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Abstract

The problem of solving the Black-Scholes equation for the valuation of Amer-
ican options is tackled using a Crank-Nicolson finite difference method for-

mulated in a Lagrangian frame.

We firstly introduce a transformation to convert the Black-Scholes equation
into a dimensionless constant coefficient forward equation. We then formu-
late the equation is the moving Lagrangian reference frame. The problem of
solving the Black-Scholes equation for American options is treated as a free
boundary problem, where we must determine both the value of the option,
and also when the option should be exercised. We introduce a new method
for locating the moving boundary. The equation is then solved using a finite
difference Crank-Nicolson method.

A monitor function is introduced to increase the resolution of the method
close to the exercise boundary, and the method is modified to accommodate
this. We then attempt to solve the problem using a finite element method

and compare the accuracy of the two approaches.
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Chapter 1

Introduction

1.1 The Problem

The simplest financial option, a European call option, is a contract with the

following conditions
e At a prescribed time in the future, known as the expiry date the holder
of the option may do the following;

e purchase a prescribed asset, known as the underlying for a

e prescribed amount, known as the ezxercise price or strike price

For the holder of the option, the contract is a right but not an obligation.
The other party to the contract, the individual who is known as the writer
does have a potential obligation, he must sell the asset if the holder chooses

to buy it.

The option confers to its holder a right without an obligation, and there-

fore has intrinsic value.



The main concerns in the valuation of options are:

e How much would one pay for this right, i.e. what is the value of an

option?
e How can the writer minimize the risk associated with his obligation?

Options have become extremely popular recently, primarily because they are
attractive to investors, both for speculation and for hedging, and because

there is now a systematic way to determine how much they are worth.

We let E denote the exercise price, i.e the cost of purchasing the option,
and S(T') denote the underlying asset price at the expiry date. At expiry if
S(T) > E then the holder of the call option may buy that asset for £ and
then immediately sell it in the market for S(7'), gaining an amount S(7") — E.
Conversely, if £ > S(T') then the holder gains nothing. The value of the call

option may therefore be expressed as
C =max(S(T) — E,0) (1.1.1)

Plotting S(T") on the x-axis and C' on the y-axis gives a payoff diagram as

shown in 1.1.

American options have the additional feature that exercise is permitted at
any time during the life of the option. This is in contrast to a European
option which may only be exercised at expiry. Since the American option

gives its holder greater rights than the European option, via the right of early
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Figure 1.1: Payoff Diagram for a European Call

exercise, potentially it has a higher value. This report will focus on the valu-
ation of American options, which are mathematically more interesting than
their European counterparts since they can be interpreted as free boundary
problems.

The American option valuation problem can be shown to be uniquely spec-
ified by a series of constraints, which are similar to those of an ’obstacle’
problem. Since we do not know the location of the free boundary Sy(t) a
priori we are lacking one piece of information compared with the European
options. Not only must a value be assigned to the option but, we must also

determine when 1t is best to exercise the option.

1.2 Aims

The aims of this dissertation are to produce an accurate method for the val-

uation of American call options. The optimal exercise boundary is modeled



by a moving boundary. The time dependent boundary point is physically in-
terpreted as the division between two regions, one where we should hold the
option, and the other where we should exercise. This point is known as the
optimal exercise price. We seek a method which will determine accurately
the location of this free boundary, and furthermore provide a corresponding
valuation for the option at discrete time steps up until the expiry date.

The conventional approach is to transform the Black-Scholes equation into a
dimensionless parabolic equation and then discretise the problem using nu-
merical methods to find a solution!. We propose a new method of solution,
in which the equations are discretised on a moving grid. Since the optimal
exercise boundary is time dependent, and found to increase in time for the
case of a call, we also propose a new technique for expanding the domain.
Finally, we intend to solve same the problem using a finite element approach,

and compare the accuracy between the two schemes.

!see K.N PANAZOPOULOS ET AL



Chapter 2

Background

2.1 Model for Asset Prices

In order to value an option we must develop a mathematical description
of how the underlying asset behaves. The price of an asset is a measure
of investors confidence. Although an oversimplification, it is reasonable to
assume that the market responds instantaneously to external influences. Fur-
thermore asset prices must move randomly because of the efficient market

hypothesis. This can be stated as

e The past history is fully reflected in the present price, which does not

hold any further information
e Markets respond immediately to any new information about an asset

With these two assumptions, the asset price is said to follow a Markov pro-

cess



Definition 1. A Markov process is a particular type of stochastic process
where only the present value of a variable is relevant in predicting the future.
The past history of the variable, and the way in which the present has emerged

from the past are irrelevant

Suppose that at time ¢ the asset price is S. Consider a small subsequent
time interval dt, during which S changes to S + dS. We decompose this
return into two parts, one component that is deterministic, comparable to
the return on a risk-free investment. This gives contribution to the return
ds/S

pudt (2.1.1)

i is a measure of the average rate of growth of the asset price, also known

as drift.

The second contribution to dS/S models the random change in the asset
price in response to external effects. It is represented by a random sample

drawn from a normal distribution with mean zero. It adds contribution
odX (2.1.2)

o is known as the volitility, which measures the standard deviation of the

returns.

Putting the two together yields the Stochastic Differential Equation

% = 0dX + pdt (2.1.3)

This is the basic mathematical representation for generating asset prices.

The term dX, which contains the random element which is a feature of asset



prices, is known as a Wiener process, it has the following properties:
e (X is a random variable, drawn from a normal distribution
e dX has a mean of zero and a variance dt

This may be expressed as

dX = ¢Vt (2.1.4)

¢ is a random variable drawn from a standardized normal distribution, with
zero mean and variance of one. The probability distribution function is given

by
1 .

__¢2
o3 2.1.5
o (2.1.5)

A generalized Wiener process with drift © and variance o is shown in figure

2.1

2.2 Black-Scholes Model

The key question concerning the valuation of Options is: what is an option
worth at time =07 The problem is to systematically determine a fair value
for an option, at the time at which the contract is entered into. Before we
proceed with any analysis, there are several assumptions that we must first

make
e The asset price follows a log normal random walk

e The risk-free interest rate r and the asset volatility o are known func-

tions of time over the life of the option.

10



There are no associated transaction costs

The underlying asset pays no dividends during the life of the option.

There are no arbitrage possibilities

Trading of the underlying asset can take place continuously

We now look for a function V' (S, t) that gives the option value for any asset
price S > 0 and at any time 0 < ¢t < T. In this setting, V(Sy,0) is the
required time-zero option value. We further assume that such a function
exists and is smooth in both variables. Ito’s Lemma provides us with a
derivative chain rule for stochastic functions; i.e. if f = f(W,t) where W is

some stochastic function.

df = af “(0SdX + pSdt) + ~o*5? 2f (2.2.1)
s\’ s 52 -
Using 2.2.1 we can write
av ov 1 o?vV oV
= 0S——dX —— + =0°5? 2.2.2
dv = USde +(5’as+ 5852+at)dt ( )

This gives the random walk followed by V.

We now construct a portfolio consisting of one option and a proportion —A
of the underlying asset. The value of the portfolio is
mI=v -—-AS (2.2.3)

The change in the value of this portfolio in one time-step is

dIl = dV — AdS (2.2.4)

11



Combining 2.1.3, 2.2.2 and 2.2.3 we find that II follows the random walk

oV v 1 0% oV
1= — —A)dX — + =0+ —— —uA 2.2.
d aS(aS >d +(#S(’95’+203852+8t 1 S)dt( 5)

We can eliminate the random component by choosing A = g—‘é. This results
in a portfolio whose increment is wholly deterministic

OV 1, 0%V

The return on on an amount II invested in a risk less asset would see a growth
of rIIdt in a time dt. If the right hand side of 2.2.6 were greater than this
amount, an arbitrager could make a guaranteed risk less profit by borrowing
an amount II to invest in the portfolio. Conversely, if the right-hand side of
2.2.6 were less than r1Idt then the arbitrager would make a risk less, no cost,

instantaneous profit.

Thus we have

1 2
rIldt = (a_v + _02328_1/) dt

5% T3 552 (2.2.7)

Substituting 2.2.3 and A = g—‘g into 2.2.7 and dividing by dt we arrive at the

Black-Scholes partial differential equation

ov. 1, ,0%V oV
v - - — 2.2.
8t+205652+r585 rV =0 (2.2.8)

Any derivative security whose price depends only on the current value of S

and on t, which is paid for up-front, must satisfy the Black-Scholes equation.

12



2.3 Black-Scholes For European Option

The Black-Scholes equation 2.2.8 is a backward parabolic equation. We must
therefore impose boundary conditions to ensure a unique solution. We must
impose two conditions on S, and one on t. For example we may specify that

V(S,t) = V,(t) on S = a and also that V'(S,t) = V,(t) on S = b.

Since the equation is backward in time we must also impose a final condition

such as
V(S,t) = Vp(S) on t=T (2.3.1)
Where V7 is a known function of time.

In the case of European options, in particular the European call, we de-

note the call value by C(S,t), with exercise price E and expiry date T.

At time t = T, the value of the call is known for certainty to be
C(S,T) = max(S — E,0) (2.3.2)

This is the final condition.
If S = 0 at expiry then the payoff is zero, the call option is therefore worthless,

even if there is still a period of time until expiry.
c0,t)=0 (2.3.3)

As the asset price increases, it will become more likely that the option will

be exercised and the actual magnitude of the exercise price becomes less

13



important. We can therefore write that as S — oo the value of the option

becomes that of the asset

C(S,t) S as S— o0 (2.3.4)

For the European options, without the possibility of early exercise 2.2.8 can

be solved exactly to give the Black-Scholes value of the call option.

Assuming that the interest rate and the volatility are constant, the explicit

solution for the European call is
C(S,t) = SN(dy) — Ee " TYN(dy) (2.3.5)

N is a cumulative distribution function for a standardized normal random

variable, given by

N(z) = — e ¥ dy (2.3.6)

_log(S/E) + (r+ 50°)(T — 1)

d, = ST 1 (2.3.7)
~ log(S/E) + (r — 30°)(T —t)

dy = VT I (2.3.8)

Figure 2.3 below shows a European call value C'(S,t) as a function of S for

several values of time to expiry, with r = 0.1 and ¢ = 0.2

2.4 Modification to the model

In this dissertation we attempt to model the price of American options based
on dividend paying assets. The model introduced in the previous section

makes the simplification that no dividends are paid. We now consider the

14



Figure 2.1: American Call Value Prior to expiry

effect on the options price when dividend payment is incorporated into the
model.

When assets pay out dividends, the price of an option on a underlying asset is
affected by the payments. A modification must be made to the black-scholes

equation.

In modeling dividends we must ask two questions:
e When and how often are dividend payments made?
e How large are the dividend payments?

The amounts paid as dividends may be modeled as either deterministic or
stochastic. In this dissertation we consider only those equities with dividends

whose amount and timing is known at the start of the options life.

Suppose that in time dt the underlying asset pays out a dividend DySdt

where Dy is a constant. The payment is independent of time, but dependent

15



on the stock price S. The Dividend Yield is defined as the proportion of the

asset price that is paid out per unit time in this way.

Arbitrage considerations show that in each time-step dt, the asset price must

fall by the amount of the dividend payment, in addition to the usual fluctu-

ations. The random walk of the asset price 2.1.3 is modified to become

dS = 0SdX + (u — Do)Sdt

(2.4.1)

Considering the effect of the dividend payments on our hedged portfolio, we

receive and amount Dy Sdt for every asset held, and since we hold —A of the

underlying, the portfolio changes by an amount
—DySAdt
Adding 2.4.2 to 2.2.4 we arrive at
dll = dV — AdS — DySAdt

Following the same analysis as previously we obtain

o1, 0% oV -
E-I—?TSWnL(r—DO)S%—TV—O

The only change to the boundary conditions is that
C(S,t) Se=PoT=H g5 § — o0
The value of a European call with dividends can be shown to be
C(S,t) = e PoTDIN(dyy) — Ee " TN (dy)

Where
log(S/E) + (r — Do+ $6)(T — 1)

ovT —1
d20 = dl—O'\/T—t

dip =

16

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)



Figure 2.2:
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2.5 American Option

American Options have the important additional feature that early exercise

is permitted at any time during the life of the option.

Definition 2. An American Call Option gives its holder the right, but not
the obligation, to purchase from the writer a prescribed asset for a prescribed
price at any time between the start date and a prescribed expiry date in the

future.

The formulae in section 2.3 and 2.4 do not necessarily agree with the
value of American options. The ability to exercise the option at any time
extends to the owner additional rights, and thus the American option has

potentially a higher value.

If S lies in this range so that P(S,t) < maxz(E — S,0) and we exercise
the option, there is an obvious arbitrage opportunity. We could buy the as-
set in the market immediately for S and at the same time buy the option for
P; if we then exercised the option by selling the asset for E we make a risk

free profit of E — P — S.

This opportunity would not last long before the value of the option was
pushed up by the demand of the arbitragers. We must therefore conclude

that when early exercise is permitted we must impose the constraint
V(S,t) > max(S — E,0) (2.5.1)

American and European options must therefore have different values.

18



In the case of American options there are some values of S for which it
is optimal from the holders point of view to exercise the American option. If
this were not the case the option would have the same value as the European

option, the Black-Scholes equation would hold for all S.

The valuation of an American option is therefore more complicated than
its European counterpart since we have to determine not only the option

value but also, for each value of S, whether or not it should be exercised.

This is what is known as a free boundary problem. At each time ¢ there
is a particular value of S which marks the boundary between two regions: to
one side one should hold the option and to the other side one should exercise

it.

We denote this value, which varies with time, by S¢(¢), and refer to it as

the optimal exercise price.

As we have already observed, since we do not know S a prior: unlike the cor-
responding European problem, we do not know where to apply the boundary

conditions, and for this reason, the problem is called a free boundary problem.

An American option valuation can be shown to be uniquely specified by

a set of constraints
e the option value must be greater than or equal to the payoff function
e the Black-Scholes equation is replaced by an inequality

19



e the option value must be a continuous function of S

e the option delta (slope) must be continuous

2.6 American Call with Dividends

From section 2.2 the value C(S,t) of an American option satisfies

oc 1, ,0°C oC _
E+§O' S w—F(T—Do)S%_TC—O (261)

This holds as long as exercise is not optimal. The payoff condition is
C(S,T) = max(S — E,0) (2.6.2)
Also, since the option may be exercised at any time, we have that
C(S,t) > max(S — E,0) (2.6.3)

Along the optimal exercise boundary S = S¢(t)

C(Sf(t),t) = Sy(t) — Eg—g(Sf(t),t) ~1 (2.6.4)

If the optimal exercise boundary exists then 2.6.1 is valid only while C'(S,¢) >
max(S—FE,0) since maz(S—F,0) is not a solution of the Black-Scholes equa-

tion.

