

d(i) = u(i) +
i−1
∑

k=0

βikd(k),

where βik are defined for i > k by

dT(i)Ad(j) = uT
(i)Ad(j) +

i−1
∑

k=0

βikd
T
(k)Ad(j),

0 = uT
(i)Ad(j) + βijd

T
(j)Ad(j), i > j

βij = −
uT
(i)Ad(j)

dT(j)Ad(j)

.

The method of conjugate gradients is simply the method of conjugate directions where

the directions are constructed by the conjugation of the residuals, that is the set of n

linearly independent vectors is given by the residuals.
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2.3 Proof that Conjugate Gradients Converges in n

Steps

Consider the initial error, e(0), as a linear combination of the search directions

e(0) =
n−1
∑

j=0

δjd(j).

Pre-multiplying by dT
(k)A and using the fact that the search directions are A-orthogonal

dT(k)Ae(0) =
n−1
∑

j=0

δjd
T
(k)Ad(j),

= δkd
T
(k)Ad(k),

δk =
dT(k)Ae(0)

dT(k)Ad(k)

,

=
dT(k)A(e(k) −

∑k−1
i=0 α(i)d(i))

dT(k)Ad(k)

,

=
dT(k)Ae(k)

dT(k)Ad(k)

= −α(k).

Now

e(i) = e(0) +
i−1
∑

j=0

α(j)d(j),

=
n−1
∑

j=0

δ(j)d(j) −

i−1
∑

j=0

δ(j)d(j),

=
n−1
∑

j=i

δ(j)d(j),

and so after n iterations e(n) = 0.
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2.4 Algorithm For Conjugate Gradients

d(0) = r(0) = b− Ax(0),

α(i) =
rT(i)r(i)

dT(i)Ad(i)

,

x(i+1) = x(i) + α(i)d(i),

r(i+1) = r(i) − α(i)Ad(i), recursive residual, see below

βi+1 =
rT(i+1)r(i+1)

rT(i)r(i)
,

d(i+1) = r(i+1) + β(i+1)d(i).

At each stage a recursive residual is calculated, the exact value of the residual is

b−Ax, which builds up round off errors with in the algorithm. The build up of the round

off errors can be eliminated at regular stages by calculating the exact residual instead

alternative the algorithm needs to run for more than n iterations. The algorithm can

be run using a termination other than the number of iterations, by terminating once the

value of α becomes significantly close to zero.

13



Chapter 3

Simulating Annealing

Simulated annealing is another minimisation technique, in this case based on the physical

process of cooling a molten metal slowly in stages, allowing it to reach thermal equilibrium

at each stage before continuing the the cooling. As the metal cools it could take any

number of states each with a different energy value. Provided that the molten metal is

cooled sufficiently slowly the process produces a crystalised state which has minimum

energy. The algorithm that describes this process is the “Metropolis Algorithm”, which

provides an efficient simulation of a collection of atoms at a given temperature. At each

step the atoms are given a small random displacement and the resulting change in energy is

calculated, ∆E. If ∆E ≤ 0 then the new configuration of atoms is accepted, otherwise the

change is considered in a probabilistic way. The new configuration is given a probability

of being accepted P (∆E) = exp(−∆E/kBT ) (where kB is the Boltzman constant and T

the temperature). If the new configuration is accepted then the process starts again with

this new set of positions, if not then the process starts again with the old configuration

of atoms. Simulated annealing takes the simulation and applies it to a cost/objective

14



function instead of energy levels, and kb and T are parameterised within the simulated

annealing algorithm.

3.1 Simulated Annealing Method

The method of simulated annealing is a biased random walk around the n-dimensional

space of the objective function, φ (Bohachevsky [1]). Starting at a point in the n-

dimensional space, with an objective function of φ0, a random direction is chosen and

a step of ∆r is taken in this direction. Before this step is taken the objective function

is calculated at the new point, φ1, with the step chosen based on this value. The step is

given a probability, p, of being taken given by

p =







1 if ∆φ = φ1 − φ0 ≤ 0

exp(−β∆φ) if ∆φ > 0
,

where β is a chosen parameter. In this way any step which results in the reduction

of the objective function is automatically taken, otherwise the step is taken based on

a probability. To decide if a detrimental step is taken (that is one which increases the

objective function) a random number ξ ∈ [0, 1] is chosen. Then if ξ < p the step is taken

otherwise it is discarded.

The parameter ∆r needs to be chosen so that the walk can easily escape a local

minimum in 2 or 3 steps, and β such that 0.5 < exp(−β∆φ) < 0.9. The latter condition

is required for efficient searches. Probabilities close to 1 lead to most detrimental steps

being taken, and probabilities less than 0.5 mean climbing out of local extrema requires

a lot of function evaluations.
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Generally the program is run for sufficiently many iterations required to achieve the

stopping criteria that 50 random steps must be rejected at one iteration. If we assume the

the objective function to have a minimum value of 0 then we can rewrite the probability

choice to

p =







1 if ∆φ = φ1 − φ0 ≤ 0

exp(−βφg0∆φ) if ∆φ > 0
,

where g is some arbitrary negative number. This means that the probability will be greatly

reduced as the objective function approaches zero, giving steps a much lower chance of

being accepted. The objective function may not naturally give a minimum value of 0 and

so we use φ− φmin as our objective function in the simulated annealing algorithm.

3.2 Generalised Simulated Annealing Algorithm

Let φm be the value of φ at the global minimum.

1. Let x0 be the arbitrary starting point.

2. Set φ0 = Φ(x0). If |φ0 − φm| < ε, stop.

3. Choose a random direction. Generate n independent random numbers between 0

and 1, u1, ..., un, and compute the components of Ui = ui/(u
2
1+...+u

2
n)

1/2, i = 1, ..., n.

4. Set x∗ = x0 + (∆r)U .

5. If x∗ /∈ Ω, return to step 3. Otherwise φ1 = φ(x∗ and ∆φ = φ1 − φ0.

6. If φ1 ≤ φ0, set x0 = x∗ and φ0 = φ1. If |φ0 = φm| < ε, stop. Otherwise, go to step

3.
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7. If φ1 > φ0, set p = exp(−βφg0∆φ).

a) Generate a random number between 0 and 1, ρ

b) If ρ ≥ p, go to step 3.

c) If ρ < p, set x0 = x∗, φ0 = φ1, and go to step 3.

At the start of the of the algorithm we let φm be the value of φ at the global optimum,

which assumes that we know the minimum value of the objective function. This is not

often the case and so this assumption needs to be removed which can be done by running

the random walk with φm set to some small value, until φ− φm < 0 at which point φm is

lowered and the walk is continued.

Note that putting g = 0 gives us the standard simulated annealing method.

3.3 Choice of Parameters, a Simple Cost Function

As mentioned in section 3.1 the choice of the parameters ∆r and β are very important,

in order to keep the algorithm accurate and efficient. To illustrate this consider the cost

function

φ(x, y) = x2 + 2y2 − 0.3 cos(3πx)− 0.4 sin(4πy) + 0.7

The maximum and minimum of which can be seen in figure 3.1. For the purposes of

this example the algorithm has been executed with 150 iterations, with a maximum of 50

random steps being tested at each iteration before the program is terminated. All other

parameters are specified with the results shown in figures 3.2 to 3.4, the blue squares

represent accepted steps and red represent rejected steps. By changing the parameters

17



and recording the steps accepted and rejected we can see the progress made with certain

parameter choices.

Figure 3.1: Objective function
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Figure 3.2: Standard simulated annealing method with ∆r = 0.15, β = 4.5. Algorithm

runs to the end (150 iterations) and although finds the global minimum it fails to terminate

at this point.

Notice how the standard method (figure 3.2), although locating the global minimum,

fails to stop at this point with the specified 150 iterations, whereas the generalized method

terminates there (figure 3.3). A slight change in the β parameter by .5 means that the

algorithm no longer finds the global minimum but settles for one of the local values, since
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it is unable to escape from this point with in the specified 50 random steps termination

criteria.
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Figure 3.3: Generalised simulated annealing method with g = −1, ∆r = 0.15, β = 3.5.

Algorithm temrinates at 124 out of 150 iterations, at the global minimum.
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Figure 3.4: Generalised simulated annealing method with g = −1, ∆r = 0.15, β = 4.0.