2.6.1 can be replaced by an inequality

9C 1 , ,0*C oC
) K — — _rC< 6.
5 T30S 5+ (r = Dy)Sae —rC <0 (2.6.5)

The inequality holds only if C(S,t) > max(S — E,0). If early exercise
if optimal, it is because the option would be less valuable than if it were
exercised immediately and the funds deposited in an interest paying bank

account.

20



2.7 General Analysis of Call with Dividends

We can simplify the Black-Scholes equation with dividend payments by as-
suming that the interest rate and the dividend payments satisty » > Dy > 0.
We can then make equations 2.6.1,2.6.2 and 2.6.4 dimensionless and reduce

2.6.1 to a constant coefficient forward equation®.

We now also subtract off the payoff S — F for the call value C'(5,1).

S =Bt =T 1=,C(5,1) = S — E + Ec(x,7) (2.7.1)
g

2
the result is
oc 0% oc

= o5t (=15

for —oo < x,00 and 7 > 0. The function c¢(z,0),the initial profile, is given
by
c(x,0) = max(l —€*,0) (2.7.3)

A graph of ¢(z,0) is shown in 2.7. The two parameters k and k: are given by

roo r— 2D
2 2
The function f is given by
fl@)=(k—k)e" +k (2.7.5)

Assuming that the free boundary does exist, © = z¢(¢), at this boundary we

have

c(zy(r),7) = %($f(7’),7‘) =0 (2.7.6)

'We follow the same analysis as Wilmott,Mathematics of Financial Derivatives,Chapter

7.7

21



clx,

Figure 2.3: ¢(z,0)

We now have the constraint that ¢ > maxz(1 — e*,0). The behavior of f(z),
the consumption/replenishment term, is critical to the behavior of the free
boundary. A graph of f(x) is shown in figure 2.7. f(z) is positive when
r < xg where

zo = log(k/(k — k) = log(r/Dgy) > 0 (2.7.7)

For x > x4 the function is negative. If we suppose that no free boundary

existed and consider the initial data c(z, 0) for positive values of . For z > 0

dc(x,0)  9*c(x,0)

c(x,0) = 9z 0 (2.7.8)
From equation 2.7.2 at expiry we have
oc
_— = 2. .
= ) (27.9)

For 0 < x < =z, f(x) > 0 and thus c is positive. If x > z then f(z) < 0
and ¢ will be negative. We have the constraint that ¢ > 0 for x > 0 thus the

latter does not satisfy this constraint.

22



Fx)

xp (1)

Figure 2.4: f(x)

If we hold the option in x > xg the option falls below its intrinsic value

and the constraint is broken.

We must therefore take z,(0) = z since this is the only point consistent
with ¢(x;(0),0) =0
Figures 2.7 and 2.7 show the values of ¢(x,7) in the dimensionless diffusion

setting, and the original C'(S,t) at times prior to expiry.

23
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Figure 2.5: Local Solution ¢(z, )

C(S,t)

Figure 2.6: Option Value C(S,t)
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Chapter 3

Transformation

3.1 American Options PDE

In this section we introduce a transformation for the valuation of American
calls. The Black-Scholes equation modeling the price of a dividend paying
asset V', under deterministic yield D, volatility o and interest rate » may be

written as

1
Vi + 5aQSQVSS +(r—=D)SV,—rV =0 (3.1.1)

Here S denotes the underlying asset on which the call option is written. The
early exercise feature of the American option results in an optimal exercise
boundary problem, which in the PDE setting is treated as a free boundary
problem.

We denoted the free boundary with B(t). The domain of equation 3.1.1 is

25



(0,B(t)) x [0,T). The boundary conditions are given below

V(S,T) = maz(S—K,0), S € (0,B(T))

B(T) = maz(K, %),

V(0,8) = 0

V(B(t),t) = B(t)—K

(3.1.2)
(3.1.3)
(3.1.4)
(3.1.5)

(3.1.6)

3.2 Transformation to Diffusion Equation

The transformation we apply, a detailed derivation can be found in Panza-

opoulos,Houstis and Kortesis(1997), reduces the Black-Scholes equation to a

diffusion equation. The benefit of doing this is that the diffusion equation is

a far simpler and less cluttered equation than the Black-Scholes. It is then

a simpler matter to find exact solutions to the diffusion equation and then

convert back to financial variables. Letting £y and ko be defined as follows

_27“

by — 2(r— D)

2

kg ==

o2 o
We introduce the following transformations

1
T = 502(T —t)

r = log(S/K)+ (K, — 1)

B(t) = log(B(1)/K) + (ks — )T

ele

u(z,7) = 7 (V(S,t) =S+ K)

Equation 2.6.5 becomes

Ur = Uy + g(2,7)

26
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(3.2.2)
(3.2.3)
(3.2.4)

(3.2.5)

(3.2.6)



Where
g(2,7) = "7 ((ky — ky)e” RV 4 k) (3.2.7)

This is the principle equation which we will attempt to solve using nu-
merical methods in the following section. The domain of equation 3.2.6
is (=00, B(0)) x (0,20?T). The boundary conditions for the American call

become

u(z,0) = max(l—e€",0),z € (—oo, B(0)) (3.2.8)

B(0) = maac((),log%) (3.2.9)
lity——sou(z,7) = eM7(1 — ele=(k2=bm) (3.2.10)
wB(r),7) = 0 (3.2.11)
us(B(7),7) = 0 (3.2.12)

27



Chapter 4

Numerical Methods

4.1 Finite Difference Based Front Tracking

Method

In the PDE 3.2.6 u = u(x,t) is defined in a fixed frame of reference with co-
ordinate x and time ¢. The differential operator L! involves space derivatives

only.

Instead of working in the fixed(Eulerian) frame it is possible to take a La-
grangian viewpoint in which x is taken to be a moving coordinate x(t). We
then have a time-dependent mapping from a fixed set of reference coordi-

nates, e.g. a = x(0).

If we now define an invertible mapping between the fixed coordinates a and

You =1 — duy — Ugy

28



the moving coordinates x at time ¢
x = x(a,t) (4.1.1)

We have
u(x,t) = u(x(a,t),t) = u(a,t) (4.1.2)

where 4 and x are Eulerian.

Applying the chain rule to 4.1.2 gives

Oi 0% du  0u
ot ot ox Ot

(4.1.3)

From equation 3.2.6 we have that u, = u,, + ¢g. Substituting into equation
4.1.3 yields
ot 9% Ou  Ju

E—a'%—i—@—FQ(ﬂj,T) (4.1.4)

This is the time dependent equation, the solution of which gives the price for

the American call option.

We now discretise the problem using finite difference methods. We let N
denote the number dividing the interval of S into equally spaced subinter-

vals.

S, = i8S, i=0,--- N (4.1.5)
B(t) —x~

= —t 4.1.
59 ~ (4.1.6)

L denotes the number dividing the time interval such that

T o= Jjor, j=0,---,L (4.1.7)
1
or = 5aQT/L (4.1.8)

29



The grid used for this numerical scheme is shown in Figure 4.1.

0 Jart M T

Figure 4.1: Mesh for the finite difference approximation

For an interior point (i,j) on the grid, g—g is approximated by a central

difference formula ' 4
oU _oUl, ~ UL,

P 4.1.9
oS 268 ( )
To approximate the time derivative %—(T] we use a forward difference approxi-
mation
ou Ut —u/
—_ 4.1.10
or 0T ( )
The second spatial derivative,g% is approximated by
PU UL, —2U! +U/
~ it i (4.1.11)
052 (65)?
Finally, we approximate the 'nodal velocity’, S by
JHl_ gJ
95 u (4.1.12)

or 0T
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We first discretised the PDE 4.1.4

vt -, (Ug:—2U5+U511>+92(U3_1—2U5+U3+1>

ot 052 552

Ul - UL, Sit -5
0S8 or

+ (0:G7F +04GY) (4.1.13)

For1 <j<J—-1and 1 <n < N —1. The parameters 6; control the
implicitness of the scheme.

For consistency we must have
01+0,=0;+0,=1 (4.1.14)

As time increases the domain expands with B(7). The grid is appropriately
expanded by first determining the position of the free boundary then dividing
the domain into equal linearly spaced grid points. i.e if we let 274" denote
the position of the free boundary, z¢(7), then the grid points at the j + 1
time step are defined by xf“ =z + ﬁ (:Eg\;rl — x*) where 1 =1,2,..., N.

Differentiating gives the relation

i — %(:&N) (4.1.15)

We use this equation to determine the velocity of each nodal point.
0-Weighted Finite Difference Discretization

For 6 = 0 the discretization is explicit, for § = % we have the Crank-Nicolson
scheme, and for # = 1 the method is implicit. In this dissertation we look

only at the 6 = % case.
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Re-arranging equation 4.1.13 we obtain
Ut Ul = o, [0, (U =207+ UITY) 40, (UL — 207 + UYL
+ B [0:G7 + 0,GT] 4 [(U) = ULy) (X3 = X3)]
Where

@ = o >0, i =2k>0, v = >0

N5S
Rearranging 4.1.16 we are left with
U + U + 0, UL + (U] = UL )X = aUL + U7 + biUY,

+ iU = UL )X + G + 66
where

C; = —0@91 C/z = Oéieg

a; = 14 20@91 C/Ll =1- 2@102

bi = —a;f, by = a6, (4.1.16)
e; = 2010; éi = 20,0;
fi =0 fz = 01

The problem is then reduced to solving the system of equations
TUM 4+ GXIH = BU + d (4.1.17)

In order to find the location of free boundary at each successive time step,
we require one more piece of information. This is given by the derivative

o0C(B(t),T)
ox

boundary conditions 4.1.17. The condition = 0 gives one extra

equation, namely uy_, = uy. Writing this as a matrix equation with 77, we

have the equations

T@*" + oy = Bi +d (4.1.18)
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Where the components of T',B.d and /3 are given by

Bi

hT

$ (96 +ihdAT) +g(@™ ik (i+1)AT) ) ~(

S

2z
N

x

2+ 2r

—u

N,

1

J

i—

—a’
i—

=

1

—r
—r 24+ 2r
0 —r
0

2—2r r
r 2—2r
0 T
0
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r

2—2r

J_ud
Wi %1
=T

N(F)ahy

(4.1.19)

(4.1.20)

(4.1.21)

(4.1.22)



To simplify the notation we absorb the known quantity Bu/ into the d vector.

Writing this matrix equation explicitly we now have

- ] [ d, ]
2—-2r —r 0o .- 0 —B , ,
UJQ d2
—r  2=2r -r e — 5
0 -r T 0
—r N ,
ug\l—l dN—l
0 s 0 —r 2-=2r _ﬁN—l xzv'f‘l 0
0 0 -1 1 0
- "L 0] | 0]
This may be written symbolically as
T 7 i d
= (4.1.23)
AT 0 it 0

Equation 4.7.5 can now be re-arranged to solve for z
Tu + EQZN = d
Wi = 0
7 = T (J—ﬁx—N)
- BT (T*lcf— T’lﬁxN> — 0

Tr—1 A
hTT—lﬂ

We have therefore defined a method for locating the free boundary z;(7) at
each successive time step of the algorithm. Once 22 has been calculated,
we may determine the velocity at which the nodes move using the simple
equation

iy = —dN (4.1.25)



We may then substitute into equation 4.7.5 to obtain
T =d— falf" (4.1.26)

Solving this equation is straightforward, and is accomplished using a tridi-

agonal solver, where

@=T"(d— Bzy) (4.1.27)

4.2 Invertbility

We must ensure that in the case of explicit schemes, e.g. Crank-Nicolson,
that the matrix 7' is indeed invertible. To be able to solve equation 4.1.27

we must be able to find the inverse T'; we consider the following definition

Definition 3. A tridiagonal matriz A is said to be strictly diagonally domi-
nant (s.d.d) if and only if

|ai| > |ci| + b

The a}s are the coefficients along the diagonal and the ¢s and the b}s
are the coefficients on the lower and upper diagonal respectively. Then the
matrix A is non-singular.

If we consider the matrix 7" in the Crank-Nicolson, 6§ = % scheme, the coeffi-

cients are
¢ = —oub,
a; =1+ 20,0,
b, = —o,t;
Clearly

1+ 20@81 > 20(1‘91 = ’CLZ| > Ci’ + |bz|
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Therefore the matrix 1" is s.d.d and invertible

4.3 Stability Analysis

In this section we analyse the problem of stability of the finite difference
calculations that are used to solve equation 3.2.6.

Let @7 and R’ be two solutions of the system of equations AU = BU +d,
that have the same inhomogeneous term d but with different initial data Q°
and R°. Their difference U7 = Q7 — R’ satisfies the homogeneous system of

equations and stability is achieved by establishing that
AU = BUY and = |[WY|| < K ||W°||

If the constant K is such that |K| < 1 then the scheme is said to be stable.
Fourier or von Neumann’s method is the most precise and useful tool for
studying stability in the Il norm. The Fourier method expresses the initial
values at the mesh points along ¢ = 0 in terms of a finite Fourier series, then
considers the growth of a function that reduces to this series for t = 0 by a
seperation of variables method.

Fourier stability analysis can be restrictive however, since it can only be
applied to linear problems with constant coefficients and periodic boundary
conditions. The problem we are considering, @ — u,T = Uy, + g, is not a
linear equation. We can still proceed however, by ’linearising’ the problem,
and applying the stability condition locally at every interior point of the
domain.

We begin by making the substitution UJ = \,e**% and X7 = ¢,e%9%. The
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numerical scheme is given by

. , - - -
wltt — p {uffl —2u)" }

- -+ g(a7 +ih, (m+ 1)k)

uj_ —2u7+u7
+ (1—«9){ -l h; ’“+g(x+z’h,mk:)}
uf —u{,l 7 vaﬂ —m?v

LI (4.3.1)

. . ’U,quj ; l‘j+171‘j . . .
The term involving ——= % ~*=—= may be linearised by freezing the u,

J_,J
Ui~y

term ——-=. We also drop the known g function. We may then write
eihi6S _ ) oikids
)\n—i-l =
k
1 /\n_Heik(jfl)éS _ 2/\n+1€ikj65’ + )\n+leik(j+1)65
2 ( h? )
1 [\, ekG=105 _ o) oikids | \ cik(i+1)5S
3 ( 72 )
L eHkOS _ ¢ oighdS
+ gl s (4.3.2)
k
multiplying through by k and e*/%% gives
k ik6S _ —iksS k ik6S _ —iksS
/\n+1_)\n = ﬁAn—H (6 — € - 2)+ﬁ>\n (6 — € - 2) +ﬁ1 (£n+1 - fn)

Writing ™% as 2cos(kdS), using the identity cos(kdS) = 1 — 2sin?(%22) and
writing % = p we obtain

Ani1(1— 2usm2(@)) = A\ (1— 2usin2(¢)) + (€nt1 — &) (4.3.3)

Which holds for N — 1 interior equations.
We also have the boundary conditions that @y — uy_1 = 0 which provides

one extra equation

A — €SN, 1 =0 (4.3.4)
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We therefore have two equations in two unknowns allowing us to solve for

amplification factors A and &.

4.4 Local Analysis of the Free Boundary

A graph of the initial date profile is given in figure 2.7. The domain of equa-
tion 3.2.6 is (—oo, B(0)) x (0, 302T). Furthermore, from section 2.7 we know
where the free boundary, z,(0), must start. Clearly, the is a discrepancy be-
tween the points where the initial data falls to zero,i.e. 2% and the position
of z,(0).( see fig 4.4).

In moving the curve from x = 0 to x = x,(0) the finite difference algorithm

1= max( 1— & 0}

xf—x-

X x, (0

Figure 4.2: Initial Data Curve and Free Boundary

becomes unstable. We must find another way to advance the curve for the
first time step of the algorithm. Once this has been achieved, the algorithm

can then be used to progress the curve.

To see how the free boundary z = z,(7) initially moves away from x,(0)
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we find an asymptotic solution that is valid close to expiry? .

Restricting our analysis small values of 7 and for x close to z, we expand

f(z) by a Taylor series about z,.

f(x) = f(z,) + f(xo)(x —x,) + O((z — xo))Q (4.4.1)

(z — xo)f(xo) = —k(z — xo)

We assume an approximate local solution c(z, 7)that satisfies

dc 0%
with
Jdc
Taken on
= xs(7) (4.4.4)
xf(0) = xg (4.4.5)

This local problem can be solved exactly ( see appendix ). The similarity

solution in terms of the variable

(x — o)
= 4.4.6
§ 7 (4.4.6)
is of the form
¢ = 732c% () (4.4.7)
(note about cstar) We also try a free boundary of the form
2p(1) = 20 + VT (4.4.8)

2See Wilmott, Mathematics of Financial Derivatives, section 7.7.2
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Where &, is a constant taken to be 0.9034....

This is approximation to the free boundary motion that we use to expand
the grid for the initial time step, i.e. for ¢ = 1. The method described in

section 4.1 is then used for successive time steps, up until expiry.

4.5 Derivative Boundary Conditions

Equation 4.1.17 gives the condition that the derivative at the moving bound-

ary must be zero. In finite difference notation this can be written
Uy_1 = Uy (4.5.1)

Since we also have the boundary condition u(B(7),7) = 0 this implies that
un_1 is also zero. A graph of this data is shown in figure 4.5 below.

The existence of a discontinuity in the data, where the function falls to zero,

i

— 4

pLE Ly

Figure 4.3: Derivative Conditions

causes instability close to the leading edge of the curve. This leads to poor
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results in the region local to the moving boundary point.
In an effort to overcome this, we replace the zero derivative requirement by

an approximation. We seek a function of the form
ay* +by = 0 (4.5.2)

to approximate the curve close to z;. Taking the derivative of this function

gives
2y +b = 0 (4.5.3)

The derivaitve is known to be zero at y = 0 which implies that b = 0 and

hence our curve is modeled by the function ay®. We have the condition that

ah? = un_,

a(2h)2 = Un_o (4.5.4)
We therefore have a relation that

Uy o, = 4duy_, (4.5.5)

4.6 Description of Algorithm 1

The initial data profile presents two difficulties from a numerical perspective.
Firstly, the algorithm is found to be unstable when applied to the function
maz(1—exp(x),0). This problem is overcome by utilizing the approximation
to the free boundary derived in section 4.4. The second problem arises due

to the discontinuous data curve that results from imposing the boundary
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Figure 4.4: Approximation to the Derivative

conditions 4.1.17. At the moving boundary,z,, the form of the solution is
approximated by a parabola .

We now present a brief overview of the algorithm

Set Initial Conditions u°, B°, x°
Approximate the derivative at x by ’parabola’

For j =1 DO

Set the Velocity of xn to &g\/T

Rescale x grid points

Solve equation 4.1.26 for u!

Set T =71+ AT

END DO
For j =2to N —1 DO
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- Solve equation 4.1.24 for x';
- Rescale x grid points

- Approximate the derivative at xy by ’parabola’

J
i

- Solve equation 4.1.26 for u
- SetT =1+ AT

END DO

4.7 Algorithm 2

To improve the accuracy of the algorithm used in section 4.1 we now introduce
a monitor function, the effect of which is to increase the number of grid points
in the local region(s) where the curve is changing rapidly. Likewise, regions
where the data is varying less rapidly will be assigned fewer grid points.
Our aim is to increase the resolution close to the moving boundary point 5(7).
To understand the significance of this, we make a transformation back to
financial variables. Here, the moving boundary represents a division between
two points. Points to the left of the moving boundary represent asset prices
for which it would be unprofitable to enter into the option, whereas points
to the right are asset prices for which the option would be profitable. It is
therefore essential to gain an accurate approximation for this point.

The monitor function is described by

z; =x4(T) — (W—;x_)w - @)2) (4.7.1)
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This function gives the position of each nodal point in terms of the free

boundary. The velocity of the nodes may be calculated from 4.7.1 as

g = (1 - <NN;22>2) Z(7) (4.7.2)

Algorithm 1 uses equal linearly spaced intervals. The introduction of the

X & Xy (o

Figure 4.5: Grid Spacing

monitor function leads to a parabolic spacing of the grid points, see fig 4.7.
Since the x— spacing is no longer constant between grid points, the Crank-
Nicolson method used in the previous algorithm is no longer valid. In order
to apply a finite difference discretization we introduce a Lagrange polynomial
to approximate the second derivative.

>l 2f(x0) N 2f(z1) N 2f (x2)

dx? (o — z1)(20)(2) (w1 — wo)(x1 —22) (T2 — @0) (w2 — 1)

(4.7.3)

The lagrange polynomial is degree two on the support {zg,z1, 22} for the

function u(x). Replacing the difference approximation to the second deriva-
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tive in equation gives

u]'+17uj 2uj+1 2uj+1 2“j+1
X R T £ S = Ry o W o e B S B W S Sy . By =5 R £ w5
@2y —=] W Zy—wipy) (g T mep T (e T —eg ) ey e L) )
Quj 2uj 2uj
1(1—-0 i i1 et S E e L i
( ){@zl—zzmzl—zm e T e = = B T P
Wi o witl
+9(g(z—+ih,jm))+(1_9)(g(:p—+m,(j+1)m))+I;.%;fl <1_<NN2> ) NN
i 1—1
As before this may be written as a matrix equation
Tiu+ Pxy =d (4.7.4)
h*i =0
Where Where the components of 7', d, 3 and h" are given by
1-4£ £ 0
ol a3
_k Kk _k
ol o3 oy
T = 0 (4.7.5)
0 ——bk 1k
B QN2 anN-—-1
d; = Oéilil“2*1+(1+%)uz+%ilug+1}
B, = 7(1 (Nfz)2>“?ﬂ§71
v N2 1.]71]_'
[ i—1
K" = 00 -1 1 (4.7.6)
Where
O‘i—lz(xg—l_xg)(mg—1_$g+1)
o=l 2ol )
ai+1:(xg+1_xgq)(xﬂl_x{) (4‘7°7)
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Writing this matrix equation explicitly we have

e B -
k k k
o T S — By
0
k k
0 b1k gy
0 0 -1 1 0

J
Uyn_y

TN

di
dy

’
Ay

0

The solution method for xy remains unchanged. We solve for xx as before,

and express the solution as @ = T=*(d — fzy).

4.8 Invertbility-method two

We proceed as previously outlined in section 4.2

k k k
¢i=———a;=(1——)b=—=
o1 % Qi1

Again, we need to ensure |a;| > |b;| + |¢]

k k k
= (1-=)>—=
(%) 7]

it

This is restriction imposed on the grid spacing

4.9 Description of Algorithm 2

The introduction of the monitor function, reducing the spatial interval near

the moving boundary, modifies the 7" matrix given in equation 4.7.6. The '’
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values, %, are no longer a constant and must be evaluated at each pair of
nodes within the domain. In our modified algorithm, the 7" matrix contains
entries g where « is equivalent to h in our previous method when the domain
was divided into linear elements. Clearly as the spacing becomes smaller, the
magnitude of g becomes larger. When the ration g becomes larger than 1 the
solution method is found to become unstable. To rectify this we precondition
the matrices as follows;
Let D be the diagonal of T'. Multiply both sides of equation 4.1.26 by D!
to obtain

D™'Ti=D"'d— DGzl (4.9.1)
To simplify the notation we let D! = T and D-'d — D’lﬁxﬁl = f We

then solve the equation

u=T"f (4.9.2)

We now present a brief description of the algorithm
Set Initial Conditions u°, B°, x°
Approximate the derivative at x by ’parabola’

For j =1 DO

Set the Velocity of xy to &g/T

Rescale x grid points using the monitor function

Calculate (3; and construct T matrix

Multiply equation 4.1.26 by D~!

Solve equation 4.9.2 for u!
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-Sett=T17+AT

END DO
For j=2to N —1 DO

- Solve equation 4.1.24 for z°,

- Rescale x grid points using the monitor function
- Approximate the derivative at xy by ’parabola’
- Calculate (3; and construct T" matrix

- Multiply equation 4.1.26 by D=1

- Solve equation 4.9.2 for u?

- Set =17+ AT

END DO
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Chapter 5

Finite Element Method

5.1 Introduction

In this section we attempt to find a solution to the American call problem us-
ing a finite element method. The previous approach has been to replace the
continuous operation of differentiation with the discrete operation of finite
differences. We then reformulate the equations in terms of finite differences.
The fundamental idea of the finite element method is the replacement of con-
tinuous functions by piecewise approximations. The most elementary choice
of basis functions is the piecewise linear polynomials, this is the approxima-
tion we shall use in this report.

We divide the interval (—oo, B(0)) into linearly spaced elements. The parti-

tion is defined by

[x_ =T0, L1, L1, Tj, Tjpls s Typr = xf] (5.1.1)
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Define the basis functions ( ’hat’ functions ) as follows

(

0 @ 0<z<2
T—Tio1
_ ) wmmo 0 LS TS T
[ .
Ti—m T < T < Tig
0 : zpm<z<l

\

The functions ¢; are piecewise linear, the derivatives ¢; are constant on

(wi, wipq) for each i =0,1,--- | n.
.
0 . 0 S €T S xi—l
1
o <x <z
1 hi— g > L41
¢i(z) = !
;_@-1 DT < TS Tip
0 : mu<z<l
\
QO;(X) "
L ';01'
’ >
4w

Figure 5.1: Hat Function

Finally let
N+1

U(z) = Z Uidi() (5.1.2)
i=0
be a trial function, once differentiable between each x;. This is the piecewise

linear Finite Dimensional Representation.
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5.2 Weak Form

The weak form of the differential equation 3.2.6 is found as follows.
Let ¢;(x) be a set of test functions where ¢;(z) € C*. Multiply 3.2.6 by ¢;
and integrate.

wit1(7) zit1(7)
/ diupdr = / ¢i (Upy + g) dx (5.2.1)

i—1(7) i—1(7)

(5.2.2)

Since the grid is not fixed

d [T zttl de 151 B(7)

— p;udr = / diuy + [@u—} Let 0 = / udx

dt 331;_1(7') CBi—l(T) dt CCZ‘,1(T) A
Now 6, the area under the curve, is not constant in time, since we have a
source term g(x,7) that adds and subtracts 'mass’.

ziy1(t)
Let / p;udr = ¢;0 (5.2.3)
xifl(t)

be our new monitor function, where ¢; is a fraction such that ). ¢;0 = 1. See
7?7 below We now define & to be eqaul to %, the ’velocity’ potential.

At interior points, 1 <i < N —1

Tig1 do: ziy1(t) Tiy1(t) d d .
—/ (t)ﬁumdx—i—/ qbigdx—/ b &y =c¢f  (5.24)

ifl(t) dl’ ifl(t) I_71(15) dl’ dl’
Ati=0
d - d
—Ua:|$x—/ ﬂuxdm—/ prgdr+ous x”i(i) / ﬂuycdyc =0
mo(t) xo(t) dx
(5.2.5)
Ati=N
zN (t) d zN(t)
—/ ¢N_1uxdw+/ ¢N-19dzx (5.2.6)
syt 4T ex—a(t)
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S -?E{H

B(y)

Figure 5.2: Monitor Function

Equation 5.2.4 may be written as a system of equations for ¢/ and 0

Kip +0c =g —

Where

Yt dg; do;
—=d
/xi1 dz dr "

w1 4y do,
/x Pl

Tit1
/ bgde
i1

Tit1
/ biyda
Ti_1

i—

i—

Ku (5.2.7)
= K,
- K
= M,; (5.2.8)

the tridiagonal matrix K is known as the stiffness matrix, while M is known

as the mass matrix.

In order to solve 5.2.9 we need one extra piece of information. This is provided
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by the boundary condition © = 0 at * = z~. This implies that % =0 at

r=ux",1e. Py = 1. Writing this as a matrix equation we have

K c\ (v f
- (5.2.9)
h™ 0 0 0
The problem is then to solve
=K Nj—Ki—0) (5.2.10)
From 5.2.9 we have that
Ry = 0
=h"y = WK 'G+h" K 'Ki—0hK™'¢
s WTKT'G—hTK'Ka
=0 = J “ (5.2.11)

hT*K-1¢

5.3 Finite Elements Algorithm

In this section we provide an outline of the steps involved in calculating the
Finite Element solution of the American Call problem , 4.1.4. In order to
evaluate the stiffness matrix KZJ we approximate the function u by a linear

interpolant between each node i.e.