Algorithm terminates at 129 out of 150 iterations, but at a local minimum.
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Chapter 4

An Analytic Form of the

Permeability

4.1 One-Dimension

Consider the one-dimensional case putting the permeability equal to

k(x) =
1

1 + α1x+ α2x2 + α3x3 + · · ·+ αnxn
.

In one-dimension (1.1) becomes

d

dx

(

k(x)
dp

dx

)

= 0, (4.1)

using the boundary conditions

p(0) = η

p(1) = γ
(4.2)

Integrating we get

k(x)
dp

dx
= a,
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where a is a constant. That is

dp

dx
= a(1 + α1x+ α2x

2 + α3x
3 + · · ·+ αnx

n)

giving p(x) = a

(

x+
α1

2
x2 +

α2

3
x3 +

α3

4
x4 + · · ·+

αn

n+ 1
xn+1

)

+ b, (4.3)

where b is also an unknown constant. Using the boundary conditions (4.2) in (4.3) we

find that

a =
γ − η

1 + α1

2
+ α2

3
+ α3

4
+ · · ·+ αn

n+1

b = η

So the exact solution to the one-dimensional case (4.1) and (4.2) is

p(x) =

(

γ − η

1 + α1

2
+ α2

3
+ α3

4
+ · · ·+ αn

n+1

)

(

x+
α1

2
x2 +

α2

3
x3 +

α3

4
x4 + · · ·+

αn

n+ 1
xn+1

)

+η.

Now if p(xj) = p̄j for n observations at xj, j = 1, ...m, then

p̄j =

(

γ − η

1 + α1

2
+ α2

3
+ α3

4
+ · · · αn

n+1

)

(

xj +
α1

2
x2j +

α2

3
x3j +

α3

4
x4j + · · ·

αn

n+ 1
xn+1
j

)

+ η,

for j = 1, ...,m, which can be written as an m× n system of equations, for the unknowns

αi































ω1

2
−

x2
1

2
ω1

3
−

x3
1

3
· · · ω1

(n+1)
−

x
(n+1)
1

(n+1)

ω2

2
−

x2
2

2
ω2

3
−

x3
2

3
· · · ω2

(n+1)
−

x
(n+1)
2

(n+1)

...
...

...

ωj

2
−

x2
j

2

ωj

3
−

x3
j

3
· · ·

ωj

(n+1)
−

x
(n+1)
j

(n+1)

...
...

...

ωm

2
− x2

m

2
ωm

3
− x3

m

3
· · · ωm

(n+1)
− x

(n+1)
m

(n+1)





























































α1

α2

...

...

αn−1

αn































=































x1 − ω1

x2 − ω2

...

...

xn−1 − ωn−1

xn − ωn































(4.4)

where ωj =
p̄j−η

γ−η
.

21



If m = n, that is the number of observations is equal to the number of unknowns, (4.4)

has a unique solution provided that the matrix is non-singular. However, in general there

are fewer observational points than unknowns and so the system (4.4) is under-determined

and has infinitely many solutions. We therefore seek a solution which gives us something

over other solutions of the problem, such as the solution which minimises ||α||2, and the

problem becomes one of optimisation.

There are many ways of finding a local minimum solution of a function, however the

problem here is that of finding the global extreme. Many methods, including conjugate

gradient methods (section 2), become stuck in local minimum and are unable to find their

way out in order to reach the global minimum but are fine when there is only one. The

other method we have looked at simulated annealing (section 3) is able to leave a local

minimum in its search for the global minimum and can therefore be used for a wider

variety of conditions when choosing one solution over another.

4.1.1 With Conjugate Gradients

The following results are from the least squares problem

A∗x = b∗

where A∗ = ATA and b∗ = ATb, in order to give a square symmetric matrix which is

required for the conjugate gradients method. We have A∗ symmetric, since

(A∗)T = (ATA)T = ATA = A∗,
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and positive (indefinite),

λTA∗λ = λTATAλ = ‖(Aλ)‖2 ≥ 0, for any λ.
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Figure 4.1: 4 observations, 6 unknowns: pressure and permeability results
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Figure 4.2: 5 observations, 6 unknowns: pressure and permeability results