U=, (M) . (@) (531)
Tiy1 — X4 Tiv1 — X4

The steps of the algoritm are outlined below Set Initial Conditions u°, B°, z°
For j =1to N —1 DO
Fori=1to N —1DO

- Calculate g;
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- Calculate Kj;

- Calculate KZJ using linear interpolant

7 RTR1G-hTK-1Ki
- Set 6 = o
S hTR-1g

- Solve K¢ = § — Kii — 0¢

- Calculate nodal velocities & by setting & = %

- Integrate & to find new node positions :L"gJrl

- Evaluate M using new node positions
- Solve Mu =¢

END DO

END DO

The z values are integrated using a Runge-Kutta order four method, w;; =
u; + ¢ (k1 + 2kg + 2ks + hy).

Elements of the K matrix are calculated exactly whilst the entries in g vector
and K matrix are evaluated using a numerical quadrature. (n = 2: Simpsons
Rule ). Both the K and K matrices are tridiagonal, equation 5.2.10 is found

using a tridiagonal solver. ( Thomas Algorithm )
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Chapter 6

Results

6.1 Finite Differences

In this section we present the numerical results of the finite difference method.

We assume the following parameters

K = 10
T = {0.25,0.5,1.0}
r = {0.03,0.06,0.1}
o = {0.2,0.4,0.6}
D = {0.8r,1.0r,1.2r} (6.1.1)
The smaller values of o represent lower volatility of the underlying assets,
while values of T" represent short, medium and long term call options.

We first make the transformation back to financial variables, taking u; to be

our numerical solution to the diffusion problem, we find the solution to our
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ufxt)

Figure 6.1: {T'=1,0 =0.2,r =0.03,D = 0.8r}
option value as follows

S = exp” UK

t = —((27)0*=T)
V(S,t) = %+S—K (6.1.2)

We apply the numerical scheme for the three combinations of the parameters
given in 6.1.1, time to expiry is taken as 1.

Figures 6.1,6.1 and 6.1 show the data curves plotted in the dimensionless
( Diffusion ) setting. A time step of AT = "—;/100 is taken,the spatial
increment,Ah, is 0.001. It is clear from figures that as we vary the pa-
rameters the is a recognisable change in the profile of the curve. The contour
of the curve is determined predominantly by the source term ¢ which itself

is a function of the interest and dividend parameters.

26



u(x,t)

Figure 6.2: {T'=1,0 =0.4,r =0.06, D = 1.0r}

From the figures we see that choosing a larger interest rate and dividend pa-
rameter causes the free boundary to move further along the r—axis, as would
be expected. Shown below is a plot of the 'source’ term ¢ in the diffusion

equation 3.2.6

This function represents a consumption term for x < 0 and a replenish-
ment term for x > 0. Looking more closely at the function w(z,7) in the
dimensionless setting (see fig 6.1) we can see for x > 0 this function has
the effect of decreasing u(z, 7), drawing out the moving boundary, whilst for
x < 0 the function adds mass to the equation, causing the curve to increase
with time.

Figures 6.1,6.1 and 6.1 show the data once it has been transformed back
into financial variables. The small movement of the free boundary in the
dimensionless field is now emphasized. The moving boundary, which now

represents the point at which we should exercise the option, can be seen
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Figure 6.3: {T' =1,0 =0.6,r =0.1,D = 1.2r}

g(x.t)

Figure 6.4: G — function {T = 1,0 =0.6,r =0.1,D = 1.2r}

o8



14

1.2 =

Figure 6.5: U(z, )

moving to the right. This is as we would expect. As the time to expiry
decreases, there is less time for the price of the underlying asset to move,
and thus less potential for the option to become profitable. Consequently
the boundary which determines when we should "hold” or ’sell’ the option
shifts to the right.

Table 6.1 gives values a comparison of values for a call option for a num-
ber of values of the ratio S/K. We take 100 time steps and the parameters:
K =10,0 =0.3,D =0.02,7 = 0.04,T7 = 0.25.

The Benchmark solution is the solution given by the binomial method for
2500 time steps. The money less ration, S/K, is taken in the range 0.7 — 1.3.
The columns IFT,MLII and LC are included for comparison. They represent
other PDE methods that have been proposed for the pricing of American
options. We also show the relative error between the option value given by

BENCH and our approximation.
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Figure 6.6: {T'=1,0 =0.2,r =0.03,D = 0.8r}
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Figure 6.7: {T'=1,0 =0.4,r = 0.06, D = 1.0r}
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Figure 6.8: {T'=1,0 =0.6,7r =0.1,D = 1.2r}

Table 6.1: Prices of Call options

S/K

FD

IF'T

MLII

LC

BENCH

Error

Call Options

0.70000

0.003261

0.004025

0.003977

0.004057

0.003988

0.182291

0.75454

0.013500

0.016526

0.016450

0.016577

0.016450

0.178977

0.80909

0.047274

0.051412

0.051360

0.051353

0.051353

0.079435

0.91818

0.117828

0.127973

0.128069

0.127895

0.127893

0.078698

0.97272

0.443699

0.481072

0.481230

0.480072

0.486390

0.087771

1.02727

0.714487

0.775478

0.775818

0.775283

0.775587

0.787790

1.08181

1.056226

1.142981

1.143191

1.142845

1.142953

0.075885

1.13636

1.414501

1.569793

1.569901

1.569956

1.569856

0.099026

1.19090

1.883253

2.040556

2.040556

2.040546

2.040508

0.770665

1.24554

2.364591

2.540893

2.540893

2.541063

2.540901

0.069388

1.30000

2.973134

3.060005

3.060005

3.059990

3.059931

0.029398
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The ratio of S/K represents the value of the option, for a given value of S
when the strike price is taken to be 10. The term 'moneyness’ represents the
fact that when the ratio S/K < 1 the value of the underlying stock is less
than the price of the option, and when the fraction S/K > 1 the asset price
has risen above the strike price. Referring to table 6.1 we see that as the vale
of the underlying stock approaches the strike price the option value begins
to increase, and once the stock price actually exceeds the strike, the value of
option rises quickly.

The numerical results from the finite difference method are displayed in col-
umn 'FD’. The values generated by our method are approximately 25 smaller
than the benchmark values. This suggest that our approximation to the free

boundary in the dimensionless setting is poor.
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Figure 6.9: Velocity Potential

6.2 Finite Element Algoritm

The results provided by the finite elements algorithm proved to be very poor.
The method was unsuccessful in accurately modeling the motion of the free
boundary; after a very small number of time steps the velocity of the nodes in
the region close to the moving boundary became too large by several orders
of magnitude.

In the finite element code, we calculate a velocity potential ¥, where ¥ =
Yp¢;, and then rescale the grid by calculating the nodal velocity as equal to
the gradient of the velocity potential. (& = %. It is then a simple matter of
integrating this velocity to obtain the new grid points. A graph of a typical
values of Wwszx is shown below. Ultimately, determining the new node points

rests on solving the system of equations

Ky =f
The K matrix is given by equation 5.2.8. Because of the nature of the u
function, the diagonal entries of the K matrix ranged from approximately
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40 in size, down to 0.01. This matrix was found to be ill-conditioned, which
lead to poor results for .

In an effort to overcome this we take the same approach as section 77, pre-
multiplying by D~! where the D matrix is the sum of the diagonal matrices.
This did not solve the problem of the steep gradient close to the free boundary
however, and due to time constraints we were unable to obtain any accurate

results from this method.
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Chapter 7

conclusion

The finite difference method applied to the American Call problem produced
valuations to within —30% of the BENCH value. The undervaluing of the
option is a result of the algorithms inability to accurately resolve the true po-
sition of the moving boundary at each time step. The algorithm was found
to be unstable when applying the derivative boundary conditions directly,
hence we saught to approximate the derivative by the form of a parabola.
Although this improved stability, we believe that this reduces accuracy of
the method in determing the moving boundary, the velocity is consistently
over approximated.

The introduction of the monitor function improved results, further work is
required in analysing the effect of approximation to the boundary conditions,
there are also several further monitor functions that can be implemented. A
comparison of these methods would be the next step in our research.

We have devised a new method for the valuation of American options as free
boundary problems, transforming the equation to a Lagrangian frame, and

are also the first to introduce the Shur method for locating the free bound-
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ary. ( To our Knowledge ) Due to time limitations we were unsuccessful in
applying the finite element algorithm to the problem. We were unable to re-
solve the problem caused by the ill-conditioned matrix when evaluating the
velocity potentials.

Concluding, further work is required in formulating the finite element ap-
proach to this problem and finding an alternative method of calculating the
velocity potential . A comparison could then be made between the accu-
racy of the finite difference method we have presented, and the finite element

method that was originally proposed.
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.1 Program 1 - pt1.f90

PROGRAM AMERICAN_OPTIONS707
DOUBLE PRECISION : : K, NEGINFINITY , XN, Delt , Tfinal ,t,B,h,A,C, DelTau,
Domain , Tau,SOUT

DOUBLE PRECISION,ALLOCATABIE: : U (:) ,UTEMP(:) ,RHS(:) ,Z(:) ,Y(:) ,HT(:) ,V(:),
X(:),U2D(:,:) ,X2D(:,:),S2D(:,:) ,V2D(:,:)

INTEGER : : 10S,j ,N, L, i

DOUBLE PRECISION,PARAMEETER:: : Ir =0.03D0, Sigma=0.5D0,D=0.8D0x*Ir ,KK=10.0D0

DOUBLE PRECISION,PARAMEIER : : K1=2.0D0+ It /(Sigma*+2.0D0) ,K2=2.0D0* (Ir-D) /(
sigmax%2.0D0)

PRIINT k|, 7 sk sk sk sk sk sk sk ok ok ok ok sk ok ok ok ok ok sk kK ok ok ok ok ok ok ok ok ok sk ok ok oK ok ok ok ok ok ok ok ok ok ok ok

PRINTx , * %
PRINTx , * CRANK_NICOLSON SOLULTION *
PRINT x , ’ * %’
PRINT* , * DIFFUSION EQUATION *
PRINT * , ’ %7
PRINT x , ’ %

PRIINT s ) 7 sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk ko ok ok ok ok sk ok ok ok ok skok sk ok 7

PRINT+
NEGINFINITY=-30.0D0

Tfinal=((Sigma*%2.0D0) /2.0) *1.0D0

Domain=NEGINFINITY

N=800

L=NINT(( Tfinal /(Domain/N) *%2) )
printx L

k=(Tfinal /L)

DelTau=(Tfinal) /L

B=0.0D0
XN=B
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40

48

56

64

ALLOCATE(U (0:N) ,JUTEMP(0:N) ,RHS(1:N—1) ,V(1:N—1),Z(1:N—1),Y(1:N—1) ,HT(1:N

-1)&
,X(0:N) ,X2D(0:L,0:N) ,U2D(0:L,0:N),&
S2D (0:L,0:N) ,V2D(0:L,0:N))

U=0.0D0
UTEMP=0.0D0
RHS=0.0D0
V=0.0D0
7Z=0.0D0
Y=0.0D0
HT=0.0D0
t=0.0D0
S2D=0.0
V2D=0.0

(UNIT=13,FILE="x . dat” ,JOSTAT=IOS)
(UNIT=14,FILE="U. dat” JOSTAT=IOS)
(UNIT=15,FILE="x1 . dat” JOSTAT=IOS)
(UNIT=16,FILE="U1. dat” JOSTAT=IOS)
(UNIT=17,FILE="x2 . dat” JOSTAT=IOS)
(UNIT=18,FILE="U2. dat” JOSTAT=IOS)
OPEN(UNIT=19,FILE="x3 . dat” JOSTAT=IOS)
OPEN(UNIT=20,FILE="U3. dat” JOSTAT=IOS)
OPEN(UNIT=21,FILE="x4 . dat” JOSTAT=IOS)
OPEN(UNIT=22 ,FILE="U4. dat” JOSTAT=IOS)
OPEN(UNIT=23 ,FILE=" x5 . dat” JOSTAT=IOS)
OPEN(UNIT=24 ,FILE="U5. dat” JOSTAT=IOS)
UNIT=25,FILE="x6 . dat” JOSTAT=IOS)
UNIT=26,FILE="U6 . dat” JOSTAT=IOS)
UNIT=27 ,FILE="x7 . dat” JOSTAT=IOS)
UNIT=28 ,FILE="U7. dat” JOSTAT=IOS)
OPEN(UNIT=29 ,FILE="x8 . dat” JOSTAT=IOS)
OPEN(UNIT=30,FILE="US. dat” JOSTAT=IOS)
OPEN(UNIT=31,FILE="x9 . dat” JOSTAT=IOS)
OPEN(UNIT=32,FILE="U9. dat” JOSTAT=IOS)
OPEN(UNIT=33,FILE="x10 . dat” JJOSTAT=IOS)
OPEN(UNIT=34 ,FILE="1u10 . dat” JOSTAT=IOS)

383333

3933

(
(
(
(
(
(
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80

88

96

104

OPEN(UNIT=35,FILE="x0 . dat” JOSTAT=IOS)
OPEN(UNIT=36,FILE="u0 . dat” ,JOSTAT=IOS)

OPEN(UNIT=37,FILE=" 32 . dat” JOSTAT=IOS)
OPEN(UNIT=38 ,FILE="V2. dat” JOSTAT=IOS)
OPEN(UNIT=39 ,FILE=" 83 . dat” JJOSTAT=IOS)
OPEN(UNIT=40,FILE="V3. dat” JOSTAT=IOS)
OPEN(UNIT=41,FILE="84 . dat” JOSTAT=IOS)
(UNIT=42 ,FILE="V4 . dat” JJOSTAT=IOS)
(UNIT=43 ,FILE="S5 . dat” ,JOSTAT=IOS)
(UNIT=44,FILE="V5 . dat” ,JOSTAT=IOS)
(
(

3933

UNIT=45,FILE="$6 . dat” JOSTAT=IOS)
OPEN(UNIT=46 ,FILE="V6. dat” JOSTAT=IOS)
OPEN(UNIT=47 ,FILE="S7 . dat” JOSTAT=IOS)
OPEN(UNIT=48 ,FILE="V7. dat” JOSTAT=IOS)
OPEN(UNIT=49 ,FILE=" S8 . dat” JOSTAT=IOS)
OPEN(UNIT=50,FILE="VS. dat” JOSTAT=IOS)
OPEN(UNIT=51,FILE="S9 . dat” JJOSTAT=IOS)
OPEN(UNIT=52,FILE="V9. dat” JOSTAT=IOS)
OPEN(UNIT=53,FILE="S10 . dat” ,JOSTAT=IOS)
OPEN(UNIT=54,FILE="V10. dat” ,JOSTAT=IOS)

OPEN(UNIT=60,FILE="x2D . dat” ,JOSTAT=IOS)
OPEN(UNIT=61,FILE="u2D. dat” ,JOSTAT=IOS)

OPEN(UNIT=62,FILE="S . dat” ,JOSTAT=IOS)
OPEN(UNIT=63,FILE="V . dat” JOSTAT=IOS)

OPEN(UNIT=64,FILE="S1 . dat” ,JOSTAT=IOS)
OPEN(UNIT=65,FILE="V1. dat” JOSTAT=IOS)

OPEN(UNIT=70,FILE="SOUT. dat” ,JOSTAT=IOS)

OPEN(UNIT=71,FILE="STIME. dat” ,JOSTAT=IOS)

IF (10S/=0) THEN
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PRINT* ,’ Error Occured in Opening The Output File’
STOP
END IF

Tk sk ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ko oK ok ok ok ok ok oK ok ok ok K oK ok ok ok ok K oK ok ok ok kR K K
1% MAIN PROGRAM *
Ix *

Tk ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK oK oK oK oK K K K K K K K K K K KK KRR R R R R ok ok ok ok ok K K

j=0
DO i=0N

X(i)=NEGINFINITY+(REAL( i ) /REAL(N) ) * (B-NEGINFINITY)

X2D(j, 1)=X(1)

END DO

DO i=0N

WRITE(UNIT=13 FMT="(E12.6) *)X (i)
WRITE(UNIT=60 FMT="(4251E21.6) ")X2D(j , i)

END DO
CALL BOUNDARY_CONDITIONS(N,U,X,U2D, j ,L)
DO i=1,(N—4)
HT(i)=0.0D0
END DO
HT(N—3)=9.0D0/4.0D0
HT(N—2)=—1.0D0
HT(N—1)=4.0D0
=0

Tau=(0.5D0x(Sigma*%2.0D0) ) x(1.0D0) = (REAL( j ) /REAL(L) )
h=(B-NEGINFINITY ) /N
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152

160

168

176

184

CALL CRANKNICOLSON(N,k,U,RHS,B,X,t,h,DelTau,Tau)

XN=XN+0.9034+SQRT((1.0* ( Sigma=*x2.0D0) ) *(1.0D0) x(1.0D0/REAL(L)))
B=XN

DO i=0N
X(i)=NEGINFINITY+(REAL( i ) /REAL(N) ) * (B-NEGINFINITY)
END DO
DO i=0,N
WRITE(UNIT=13 FMTI="(E12.6) *)X(i)
END DO
CAIL TRIDIAG_SOL(N,RHS,U, k,h,NEGINFINITY ,X,U2D, j ,L,S2D, V2D, tfinal)
DO j=1,L
h=(B-NEGINFINITY) /N
Tau=((Sigma**2.0D0) /2.0D0) * (1.0D0) *(REAL( j ) /REAL(L) )
CALL CRANKNICOLSON(N, k,U,RHS,B,X,t ,h, DelTau , Tau)
CALL VEC(N,U,V,h)
CALL TRIDIAG_SOLL(N,RHS,Z,k,h)
CALL TRIDIAG_SOL2(N,V,Y,k,h)
CALL XN_SOLVE(N,Y,Z,HT,XN)
DO i=1,N-1
RHS (i )=RHS(i)—V(i)+XN

END DO

h=(XN-NEGINFINITY) /N
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192

200

208

216

224

DO i=0N

X (i )=NEGINFINITY+(REAL( i ) /REAL(N) ) % (XN-NEGINFINITY )
X2D(j,i)=X(i)
END DO
DO i=0,N
WRITE(UNIT=13 FMT="(E12.6) *)X(i)
WRITE(UNIT=60 FMT="(4251E21.6) *)X2D(j , i)

END DO

CALL TRIDIAG_SOL(N,RHS, U,k ,h,NEGINFINITY,X,U2D, j ,L,S2D, V2D, tfinal)

B=XN
t=Tfinal

—(2.0«Tau/sigmax*2)

SOUT=(exp (XN+(1-K2) xtau) ) *KK

WRITE(UNIT=70 FMT="(F12.6) *)SOUT
WRITE(UNIT=71 FMT="(F12.6) *) Tau
END DO

WRITE(UNIT=15 FMT="(F12.6) *) ((X2D(j ,i),j=5,5),i=0,N)
WRITE(UNIT=16 FMT="(F12.6) *) ((U2D(j ,i),j=5,5),i=0,N)
WRITE(UNIT=17 FMT="(F12.6) *) ((X2D(j ,i),j=10,10) ,i=0,N)
WRITE(UNIT=18 FMT="(F12.6) *) ((U2D(j ,i),j=10,10) ,i=0,N)
WRITE(UNIT=19 FMT="(F12.6) *) ((X2D(j, i) ,j=20,20) ,i=0,N)
WRITE(UNIT=20 FMT="(F12.6) *) ((U2D(j , i) ,j=20,20) ,i=0,N)
WRITE(UNIT=21 FMT="(F12.6) *) ((X2D(j ,i),j=30,30),i=0,N)
WRITE(UNIT=22 FMT="(F12.6) *) ((U2D(j ,i),j=30,30) ,i=0,N)
WRITE(UNIT=23 FMT="(F12.6) *) ((X2D(j,i),j=40,40) ,i=0,N)
WRITE(UNIT=24 FMT="(F12.6) *) ((U2D(j , i) ,j=40,40) ,i=0,N)



232

240

248

256

264

i

‘WRITE(UNIT=42 FMT="
‘WRITE(UNIT=43 FMT="

WRITE(UNIT=44 FMT="(F12.
WRITE(UNIT=45 FMT="(F12..
WRITE(UNIT=46 FMT="(F12.
WRITE(UNIT=47 FMT="(F12.
WRITE(UNIT=48 FMT="(F12.
WRITE(UNIT=49 FMT="(F12.
WRITE(UNIT=50 FMT="(F12.
WRITE(UNIT=51 FMT="(F12.
WRITE(UNIT=52 FMT="(F12.

(

(

(
(
(
(
(
(

WRITE(UNIT=53 FMT="(F12.
WRITE(UNIT=54 FMT="(F12.

WRITE(UNIT=64 FMTI'="(F12.6
WRITE(UNIT=65 FMTI="(F12.6

UNIT=30 FMT="(F12.
UNIT=31 FMT="(F12.
UNIT=32 FMT="(F12.
UNIT=33 FMT="(F12.
UNIT=34 FMT="(F12.
(UNIT=35 FMT="(F12.
WRITE(UNIT=36 FMT="(F12.

(UNIT=37 FMT="(F12.6
(UNIT=38 FMT="(F12.6
(UNIT=39 FMT="(F12.
(UNIT=40 FMT="(F12.
WRITE(UNIT=41 FMT="(F12.
F12.
F12.

) ) ((X2D(j , 1) ,j=50,50),i=0,N)
) ) ((U2D(j , 1) ,j=50,50),i=0,N)
6) ") ((X2D(j,1),j=60,60),i=0,N)
) ) ((U2D(j ,1),j=60,60),i=0,N)
6) ") ((X2D(j,i),j=70,70),i=0,N)
6) ) ((U2D(j,i),j=70,70),i=0,N)
6) ) ((X2D(j,i),j=80,80),i=0,N)
6) ’) ((U2D(j,i),j=80,80),i=0,N)
6) ") ((X2D(j, 1) ,j=89,89),i=0,N)
6) ’) ((U2D(j,i),j=89,89),i=0N)
6) ") ((X2D(j,i),j=89,89),i=0,N)
6) ) ((U2D(j,1),j=89,89),i=0,N)

) ) ((82D(j,i),j=5,5),i=0,N)

) ") ((V2D(j ,i),j=5,5),i=0,N)
6) ) ((S2D(j,i),j=10,10),i=0,N)
6) ) ((V2D(j,i),j=10,10),i=0,N)
6) ’)((82D(j,i),j=15 5)71 0,N)
6) ’) ((V2D(j,i),j=15,15),i=0,N)
6) ) ((S2D(j,i),j=20,20),i=0,N)
6) ) ((V2D(j,i),j=20,20),i=0,N)
6) ) (($2D(j,i),j=30,30),i=0,N)
6) ) ((V2D(j,i),j=30,30),i=0,N)
6) ") ((S2D(j,i),j=40,40),i=0,N)
6) ) ((V2D(j,i),j=40,40),i=0,N)
6) ’) ((S2D(j,i),j=50,50),i=0,N)
6) ) ((V2D(j,i),j=50,50),i=0,N)
6)7) ((S2D(J,1) ,j=60,60),i=0,N)
6) ) ((V2D(j,i),j=60,60),i=0,N)
6) ’) ((82D(j,i),j=70,70),i=0N)
6) ) ((V2D(j,i),j=70,70),i=0,N)

) ) ((S2D(j,1),j=80,80),i=0,N)

) ) ((V2D(j ,1),j=80,80),i=0,N)
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272

280

288

296

304

CLOSE(UNIT=11)
CLOSE(UNIT=12)
CLOSE(UNIT=13)
CLOSE(UNIT=14)
CLOSE(UNIT=15)
CLOSE(UNIT=16)
CLOSE(UNIT=17)
CLOSE(UNIT=18)
CLOSE(UNIT=19)
CLOSE(UNIT=20)
CLOSE(UNIT=21)
CLOSE(UNIT=22)
CLOSE(UNIT=23)
CLOSE(UNIT=24)
CLOSE(UNIT=25)
CLOSE(UNIT=26)
CLOSE(UNIT=27)
CLOSE(UNIT=28)
CLOSE(UNIT=29)
CLOSE(UNIT=30)

CLOSE(UNIT=31)
CLOSE(UNIT=32)
CLOSE(UNIT=33)
CLOSE(UNIT=34)
CLOSE(UNIT=35)
CLOSE(UNIT=36)
CLOSE(UNIT=37)
CLOSE(UNIT=38)
CLOSE(UNIT=39)
CLOSE(UNIT=40)
CLOSE(UNIT=41)
CLOSE(UNIT=42)
CLOSE(UNIT=43)
CLOSE(UNIT=44)
CLOSE(UNIT=45)
CLOSE(UNIT=46)
CLOSE(UNIT=47)
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CLOSE(UNIT=48)
CLOSE(UNIT=49)

CLOSE(UNIT=64)
CLOSE(UNIT=65)

END PROGRAM AMERICAN_OPTIONS707

Ttk sk sk ok ok sk ok ok ok ok ok ok K ok sk ok ok ok K oK ok ok ok kK oK sk ok ok ok kK oK ok ok ok kK ok 3K ok ok ok K K oK sk ok ok ok koK K ok K

Ix *
Ix FUNCTIONS AND SUBROUTINES *
Ix *

Tk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K oK ok ok ok ok K ok ok ok ok kK oK ok ok ok ok 3 ok oK ok ok ok ok oK ok ok ok ok ok ko K ok ok

SUBROUTINE BOUNDARY_CONDITIONS(N,U,X,U2D, j ,L)
IMPLICIT NONE

INTEGER,INTENT(IN) : : N

DOUBLE PRECISION, DIMENSION ( 0:N) INTENT(IN) : : X
DOUBLE PRECISION, DIMENSION ( 0:N) INTENT(OUT) : : U
DOUBLE PRECISION, DIMENSION (0: L , 0 : N) ,INTENT(OUT) : : U2D
INTEGER: : i

INTEGER, INTENT(IN) : : j , L

DO i=0N

U(i)=max(1.0D0-EXP(X(1)) ,0.0D0)

U2D(j,i)=U(i)

END DO

DO i=0,N

WRITE(UNIT=14 FMT="(E12.6) *)U(i)
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WRITE(UNIT=61 FMT="(4251E21.6) *)U2D(j , i)

END DO

END SUBROUTINE BOUNDARY_CONDITIONS

SUBROUTINE CRANK NICOLSON (N, k,U,RHS,B,X,t,h,DelTau, Tau)
IMPLICIT NONE

INTEGER, INTENT(IN) : : N

DOUBLE PRECISION,INTENT(IN) ::h,k,B,t,DelTau, Tau

DOUBLE PRECISION, DIMENSION (0:N) INTENT(IN) : : U, X

DOUBLE PRECISION, DIMENSION ( 1 :N—1) INTENT(OUT) : : RHS
DOUBLE PRECISION,EXTERNAL: : G

DOUBLE PRECISION : : r , TEST

INTEGER: : i

r=k/(h*x2.0D0)
DO i=1,N-1
RHS(i)=r*U(i—1)4(2.0D0—2.0D0x*r )*U(i)+r*U(i4+1)+1.0xk*(G(X(i) ,Tau)+G(X(
i) ,TautDelTau) )&

+2.0D0* (REAL( i ) /REAL(N) ) ((U(i)-U(i—1))/h)*(—B)

END DO

END SUBROUTINE CRANK_NICOLSON

SUBROUTINE VEC(N,U,V,h)

IMPLICIT NONE

INTEGER,INTENT(IN) : : N

DOUBLE PRECISION, DIMENSION ( 0:N) INTENT(IN) : : U
DOUBLE PRECISION, DIMENSION ( 1 :N—1) ,INTENT(OUT) : : V
DOUBIE PRECISION,INTENT(IN) : : h

INTEGER: : i
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416

DO i=1,N-1

V(i)=—2.0D0+(REAL( i ) /REAL(N) ) +(U(i)-U(i—1))/h
END DO
END SUBROUTINE VEC

DOUBLE PRECISION FUNCTION G(x, Tau)

IMPLICIT NONE

DOUBLE PRECISION,INTENT(IN) : : x, Tau

DOUBLE PRECISION,PARAMETIER: : I+ =0.03D0, Sigma=0.5D0,D=0.8D0xIr ,KK=10.0D0

DOUBLE PRECISION, PARAMETER: : K1=2.0D0x Ir /(Sigma*%2.0D0) ,K2=2.0D0x (Ir-D) /(
sigmax%2.0D0)