While the number of observations is equal to or less than the number of unknowns the

pressure curve goes through the observation points. However, for the overdetermined case

in figure 4.4A the distance between the observation and pressure returned is minimised
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Figure 4.3: 6 observations, 6 unknowns

in a least squares sense, i.e. the solution is that to the least squares problem.

min
x
‖A∗ − b∗‖2.
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Figure 4.4: 8 observations 6 unknowns

Although figure 4.4B is also an over determined case and we would therefore not expect

the curve to pass through all the observations, the values were chosen so that they were

on the line p = 2x− 1 and so the program returns α values which would enable the curve

to be very close to the straight line.
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It is also clear from figure 4.2 that it is possible to obtain a zero pressure gradient,

which is a result of the permeability k changing signs. Physically this is unrealistic as the

permeability should be strictly positive and hence we expect the maximum principle to

hold (section 1.2).

4.1.2 With Simulated Annealing

For simulated annealing we need to decide on an objective function we will aim to minimise

for the set of available solutions, one such method is to minimise ‖α‖2 subject to the

constraints Aα = b. The choice of ‖α‖2 as the cost function is primarily based on ease

of manipulation and the physics of the problem may suggest other alternatives.

Consider the problem

Aα = b, (4.5)

with A and m×n matrix, α an n× 1 and b an m× 1, where m < n. Reduce by Gaussian

elimination so that the matrix A has the form

A =

























a11 a12 · · · · · · · · · · · · a1n

0 a22 a23 · · · · · · · · · a2n
... 0 a33 · · · · · · · · · a3n
...

...
. . .

...

0 0 · · · 0 amm · · · amn

























Then (4.5) can be rewritten in the form

Âα̂+ Ãα̃ = b,
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where

Â =

























a11 a12 · · · · · · a1m

0 a22 a23 · · · a2m
... 0 a33 · · · a3m
...

...
. . .

0 0 · · · 0 amm

























, Ã =

























a1(m+1) · · · · · · a1n

a2(m+1) · · · · · · a2n

a3(m+1) · · · · · · a3n
...

...

am(m+1) · · · · · · amn

























and α̂ = (α1, · · · , αm)
T , α̃ = (αm+1, · · · , αn)

T .

Now α̂ depends directly on α̃ and can be found by solving

Âα̂ = b− Ãα̃.
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Figure 4.5: 3 observations, ∆r = 0.3, β = 4.5

Having found the dependent values of α the objective function

‖α‖2 = ‖α̂‖2 + ‖α̃‖2,

and only the independent α, the α̃, are passed through the random stepping of the

simulated annealing algorithm.
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4.1.3 Simulated Annealing and a Smoother Curve

The methods of conjugate gradients, usingATAx = b, and simulated annealing, minimising

‖α‖2, yield very similar results for the 3 observations case with 5 unknowns. However

the advantage of conjugate gradients is the ease at which we are able to increase the

number of observations beyond the number of unknowns which we are unable to do with

the simulated annealing method outlined here due to the set up of the objective function.

however, we are able to change the way in which the solution is selected with simulated

annealing: by changing the objective function for example we can give a higher weighing

to the higher order α to produce a smoother curve. Thus, using the objective function

φ = a1α
2
1 + a2α

2
2 + a3α

2
3 + · · · ,

where ai+1 > ai are the weighting constants. Although we have said this is unrealistic

in that we have maximum and minimum pressure values inside the domain, for ease of

seeing the effect consider the case where we have a cubic pressure field. The results are

shown in figure 4.6.
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Figure 4.6: comparing a weighted objective function with the unweighted‖α‖2
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4.2 Two-Dimensions

As in for the one-dimensional case in chapter 4.1 we can consider the case where the

reciprocal of the permeability, k−1, is polynomial. For example

k(x, y) =
1

a+ bx+ cy + dxy + ex2 + fy2
,

where a, b, c, d, e, f are constant coefficients. Consider Darcy’s law

u = k∇p

Assuming u is constant, say (1, 2)T , then

k(x, y)





∂p
∂x

∂p
∂y



 =





1

2



 (4.6)

which we can integrate to find an expression for the pressure, p, at (x, y). Since