G=(EXP(K1xTau) ) * (((K2-K1) *EXP(x—(K2—1.0D0) *Tau) )+K1)
END FUNCTION G

SUBROUTINE TRIDIAG_SOL(N,RHS, U,k ,h,NEGINFINITY,X,U2D, j ,L,$2D,V2D, tfinal)
IMPLICIT NONE

DOUBLE PRECISION,INTENT(IN) : : NEGINFINITY , h, k, tfinal

INTEGER,INTENT(IN) ::N, j ,L
DOUBLE PRECISION, DIMENSION
DOUBIE PRECISION, DIMENSION

(0:N) :: Alpha,s,y

(
DOUBLE PRECISION, DIMENSION (

(

(

(

0:

0:N) ,INTENT(OUT) : : U

1:N—1) INTENT(IN) : : RHS

DOUBLE PRECISION,DIMENSION (0:L,0:N) ,INTENT(INOUT) : : U2D
DOUBLE PRECISION,DIMENSION (0: L, 0:N) ,INTENT(INOUT) :: S2D, V2D
DOUBLE PRECISION,DIMENSION (0:N) ,INTENT(IN) : : X

DOUBLE PRECISION,DIMENSION (0:N) : : RES, SS

DOUBLE PRECISION:: a,b,c,Tau,r,Sv,t

INTEGER: : i ,e

DOUBLE PRECISION,PARAMETER. : Ir =0.03D0, Sigma=0.5D0,D=0.8D0*Ir ,KK=10.0D0
DOUBLE PRECISION, PARAMEIER : : K1=(2.0D0xI1 ) /(sigma##2.0D0) ,K2=(2.0D0x (Ir-D

)/ (sigma**2.0D0)

Alpha=0.0
s=0.0
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432

440

448

a=r
b=(2.0D0+2.0D0x*r)
c=r

Alpha (0)=b
S(0)=RHS(1)

Tau=((sigma*%2.0D0) /2.0D0) x(1.0D0) x (REAL( j ) /REAL(L) )

v (0)=exp (Kl1xTau) % (1.0D0—exp (X(0) —(K2—1.0D0) xtau) )

DO i=1,(N-3)

Alpha(i)=b—(axc/Alpha(i—1))
S(i)=RHS(i)+(axS(i—1)/Alpha(i—1))

y (N—3)=S (N—3)/Alpha (N—3)
(N—2)=(4.0D0/9.0D0) xy (N—3)
(N— 1):(1 0D0/4.0D0) xy (N—2)
(N) =

< < <

DO i=(N—-4),1,—1
y(i)=(s(i)+ecxy(i+1))/Alpha(i)

END DO
Sv=7.0D0
DO i=0,N

t=Tfinal —(2.0xTau/sigma**2)
U(i)=y(1)
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472

480

488

END DO
DO i=0N

SS(i)=(exp(x(i)+(1-K2)x*tau))*KK

S2D(j,1)=SS(i)
RES(i)=((U(1i)*KK) /(exp(Klx(tau))))+SS(i)-KK

V2D(j ,i)=RES(i)

U2D(j,i)=U(i)
END DO
DO i=0N
WRITE(UNIT=62 FMT="(E12.6) *)SS (i)
WRITE(UNIT=63 FMT="(E12.6) *)RES(i)
WRITE(UNIT=61 FMT="(4251E21.6) *)U2D(j , i)
WRITE(UNIT=14 FMT="(E12.6) *)U(i)

END DO

END SUBROUTINE TRIDIAG_SOL

SUBROUTINE TRIDIAG_SOL1(N,RHS,Z,k,h)
IMPLICIT NONE

INTEGER, INTENT(IN) : : N
DOUBIE PRECISION, DIMENSION ( 1:N

DOUBIE PRECISION, DIMENSION ( 1 :N—1) INTENT(OUT) : :
DOUBLE PRECISION, DIMENSION (1 :N
DOUBIE PRECISION,INTENT(IN) : : k
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512

520

528

536

DOUBLE PRECISION: : a,b,c, r
INTEGER : : i

s=0.0
y=0.0

r=k/(h*x2.0D0)

a=(r)
b=(2.0D0+2.0D0*r)
c=(r)

Alpha(1)=b
S(1)=RHS(1)

DO i=2,(N-1)

Alpha(i)=b—(axc/Alpha(i—1))
8(1)=RHS(1)+(axS (i 1)/ Alpha (i —1))

END DO

y(N—1)=S (N—1)/Alpha (N—1)

DO i=(N-2),1,—1

y(1)=(S(i)+exy(i+1))/Alpha(i)

END DO

DO i=1,N-1
Z(i)=y(i)

END DO



544

552

560

568

END SUBROUTINE TRIDIAG_SOL1

SUBROUTINE TRIDIAG_SOL2(N,V,Y,k,h)

IMPLICIT NONE

INTEGER,INTENT(IN) : : N

DOUBLE PRECISION,INTENT(IN) :: k,h

DOUBLE PRECISION,DIMENSION(1:N—1) :: Alpha,s ,U
DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(OUT) ::Y
DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(IN) ::V
DOUBLE PRECISION:: a,b,c,r

INTEGER: : i

s=0.0
Y=0.0
U=0.0

r=k /(h*%2.0D0)

Alpha(1)=b
S(1)=V(1)

DO i=2,N-1

Alpha(i)=b—(a*xc/Alpha(i—1))
S(i)=V(i)+(axS(i—1)/Alpha(i-1))

END DO

U(N-1)=s (N—1)/Alpha (N-1)

DO i=(N-2),1,-1

U(i)=(S(i)+c*U(i+1))/Alpha(i)
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584
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600

END DO
DO i=1,N-1
Y(i)=U(i)

END DO

END SUBROUTINE TRIDIAG_SOL2

SUBROUTINE XN_SOLVE(N,Y,Z HT,XN)

IMPLICIT NONE

INTEGER,INTENT(IN) : : N

DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(IN) ::Y,Z ,HT
DOUBLE PRECISION,INTENT(OUT) : : XN

DOUBLE PRECISION: : A, B

INTEGER: : i

A=0.0
B=0.0

DO i=1,N-1

A=A+HE (1) *Z (1)
B=B+Ht (i)*Y(i)

END DO
XN=A/B

END SUBROUTINE XN_SOLVE

.2  Program 2 - pt2.f90

PROGRAM movingr
DOUBLE PRECISION : : K, NEGINFINITY, XN, Delt , Tfinal ,t,h,A,C,KN,BN, left ,

domain
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DOUBLE PRECISION,ALLOCATABIE: : U(:) ,UTEMP(:) ,RHS(:) ,Z(:) ,Y(:) ,HT(:) ,V(:),
X(5) ,r1 (5) 112 (:) 113 (2)

INTEGER: : IOS,j ,N,L, i

DOUBLE PRECISION,PARAMETIER: : Ir =0.03D0, Sigma=0.2D0,D=0.8D0xIr ,KK=10.0D0

DOUBLE PRECISION, PARAMETER: : K1=2.0D0x Ir /(Sigma*%2.0D0) ,K2=2.0D0x ( Ir-D) /(
sigmax2.0D0)

PRIINT s | 7k sk sk sk ok sk sk sk ok sk sk sk ok sk ok sk ok sk sk ok sk ok koK 3Kk oK sk koK KOk R ok Kk Rk Rk

PRINT x , ’ %’
PRINT* , CRANK_NICOLSON SOLULTION *
PRINT « , ’ %7
PRINT* , ’* DIFFUSION EQUATION *
PRINT* , * %
PRINT* , * %

PRIINT k|, 7 sk sk sk sk sk sk s ok ok ok ok sk ok ok ok ok ok sk ok K ok ok ok ok ok ok ok ok ok ok ok ok o K ok ok ok ok ok ok sk ok ok ok

PRINT*

NEGINFINITY=-30.0D0
Tfinal=((Sigma*%2.0D0) /2.0) %1.0

Domain=NEGINFINITY

N=300

L=NINT(( Tfinal /(Domain /REAL(N) ) xx2))
PRINT '+ ,( Tfinal /(Domain /REAL(N) ) *%2)

k=Tfinal /L

Left=-—20.0D0

N=100

t=0.0D0

Delt=1.0D0/L

BN=0.0D0

KN=((BN-LEFT) /N#%2.0D0)
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48

56

64

72

ALLOCATE(U (0:N) ,JUTEMP(0:N) ,RHS(1:N—1) ,V(1:N—1),Z(1:N—1),Y(1:N—1) ,HT(1:N

~1),X(0:N),&
rl1(1:N—1),r2(1:N—1),r3 (1:N-1))

U=0.0D0
UTEMP=0.0D0
RHS=0.0D0
V=0.0D0
7Z=0.0D0
Y=0.0D0
HT=0.0D0
t=0.0D0

OPEN(UNIT=11,FILE="x . dat” ,JOSTAT=IOS)
OPEN(UNIT=12,FILE="U. dat” ,JOSTAT=IOS)

IF (10S/=0) THEN

PRINT* ,’ Error Occured in Opening The Output File’

STOP
END IF

Dotk sk ok ok ok ook sk ok ok ok o ok ok ok ok ok ok oK ok ok ok kK oK ok ok ok kK oK ok ok ok ok K ok ok ok ok ko oK ok ok ok ok o K

/. MAIN PROGRAM

*

*

*

Tk ko ok ok ok ok ok ok ok ok ok ok oK oK oK oK oK K K K K K K K K K KK KK KRR R R Rk ok ok ok ok

X(0)=LEFT
WRITE(UNIT=11 FMT="(E12.6) *)X(0)
DO i=1N-1
X(i)=BN—(KN*(N—i) %%2.0D0)
WRITE(UNIT=11 FMT="(E12.6) *)X(i)
END DO
X(N)=BN
WRITE(UNIT=11 FMT="(E12.6) *)X(N)

86



CALL BOUNDARY_CONDITIONS(N, U,X)

DO i=1,(N—4)
HT(i)=0.0D0
END DO

HT(N—3)=9.0D0/4.0D0
HT(N—2)=—1.0D0
HT(N—1)=4.0D0

t=1.0D0
XN=BN
DO j=0,L
t=t—delt
tau=((sigma*%2.0D0) /2.0D0) *(1.0D0-t)
i—1)—x(i))*(x(i—-1)—x(i+1)))

i)—x(i—-1))*(x(i)—=x(i+1)))
i+1)—x(i—1))*(x(i+1)—x(i)))

i
—~ o~ o~

CALL CRANKNICOLSON(N,k,U,RHS,X,t ,h,delt ,r1,r2,r3 XN)
CALL VEC(N,U,V,h,X)

CALL TRIDIAG_SOLI(N,RHS,Z,k,rl,r2,r3)

CALL TRIDIAG_SOL2(N,V,Y,k,h,rl,r2,r3)

CALL XN_SOLVE(N,Y,Z,HT,XN)

BN=XN

DO i=1,N-1

RHS(i)=RHS(i)-V(i)*XN
END DO
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128

136

144

KN=((BN-LEFT) /N*%2.0D0)

X (0)=LEFT
WRITE(UNIT=11 FMT="(E12.6) *)X(0)
DO i=1,N-1
X(i)=BN—(KNx(N—i) #%2.0D0)
WRITE(UNIT=11 FMT="(E12.6) *)X(i)
END DO

X(N)=BN
WRITE(UNIT=11 FMT="(E12.6) ")X(N)

DO i=1,(N-1)

r1(1)=((x(i—-1)—=x(i))*(x(i—1)—x(i+1)))

r2 (1) =((x(i)—x(i-1))*=(x(i)—x(i+1)))
r3(i)=((x(i+1)—=x(i-1))*(x(i+1)—=x(i)))

END DO

CALL TRIDIAG.SOL(N,RHS,U, t ,k,NEGINFINITY, r1,r2,r3,x) ! Solve for

new U

END DO

CLOSE(UNIT=11)
CLOSE(UNIT=12)

END PROGRAM movingr

Dotk sk sk ok ok ook ok ok ok ok ok ok ok ok ok ok ok K oK ok ok ok ok K ok ok ok ok ko oK ok ok ok ok oK oK ok ok ok K K oK 3k ok ok ok ok o oK ok ok ok R K K ok ok

I x *
I'x FUNCTIONS AND SUBROUTINES *
I'x *

Tk sk oo sk ok ok ok ok ok ok ok ok ok ok ok oK oK oK K K K K K K K KKK KR R Rk ok ok ok ok ok oK oK oK oK oK K K K K o K KR R Rk ok ok ok ok ok ok K K K
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SUBROUTINE BOUNDARY_CONDITIONS(N, U, X)

IMPLICIT NONE

INTEGER, INTENT(IN) : : N

DOUBIE PRECISION, DIMENSION ( 0:N) INTENT(IN) : : X
DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(OUT) : : U
INTEGER: : i

DO i=0,N
U(i)=max(1.0D0-EXP(X(1)) ,0.0D0)
WRITE(UNIT=12 FMT="(E12.6) *)U(i)

END DO

END SUBROUTINE BOUNDARY_CONDITIONS

SUBROUTINE CRANKNICOLSON(N,k ,U,RHS,X,t ,h,delt ,rl,r2,r3 ,XN)
IMPLICIT NONE
INTEGER,INTENT(IN) : : N
DOUBLE PRECISION, INTENT(IN
DOUBLE PRECISION, DIMENSION
DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(IN) : : 1,12 ,13
DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(OUT) : : RHS
DOUBLE PRECISION,EXTERNAL: : G

DOUBLE PRECISION : : TEST, tp

INTEGER : : i

::h k,t,delt , XN
0:N) INTENT(IN) :: U,X

—_ = = =

tp=t—delt

DO i=1,N-1
RHS(i)=2.0%11(i)*U(i—1)+(2.0D0+2.0%12 (i))*U(i)+2.0%r3(i)*U(i+1)+(k)*(
G(X(1),t)4G(X(1) ,tp) )&
+(1.0D0— (((N—i) %%2.0D0) /N%x2.0D0) ) * ((U(i)=U(i—1))/(x(i)=x(i—1)))*(~XN
)%2.0
IPRINT ,i ,RHS(i)

END DO

END SUBROUTINE CRANK_NICOLSON
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SUBROUTINE VEC(N,U,V,h,X)

IMPLICIT NONE

INTEGER, INTENT(IN) : : N

DOUBLE PRECISION, DIMENSION (0:N) INTENT(IN) : : U, X
DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(OUT) : : V
DOUBLE PRECISION, INTENT(IN) : : h

INTEGER: : i

DO i=1,N-1
V(i)=—(2.0D0—(((N=i)#%2.0D0) /N%%2.0D0) ) *(U(i)~U(i—1))/(x(i)—x(i—1))
END DO

END SUBROUTINE VEC

DOUBLE PRECISION FUNCTION G(x,t)

IMPLICIT NONE

DOUBLE PRECISION, INTENT(IN) : : x , t

DOUBLE PRECISION,PARAMETIER: : It =0.03D0, Sigma=0.2D0,D=0.8D0xIr ,KK=10.0D0

DOUBLE PRECISION PARAVETER : : K1=2.0D0x It / (Sigma*+2.0D0) ,K2=2.0D0 (Ir D) /(
sigmax%2.0D0)

DOUBLE PRECISION : : Tau

Tau=(0.5D0x(Sigma**2.0D0) ) x(1.0D0—t)
G=(EXP(K1*Tau) ) * ( ((K2-K1)«EXP(x—(K2—1.0D0) *Tau) )+K1)

END FUNCTION G

SUBROUTINE TRIDIAG_SOL(N,RHS,U, t,k,NEGINFINITY,rl1,r2,r3,x)
IMPLICIT NONE

DOUBLE PRECISION,INTENT(IN) : : NEGINFINITY , k, t
INTEGER,INTENT(IN) : : N

DOUBLE PRECISION,DIMENSION (0:N) :: Alpha,s,y

DOUBLE PRECISION, DIMENSION ( 0:N) ,INTENT(OUT) :: U

DOUBLE PRECISION, DIMENSION (1:N—1) INTENT(IN) : : RHS, r1 ,r2,1r3
DOUBLE PRECISION,DIMENSION (0:N) ,INTENT(IN) :: x

DOUBLE PRECISION:: a,b,c,tau,r
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INTEGER : : i

DOUBLE PRECISION,PARAMETER: : Ir =0.03D0, Sigma=0.2D0,D=0.8D0x*Ir ,KK=10.0D0
DOUBLE PRECISION, PARAMETER: : K1=(2.0D0*Ir ) /(sigma*%2.0D0) ,K2=(2.0D0x* (Ir-D

)) /(sigma*%2.0D0)

Alpha=0.0D0
$=0.0D0
y=0.0D0

a=2.0%rl(2)
b=(2.0D0—2.0%r2(2))
c=2.0%13(2)
Alpha (1)=b
S(1)=RHS(1)

tau=((sigma=%2.0D0) /2.0D0) % (1.0D0-t )

DO i=2,(N-3)

a=2.0xr1(i)

b=(2.0D0—2.0xr2(i))

c=2.0D0%r3 (i)

Alpha (i)=b—(axc/Alpha(i—1))
S(i)=RHS(i)+(axS(i—1)/Alpha(i—1))

(N—3)=S (N—3) / Alpha (N—3)
(N—2)=(4.0D0/9.0D0) *y (N—3)
(N=1)=(
(

1.0D0/4.0D0) *y (N—2)

y(i)=(s(i)+c*y(i+1))/Alpha(i)
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END DO

DO i=0,N
U=y (i)
WRITE(UNIT=12 FMT="(E12.6) *)U(i)
Print+,U(1)

END DO

END SUBROUTINE TRIDIAG_SOL

SUBROUTINE TRIDIAG_SOL1(N,RHS,Z,k,rl,r2,r3)
IMPLICIT NONE

INTEGER,INTENT(IN) : : N

DOUBLE PRECISION,DIMENSION (1:N—1) :: Alpha,S,Q
DOUBLE PRECISION,DIMENSION ( 1:N—1) INTENT(OUT) :: Z
DOUBLE PRECISION, DIMENSION ( 1:N—

DOUBLE PRECISION,INTENT(IN) : : k

DOUBLE PRECISION:: a,b,c,r

INTEGER : : i
s=0.0D0
a=2.0xrl(1)

b=(2.0D0—2.0%r2 (1))
¢=2.0D0*r3 (1)

Alpha(1)=b

S(1)=RHS(1)

DO i=2,(N-1)
a=2.0xrl(1i)
b=(2.0D0—2.0%r2(i))

c=2.0x13 (1)
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320

328
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344

Alpha(i)=b—(axc/Alpha(i—1))
S(i)=RHS(i)+(axS(i—1)/Alpha(i—1))

END DO

Q(N—1)=8(N—1)/Alpha (N—1)

DO i=(N-2),1,—1

QUi)=(S(i)+c+Q(i+1))/Alpha(i)

END DO

DO i=1,N-1

Z(1)=Q(1)

END DO

END SUBROUTINE TRIDIAG_SOL1

SUBROUTINE TRIDIAG_SOL2(N,V,Y,k,h,rl,r2,r3)

IMPLICIT NONE

INTEGER, INTENT(IN) : : N

DOUBLE PRECISION, INTENT(IN) : : k , h

DOUBLE PRECISION,DIMENSION(1:N—1) :: Alpha,s ,D

DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(OUT) : : Y

DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(IN) :: V,rl ,r2,r3
DOUBLE PRECISION:: a,b,c,r

INTEGER: : i

s=0.0
Y=0.0

a=2.0xrl(1)
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b=2.0-2.0xr2 (1)
c=2.0xr3(1)

Alpha(1)=b
S(1)=V(1)
DO i=2,N-1
352
a=2.0xrl(1i)
b=2.0D0—2.0%12 (i)

c=2.0xr3 (1)

Alpha(i)=b—(axc/Alpha(i-1))
S(i)=V(i)+(axS(i—1)/Alpha(i-1))

360 END DO

D(N—1)=s(N—1)/Alpha(N-1)

DO i=(N-2),1,—1

D(i)=(S(i)+c*D(i+1))/Alpha(i)

368 END DO

DO i=1,N-1

Y(i)=D(i)

END DO

376

END SUBROUTINE TRIDIAG_SOL2

SUBROUTINE XN_SOLVE(N,Y,Z HT,XN)

IMPLICIT NONE

INTEGER, INTENT(IN) : : N

DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(IN) : : Y, Z HT
DOUBLE PRECISION, INTENT(OUT) : : XN
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DOUBLE PRECISION: : A,B
INTEGER : : i

A=0.0D0
B=0.0D0
DO i=1,N-1

A=AFHE (1) *Z (i
B=B+Ht (i)*Y(i)

~

END DO
XN=A/B

END SUBROUTINE XN_SOLVE

.3 Program 3 - pt3.f90

PROGRAM FINITE_ELEMENTS_V5n
DOUBLE PRECISION: : k , NEGINFINITY, Delt , Tfinal , t ,h,SUMG1,SUMG2, Thetal ,
ThetaNew , tau ,SumC, Domain , GINTERGRAL, DERIV ,SUMG
DOUBLE PRECISION,ALLOCATABIE: : U (:) ,Z(:) ,Y(:) ,X(:) ,G(:) KM(:,:) ,KP(:,:),
Phi(:) ,h_-Vector (:) ,dPdX(:) ,Cvec(:) ,ThetaV (:) ,f (:),&
W(:) HT(:) RHS(:) M(: ,:) ,RHSL(:)
INTEGER: : 10S,j ,N,L,i,q
DOUBLE PRECISION,EXTERNAL: : Uprime
DOUBLE PRECISION,PARAMETER: : Ir =0.03D0, Sigma=0.2D0,D=0.8D0xIr ,KK=10.0D0
DOUBLE PRECISION PARAMEIER.: : K1=2.0D0x It /(Sigma*#2.0D0) ,K2=2.0D0x (Ir-D) /(
sigma*%2.0D0)

PRIINT s | 75 5% sk sk sk sk ok ok ok ok ok oK ok ok ok oK oK ok K oK oK ok oK oK ok R oK oK ok R oK oKk R KoKk R koo Rk

PRINT x , ’ %
PRINT* , FINITE ELEMENT SOLULTION *
PRINT* , * %
PRINT* , ** DIFFUSION EQUATION *7
PRINT* , * %
PRINT* , 7 .

PRIINT s | 7 sk sk sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk s ok skok ko sk ok ok skok o ok skok o ok skok ok okosk ok ok
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PRINT

NEGINFINITY=-0.05D0
Tfinal=(Sigma*x2.0) /2.0D0

Domain=NEGINFINITY
N=100
L=NINT (( Tfinal /(Domain/N) %%2))

k=(Tfinal /L)

Delt=(Tfinal)/L

t=0.0D0
GINTERGRAL=0.0
Thetal=0.0D0
B=0.0D0
f=0.0D0
RHS=0.0D0

ALLOCATE(U (0:N+1) ,G(0:N) ,Z(1:N—1) ,Y(1:N) ,X(0:N+1) KM(1:N,0:N+1) ,KP(1:N

—1,0:N),&

Phi(0:N) ,h_vector (0:N) ,dPdX(0:N) ,Cvec (1:N-1)&
,ThetaV (0:N) , f (1:N—1) W(0:N) ,HT(1:N) ,RHS(1:N—1) M(1:N—1,0:N) ,RHS1(1:N

-1))

SumC=0.0D0
U=0.0D0
Y=0.0D0
7Z=0.0D0
Y=0.0D0
KM=0.0D0
KP=0.0D0
t=0.0D0
f=0.0D0

96



64

72

80

88

M=0.0D0

OPEN(UNIT=11,FILE="x . dat” JOSTAT=IOS)
OPEN(UNIT=12,FILE="U. dat” JOSTAT=IOS)
OPEN(UNIT=13,FILE="K. dat” ,JOSTAT=IOS )
OPEN(UNIT=14,FILE="KP. dat” ,JOSTAT=IOS )
OPEN(UNIT=15,FILE="G. dat” ,JOSTAT=IOS )
UNIT=16 ,FILE="Phi . dat” JOSTAT=IOS)
UNIT=17 FILE="M. dat” JOSTAT=IOS)
UNIT=18, FILE="C. dat” JOSTAT=IOS)
UNIT=19 ,FILE="SumTheta . dat” JOSTAT=IOS)
OPEN(UNIT=20,FILE="Y . dat” JOSTAT=IOS)
OPEN(UNIT=21 ,FILE="dPdX . dat” ,JOSTAT=IOS)
OPEN(UNIT=22 ,FILE=" NewTheta . dat” JOSTAT=IOS)
OPEN(UNIT=23,FILE="7. dat” JOSTAT=IOS)
OPEN(UNIT=24,FILE="W. dat” JOSTAT=IOS)
OPEN(UNIT=25,FILE="C1. dat” ,JOSTAT=IOS )
OPEN(UNIT=26 ,FILE="G2. dat” ,JOSTAT=IOS )
OPEN(UNIT=27 ,FILE="Y1. dat” JOSTAT=IOS)
OPEN(UNIT=28 ,FILE="kk . dat” ,JOSTAT=IOS )
OPEN(
(

3933

(
(
(
(
(
(

UNIT=29 ,FILE="Stheta . dat” ,JOSTAT=IOS)
OPEN(UNIT=30 ,FILE="Yold . dat” ,JOSTAT=IOS)
OPEN(UNIT=31 ,FILE=" MassMul . dat” JOSTAT=IOS)
IF (10S/=0) THEN

PRINTx ,’ Error Occured in Opening The Output File’

STOP
END IF

Tk sk ok ok ok ok ok ok ok ok ok ok ok ok oK ok oK ok ok ok ok K KK KRR R Rk ok ok ok ok ok oK oK oK oK oK oK K K ok ok ok R R R Rk ok ok ok ok oK K K K K K

I» MAIN PROGRAM

*

*

*

Tk sk sk sk ok ok ok ok ok ok ok ok ok oK ok ok ok koK 3K ok ok ok R K oK sk ok ok ok K oK ok ok ok ok ok ok ok ok ok kK ok 3K ok ok ok ok ko oK ok ok ok kR ok oK ok Kk R

WRITE(UNIT=28 FMT="(E12.6) ’) k

DO i=0N
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96

104

112

120

128

X(i)=NEGINFINITY+(REAL( i ) /REAL(N) ) * (B-NEGINFINITY)

WRITE(UNIT=11 FMT="(E12.6) *)X(i)

END DO

CAILL INITIAL_DATA (N,U,X)

HT(1)=1.0D0
HT(2)=—1.0D0

DO i=3N

HT(i)=0.0D0

END DO

t=1.0D0

DO i=0,N-1

CALL Theta (X, ThetaV ,N,i,t,U)

Thetal=Thetal4+ThetaV (i)

WRITE(UNIT=19 FMT="(E12.6) ’) Thetal

END DO
WRITE(UNIT=29 FMT="(E12.6) ’) Thetal

DO gq=1,1

GINTEGRAL=0.0
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144

152

160

Tau=((sigma=*%2.0D0) /2.0D0) x(1.0D0) x (REAL(q) /REAL(L) )

DO i=1,N-1

CALL Cvector (X,Cvec,N,i,t,U, Thetal)

WRITE(UNIT=18 FMT="(E12.6) ’) Cvec (i)

SumC=SumC+Cvec (i)

END DO

DO i=1,N-1

CALL SIMPSONS1(X,SUMGL,N, i ,q,L)

CALL SIMPSONS2(X,SUMG2,N, i ,q,L)

G(i)=SUMGHSUMG2

WRITE(UNIT=15 FMT="(E12.6) *)G(i)

END DO

G(N)=G(N—1)

DO i=1,N-1

CALL MASSMATRIX (i ,N,X,KM)

CALL MASSMATRIX_PRIME(i,N,X,KP,U)

END DO

KP(1,1)=KP(1,1)/2.0D0

RHS1 (1)=U (1) +KM(1,1)+U(2)KM(1,2)
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184

192

200

DO j=2,N-2

RHS1(j)=U(j —1)+KM(j ,j—1)4+U(j)EM>j, j)+U(J+1)KM(] , j+1)
WRITE(UNIT=31 FMT="(E14.8) *)RHS1(j)

END DO

RHS1 (N—1)=U (N—2) KM(N—1,N—2)+U(N—

Y(j)=G(j)-RHS1(j)

WRITE(UNIT=27 FMT="(E14.8) *)
END DO

DO i=1N

h_vector (i)=X(i)-X(i-1)

END DO

CALL TRIDIAG_SOLL(N, f ,Z,k ,KP)

CALL TRIDIAG_SOL2(N, Cvec ,W, k ,KP)
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216