∂p

∂x
= a+ bx+ cy + dxy + ex2 + fy2

⇒ p = ax+ b
x2

2
+ cyx+ dy

x2

2
+ e

x3

3
+ fy2x+ g(y), (4.7)

where g is an arbitrary function of y. Then comparing

∂p

∂y
= 2(a+ bx+ cy + dxy + ex2 + fy2)

with

∂p

∂y
= cx+ d

x2

2
+ 2fxy + g′(y),
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from (4.7), and equating coefficients we get

c = 2b,

d

2
= 2e,

f = d,

2(a+ cy + fy2) = g′(y),

⇒ g(y) = 2

(

ay + c
y2

2
+ f

y3

3

)

+ p1,

say. Assuming the point (0, 0) has a pressure value of 1, then p1 = 1 and we get

(x+ 2y)a+

(

x2

2
+ 2yx+ 2y2

)

b+

(

yx2

2
+
x3

12
+ y2x+

2y3

3

)

d = p(x, y)− 1. (4.8)

Writing this at the prescribed values of p as a system ofm (the number of observations)

linear equations in a, b, d we can apply the method of conjugate gradients as in section

4.1.1 to minimise the least squares problem.

Figure 4.7: 2 observations, under-determined case and the corresponding permeability

As before we get the solution passing through the observation points for the under-

determined and exact cases as expected. Disadvantages of this method include the fact
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Figure 4.8: 8 observations, over-determined case and the corresponding permeability

that inverse polynomial approximation is a special case and the possibility of zero pressure

gradient occurring.
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Chapter 5

Approximating the Pressure Field

In chapter 4 we assumed that we knew the form of the permeability, which was easily

integrated to give an equation for the pressure at any point (x, y). However, what happens

if we do not wish to make this assumption as to the form of the permeability field? An

alternative method of representing the permeability by a finite number of degrees of

freedom is to estimate k at discrete nodal values. However, the governing equation (1.1)

cannot be easily integrated to produce a closed form equation for both k and p as in

section 4. So in order to calculate the permeability we first need to estimate the pressure

field.

One method can be found by assuming that the pressure field is comparable to a thin

metal sheet that is given a displacement at a fixed number of positions (the observational

points), assuming that the pressure field is smooth and continuous. For example in two

dimensions the sheet is given displacements at the points (xn, yn) of u, with the force

acting being fn. The resulting displacements satisfy the fourth order differential equation
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( Briggs citeBriggs)

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= fn, x = xn, y = yn

= 0, otherwise,

with boundary conditions

∂

∂n

(

∂2u

∂x2
+
∂2u

∂y2

)

= 0,

∂2u

∂x2
+
∂2u

∂y2
= 0.

Farmer [4] and Briggs [2] look at solving this equation by minimising the curvature of

the field, invoking the principle of minimum curvature.

5.1 Principle of Minimum Curvature

The function u(x, y) that minimises the curvature satisfies the fourth order differential

equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= 0. (5.1)

Proof

Consider the total squared curvature of u = u(x, y)

C(u) =

∫∫ (

∂2u

∂x2
+
∂2u

∂y2

)2

dxdy.

We need to show that if u(x, y) makes C an extremum then it obeys 5.1 and that a

function, u(x, y) which obeys 5.1 minimises C.
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Let u(x, y) be a function on the region R2 with boundary B, such that u makes C an

extremum, and g an arbitrary function such that

g = 0 and
∂g

∂n
= 0 on B.

Let

z(x, y) = u(x, y) + εg(x, y),

where ε is a real number. Then, as demonstrated by Briggs,

∂C(z)

∂ε

∣

∣

∣

∣

ε=0

= 0,

which holds for all functions g(x, y). Now

C(z) =

∫∫

(∇2u)2dxdy + 2ε

∫∫

∇2u∇2gdxdy + ε2
∫∫

(∇g)2dxdy,

and so

∂C(z)

∂ε

∣

∣

∣

∣

ε=0

= 2

∫∫

∇2u∇2gdxdy, which using Green’s Theorem

= 2

(∫∫

g∇2(∇2u)dxdy +

∫

B

∇2u
∂g

∂n
dl −

∫

B

g
∂

∂n
(∇2u)dl

)

.

This leaves
∫∫

g∇2(∇2u)dxdy = 0,

holding for all functions g and hence ∇2(∇2u) = 0.

Conversely, consider the case where u(x, y) satisfies ∇2(∇2u) = 0 and z(x, y) is any

other function on the region R2, with

z = u and
∂z

∂n
=
∂u

∂n
on B.
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We need to show that C(u) ≤ C(z).

C(z)− C(u) =

∫∫

[(∇2z)2 − (∇2u)2]dxdy,

=

∫∫

(∇2z −∇2u)2dxdy +

∫∫

∇2u(∇2z −∇2u)dxdy,

=

∫∫

(∇2z −∇2u)2dxdy + 2

(∫∫

(z − u)∇2(∇2u)dxdy

+

∫

B

∇2u
∂

∂n
(z − u)dl −

∫

B

(z − u)
∂

∂n
(∇2u)dl

)

.

This gives

C(z)− C(u) =

∫∫

(∇2z −∇2u)2dxdy ≥ 0.

Therefore the function u(x, y) which minimises the curvature satisfies 5.1.

5.2 Numerical Solution for One-Dimensions

Here we shall only consider the observation points which lie on grid points. For the

equivalent equations when this is not the case see Briggs [2].

In one dimension the total curvature is

C =
I
∑

i=1

(ci)
2,

where ci is the curvature at the point xi, given by

ci =
ui+1 + ui− 1− 2ui

h2

for points away from the two ends of the field. It is assumed at these points the curvature

is zero. We require the minimum of the curvature, i.e

∂C

∂ui
= 0.
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There are five cases to consider when calculating the total curvature at each point:

the two ends, the two points next to the ends and then the inner points. For the total

curvature at the inner points we need to consider for the total curvature are ci−1, ci, ci+1

since these are the only ones which depend on ui. Therefore the equation for any point i,

with 2 < i, I − 2, is given by

∂C

∂ui
=

∂

∂ui

(

(ci−1)
2 + (ci)

2 + (ci+1)
2
)

= 0,

in other words

ui−2 + ui+2 − 4(ui−1 + ui+1) + 6ui = 0.

A system of equations is constructed by sweeping through the grid points with their

corresponding equations, an observational grid point having the simple equation ui = p,

where p is the pressure value at that point. These can be solved iteratively using conjugate

gradients or as outlined in Briggs [2].

5.2.1 One-Dimensional Results for Pressure

Unlike the case in which the form of the permeability function is prescribed the end points

are now unconstrained and free to move in such a manner as to smooth the curve. Figures

5.1 and 5.2 show the smoothed pressure data achieved by taking the initial pressure field

of a weighted average of the observational data, depending on their distance from the grid

point. Figure 5.3 also shows initial pressure with the smoothed data.
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Figure 5.1: Minimum curvature with 2 observations
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Figure 5.2: Minimum curvature with 4 observations
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Figure 5.3: Minimum curvature with 5 observations, compared with initial pressure

5.3 Numerical Solution for Two-Dimensions

Similarly to before the total curvature is given by

C =
I
∑

i=1

J
∑

j=1

(ci,j)
2,

where ci,j is the curvature at the point (xi, yj). Generally this is given by

ci,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
.

The curvature at each point is shown in figure 5.4 with the curvature at the corners

assumed to be zero.

Away from the edges the grid point value ui,j is present in the expressions for ci,j,

ci±1,j , ci,j±1 and so only these 5 need to be considered when a point away from the edge

is being dealt with, ie in the interior

∂C

∂ui,j
=

∂

∂ui,j
(ci,j + ci+1,j + ci−1,j + ci,j+1 + ci,j−1) ,
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Figure 5.4: Curvature giving at each point, in terms of surrounding values

giving the equation for the interior points as

ui+2,j + ui−2,j + ui,j+2 + ui,j−2 + 2(ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1)

−8(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) + ui,j = 0.

Similar equations can be worked out for the other areas of the domain.
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5.3.1 Two-Dimensional Results for Pressure
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Figure 5.5: Two dimensional minimum curvature with 3 observations
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Figure 5.6: Two dimensional minimum curvature with 5 observations

39



Chapter 6

Finding the Permeability

6.1 In One Dimension

Previously in chapter 4 we looked at a given permeability form

k(x) =
1

1 + α1x+ α2x2 + · · ·
,

now we look at using the approximated pressure field to find the permeability at grid

points, assuming that we do not know the permeability field. Consider the one-dimensional

case

d

dx

(

k
dp

dx

)

= 0

k
dp

dx
= c, a constant

k =
c
dp
dx

. (6.1)

Let us assume that c = 1 then at the point xi

ki =
h

pi+1 − pi
.
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Figure 6.1: one dimensional pressure and permeability field (A), pressure gradient and

permeability (B)

Notice that whilst the pressure gradient is constant we have a constant permeability,

since

dp

dx
= ϕ (a constant) ⇒ k =

c

ϕ
,

with variations occurring in k when the pressure gradient is also variable. See figures 6.1

and 6.2

As | dp
dx
| → 0 |k| → ∞ and so at these points a singularity occurs, shown in figure 6.3.

As previously mentioned this occurs due to the change in sign of k, which realistically is

always positive leading to the maximum principle.

6.2 In Two-Dimension

In one dimension we were able to integrate equation (1.1) simply to find an equation for

the permeability based on the previously found pressure field. Note that there is a first
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Figure 6.2: one dimensional pressure and permeability field (A), pressure gradient and

permeability (B)
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Figure 6.3: Example of when the pressure has a maximum or minimum inside the domain,

approximation of k
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order differential equation for k analogous to equaiotn (6.1).

∇. (k∇p) = 0,

k∇2p+∇k.∇p = 0,

∇ ln k.v = r,

∂ ln k

∂v
= r,

where v = ∇p and r = −∇2p. However, unlike before this integration is not simply

approximated as now we are required to integrate along the streamline directions v. Due

to the scope of this project we outline an algorithm below by which we can find the

permeability based on the pressure fields in section 5.3 and leave this as an area of further

research.

Outline of Algorithm

1. Use the minimisation of the curvature to find the two dimensional pressure field.

2. Use the pressure field to determine the streamline directions, v = ∇p, and the

forcing term r = −∇2p.

3. Use a semi-lagrangian type method to integrate k forwards along the streamlines

from specified values at the inflow portions on the boundary.
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Chapter 7

Conclusions and Further Work

The focus of this dissertation has been on the problem of fining a numerical solution from

a minimal amount data for a large area, with the direct aim of finding the pressure and

permeability values across an oil field. A similar situation also arises in other areas such

as weather prediction and oceanography but the problem remains essentially the same.

Although data assimilation can also be employed we have looked at function fitting and

interpolation as a means for generating an overall picture of the quantity in question,

leading to cases where we have needed to solve an under-determined set of equations

using optimisation techniques such as simulated annealing and conjugate gradients (by

solving the equation ATAx = ATb to minimise the norm ‖Ax− b‖).

For both one and two dimensions we were able to fit an analytical solution for the

permeability to the governing equation. This lead to an equation for the pressure across

the domain. As we expected for the case where we had more unknowns than observations

(the under-determined situation) the pressure curve passed through them.

In one-dimensions it was shown that the method of Conjugate gradients was able to
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do adjust to the changing number of observations easily which we were unable to do with

the way the simulated annealing objective function had been set up. However we were

able to look at other objective functions and minimise alternatives to ‖α‖2, such as using

a weighted function of α to give a smoother curve. It would be interesting to see what

results other objective functions yield and decisions on the if one gives a more optimal

solution over others. Together with the performance of conjugate gradients and simulated

annealing against other optimisation techniques such as quadratic programming.

The main disadvantages of fitting a function to the permeability were a) the need to

fix at least one point, to calculate constants in the pressure equation, and b) assuming

the form of the permeability. An alternative, looked at in chapters 5 and 6, is to estimate

the two values at discrete mesh points. Pressure being approximated by minimising the

curvature and permeability using equation (1.1) and the previously calculated pressure

values. The results in one dimension show the direct link of the permeability to the

pressure gradient and the need for this to be non-zero.

A consideration for further work would be to look at what happens when we start

with a permeability field, find pressure values from this data, pick out observations,and

then try and regenerate the permeability field. We would hope to end with a similar

permeability field to the one we started with, however approximation errors are likely to

be introduced. The nature of these errors and the effect they have on the final output

would be an interesting area for further research. For example, does increasing the number

of observation points decrease the error introduced, and is it possible to predict the optimal

positions for the observation points.
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