224

232

240

248

CALL THETA SOLVE(N,W,Z HT, ThetaNew )
WRITE(UNIT=22 FMT="(E14.8) *) ThetaNew

DO j=1,N-1

WRITE(UNIT=30 FMT="(E14.8) ")Y(j)

END DO

Do i=1,N-1

CAILL IntegrateG (X,SUMG,N,1i,q,L)

GINTERGRAL=GINTERGRAILASUMG

END DO

DERIV=UPrime (NEGINFINITY , Tau ) +GINTERGRAL

PRINTs ,THETANEW, 'New Theta’

DO j=1,N-1

Y(j)=Y(j)—(THETANEW) *Cvec(j)

WRITE(UNIT=20 FMI="(E14.8) ’)Y(j)

END DO

CALL TRIDIAG_SOL(N,Y,KP, Phi)

DO i=1N
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IF (i/=N) THEN
dPAX (i) =(((X(i)=X(i—1))*(Phi(i)—Phi(i—1))+X(i+1)=X(i))*(Phi(
i+1)-&
Phi(i))))/((X(i)-X(i-1))+X(i+1)-X(i)))
256

ELSE

dPdX (i)=(Phi(i)—Phi(i—1))/(X(i)-X(i-1))
END IF

END DO
264 dPdX (0)=0.0D0

DO i=0N

CALL EULERS(N, X, h_vector ,k,dPdX)

END DO

272 DO i=0,N

END DO

DO i=1,N-1

CALL MMATRIX(i ,N,X,M)

280

END DO

DO i=1,N-1

RHS(i)=ThetaNewxCvec (i)
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288

296

304

312

320

END DO

CALL TRIDIAG_SOL3(N,M,U,RHS, tau , NEGINFINITY)

DO i=0,N

!PRINT*,4,U(1i)
!WRITE(UNIT=12,FMT="(E12.6) ’)U(%)
END DO
!'Thetal=ThetaNew
END DO

WRITE(UNIT=13 FMT="(101F14.8) *) (((KM(j ,i)),i=0,N) ,j=1,N-1)
WRITE(UNIT=14 FMT="(101F14.8) *) (((KP(j ,i)) ,i=0,N) ,j=1,N—1)
WRITE(UNIT=21 FMT="(E12.6) *) ((dPdX(i)) ,i=0,N)
WRITE(UNIT=17 FMT="(101F14.8) *) (((M(j ,i)),i=0,N) ,j=1,N—1)

CLOSE(UNIT=11)
CLOSE(UNIT=12)
CLOSE(UNIT=13)
CLOSE(UNIT=14)
CLOSE(UNIT=15)
CLOSE(UNIT=16)
CLOSE(UNIT=17)
CLOSE(UNIT=18)
CLOSE(UNIT=19)
CLOSE(UNIT=20)
CLOSE(UNIT=21)
CLOSE(UNIT=22)
CLOSE(UNIT=23)
CLOSE(UNIT=24)
CLOSE(UNIT=25)
CLOSE(UNIT=26)
CLOSE(UNIT=27)
CLOSE(UNIT=28)
CLOSE(UNIT=29)
CLOSE(UNIT=30)
CLOSE(UNIT=31)
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328

336

344

352

360

END PROGRAM FINITE_ELEMENTS_V5n

SUBROUTINE INITIAL_DATA (N, U,X)
IMPLICIT NONE
INTEGER,INTENT(IN) : : N
DOUBLE PRECISION,DIMENSION (0:N+1) INTENT(IN) : : X
DOUBLE PRECISION,DIMENSION (0:N+1) INTENT(OUT) :: U
INTEGER: : i

DO i=0N
U(i)=max(1.0D0-EXP(X(I)),0.0D0)
WRITE(UNIT=12 FMT="(E12.6) *)U(i)
END DO
END SUBROUTINE INITIAL_DATA
SUBROUTINE IntegrateG (X,SUMG,N,i,q,L)
IMPLICIT NONE
INTEGER, INTENT(IN) :: N, i ,q,L
DOUBLE PRECISION, DIMENSION ( 0:N-+1) INTENT(IN) : : X
DOUBLE PRECISION,INTENT(OUT) : : SUMG
DOUBLE PRECISION : : b, XI0, XI2, XI1 ,a, b, XI,SUM, Tau
DOUBLE PRECISION,EXTERNAL: : GF
DOUBLE PRECISION,PARAMETIER: : Sigma=0.4D0
INTEGER : : k ,M
Tau=((Sigma=*%2.0D0) /2.0D0) *(0.5D0) x (REAL(q ) /REAL(L) )
SUMG=0.0
MEINT (N%200)
a=X(i—1)
b=X(1)

h=ABS ((X(i)-X(i~1)))/M
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368

376

384

392

XI10=GF (b, Tau)+GF(a,Tau)
XI1=0.0D0
X12=0.0D0

DO k=1M-1

IF (MOD(k,int (2))/=0) THEN

X12=XI2+GF(XI, Tau)
ELSE
XT1=XI14GF(XI, Tau)

END IF
END DO

SUMG=h * ( XI042.0D0%XI2+4.0XI1) /3.0D0

END SUBROUTINE IntegrateG

SUBROUTINE SIMPSONS1(X,SUMGL,N, i ,q,L)
IMPLICIT NONE
INTEGER,INTENT(IN) ::N,i ,q,L
DOUBIE PRECISION, DIMENSION ( 0:N+1) INTENT(IN) : : X
DOUBIE PRECISION, INTENT(OUT) : : SUMGI1
DOUBILE PRECISION : : h, XI0,XI2,XI1,a,b,XI,SUM, Tau
DOUBLE PRECISION, EXTERNAL: : GF
DOUBLE PRECISION,PARAMETIER.: : Sigma=0.4D0
INTEGER: : k M

Tau=((Sigma=*%2.0D0) /2.0D0) x(0.5D0) x (REAL(q) /REAL(L) )

M=N%200
a=X(i-1)
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416

424

432

440

b=X (i)

h=ABS((X(i)-X(i—-1)))/M

XI10=(b—X(i—-1))*GF(b,Tau)+(a—X(i—1))*GF(a,Tau)
XI1=0.0D0

X12=0.0D0
DO k=1M-1
XI=a+tk*h

IF (MOD(k,int (2))/=0) THEN
XI12=XI2+(XI-X (i —1))*GF(XI, Tau)
ELSE

XT1=XI1+(XI-X (i —1))*GF(XI, Tau)

END IF
END DO

SUMEh * ( X10+2.0D0xXI12+4.0%XI1) /3.0D0
SUMGI=SUM (1.0D0/ (X(i)-X(i—1)))

WRITE(UNIT=25 FMT="(E12.6) *)SUMGI1

END SUBROUTINE SIMPSONS1

SUBROUTINE SIMPSONS2(X,SUMG2,N, i ,q,L)

IMPLICIT NONE
INTEGER,INTENT(IN) ::N, i ,q,L
DOUBLE PRECISION, DIMENSION ( 0:N+1) INTENT(IN) : : X
DOUBLE PRECISION, INTENT(OUT) : : SUMG2

DOUBILE PRECISION : : h , XI0 , XI2,XI1,a,XI,b,SUM, Tau
DOUBIE PRECISION, PARAMETER. : Sigma=0.4

DOUBIE PRECISION, EXTERNAL: : GF

INTEGER : : k M
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Tau=((Sigmax*x2.0D0) /2.0D0) *(0.5D0) x (REAL(q ) /REAL(L) )
a=X(1)
b=X(i+1)
M=N#200
h=ABS ((X(i+1)-X(i))) /M
XI0=(X(i+1)—a)*GF(a,Tau)+X(i+1)—b)*GF (b, Tau)
XI11=0.0D0
X12=0.0D0
DO k=11
XI=a+kx*h
IF (MOD(k,int (2))/=0) THEN
XI2=X12+(X( i +1)-XI)«GF (XI, Tau)
ELSE

XI1=XT1+(X(i41)—XI)*GF(XI, Tau)

END IF
END DO

SUMEh % (XI10+2.0D0%XI2+4.0%XI1) /3.0D0
SUMG2=SUMx (1.0D0/ (X(i+1)-X(i)))

WRITE(UNIT=26 FMT="(E12.6) ’)SUMG2

END SUBROUTINE SIMPSONS2

DOUBIE PRECISION FUNCTION GF(x, tau)

IMPLICIT NONE

DOUBLE PRECISION,INTENT(IN) : : x, tau

DOUBIE PRECISION,PARAMETER.: : It =0.03D0, Sigma=0.2D0,D=0.8D0+Ir ,KK=10.0D0
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496

504

512

DOUBLE PRECISION PARAVETER : : K1=2.0D0x It / (Sigma*+2.0D0) ,K2=2.0D0 (Ir D) /(
sigmax%2.0D0)

GF=(EXP(K1*Tau) ) % (( (K2-K1) «EXP (x—(K2—1.0D0) *Tau) )+K1)

END FUNCTION GF

DOUBLE PRECISION FUNCTION UPrime (x, Tau)

IMPLICIT NONE

DOUBLE PRECISION,INTENT(IN) : : x, Tau

DOUBLE PRECISION,PARAVETER: : It =0.03D0, Sigma=0.2D0,D=0.8D0% It ,KK=10.0D0

DOUBLE PRECISION,PARAMEIER : : K1=2.0D0+ I /(Sigma#%2.0D0) ;K2=2.0D0* (Ir-D) /(
sigma*%2.0D0)

UPrime=—exp (K1*Tau) *(exp (x—(K2—1)«Tau) )

END FUNCTION Uprime

SUBROUTINE MASSMATRIX (i ,N,X,KM)
IMPLICIT NONE
INTEGER,INTENT(IN) : : N, i
DOUBLE PRECISION, DIMENSION ( 0:N+1) INTENT(IN) : : X
DOUBLE PRECISION, DIMENSION ( 1: N, 0:N+1) INTENT(INOUT) : :KM
DOUBLE PRECISION : : SUM1,SUM2, SUM3, SUM4,SUM
DOUBIE PRECISION,EXTERNAL: : func
DOUBIE PRECISION : : a, b, h, XI, XI1, XI2, XI0
INTEGER : : k M
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520

528

536

544

a=X(i-1)
b=X(1)
M=INT (N%200)
B=ABS ((X(1)-X(i—1)) ) M
XI0=func (a)+func(b)
XI11=0.0D0
XI12=0.0D0
XI=0.0D0
DO k=1M-1
XI=a+kx*h
IF (MOD(k,int (2))/=0) THEN
XI2=XTI2+func (XI)
ELSE

XI1=XTI1+4func (XI)

END IF
END DO

SUMEh * ( ( X1042.0D0%XI244.0+XI1) /3.0D0)

SUM1=((1.0D0/(X(i)-X(i-1))))

a=X(1)

b=X(i+1)

h=ABS ((X(i+1)-X(i)))/M

XI0=func (a)+func(b)

XI11=0.0D0

XI12=0.0D0
XI=0.0
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560

568

576

584

DO k=1M-1
XI=a+kxh
IF (MOD(k,int (2))/=0) THEN
XI12=XI2+func (XI)
ELSE
XI1=XTI14func (XI)
END IF

END DO

SUM=(h) % (XI0+2.0D0XI2+4.0%XI1) /3.0D0
SUM2=(1.0D0/ (X(i+1)-X(i)))

KM(i , i )=SUMI+SUM2

a=X(1)
b=X(i+1)

h=ABS ((X(i4+1)-X(i)))/M
XI0=func (a)+func(b)
XI1=0.0D0
XI12=0.0D0
XI=0.0
DO k=1M-1
XI=a+k=h
IF (MOD(k,int (2))/=0) THEN
X12=XI2+func (XI)

ELSE
XI1=XI14func (XI)
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600

608

616

624

632

END IF

END DO

SUME=h # ( X10+2.0D0%X1244.0%X11) /3.0D0
SUM3=—1.0%((1.0D0/(X(i41)-X(i))*x2))+SUM

KM(i,i+1)=—1.0D0%(1.0D0/(X(i+1)-X(i)))

a=X(i-1)
b=X(1i)

B=ABS((X(i)-X(i-1))) /M
XI0=func (a)+func(b)
XI11=0.0D0
XI12=0.0D0
XI=0.0D0
DO k=11
XI=a+k+h
IF (MOD(k,int (2))/=0) THEN
XI2=XI2+func (XI)
ELSE
XI1=XTI1+func (XI)
END IF
END DO
SUM=h * ( X10+2.0D0+ XI2 +4.0%XI1) /3.0D0

SUM4=—1.0D0x ((1.0D0/(X(i)—X(i—1)))*%2)*SUM
KM(i,i—1)=—1.0D0%(1.0D0/(X(i)-X(i—1)))

END SUBROUTINE MASS MATRIX
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640

648

656

664

672

DOUBLE PRECISION FUNCTION func (x)
IMPLICIT NONE
DOUBLE PRECISION,INTENT(IN) :: x

func=1.0D0

END FUNCTION func

DOUBLE PRECISION FUNCTION UINTERI (UN,UM,UP, Xin, i ,a,b)
IMPLICIT NONE
INTEGER,INTENT(IN) : : i
DOUBLE PRECISION,INTENT(IN) : : UN, UM, UP
DOUBLE PRECISION,INTENT(IN) : : a, b
DOUBLE PRECISION,INTENT(IN) : : Xin

UINTER1=UMx (Xin—a) / (b—a )+UNx ((b—Xin) /(b—a))

END FUNCTION UINTER1

DOUBLE PRECISION FUNCTION UINTER2(UN,UM,UP, Xin, i ,a,b)
IMPLICIT NONE
INTEGER,INTENT(IN) : : i
DOUBLE PRECISION, INTENT(IN) : : UN, UM, UP
DOUBLE PRECISION, INTENT(IN) :: a, b
DOUBLE PRECISION, INTENT(IN) : : Xin

UINTER2=UMx (b—Xin) /(b—a)+UPx(Xin—a) /(b—a)

END FUNCTION UINTER2

DOUBLE PRECISION FUNCTION UINTER(UP,UM, Xin,i,a,b)

IMPLICIT NONE

INTEGER,INTENT(IN) : : i

DOUBLE PRECISION,INTENT(IN) : : UP,UM

DOUBLE PRECISION,INTENT(IN) ::a,b

DOUBLE PRECISION,INTENT(IN) : : Xin

UINTER=UMx (b—Xin) /(b—a)+UP* ((Xin—a) /(b—a))
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END FUNCTION UINTER

SUBROUTINE MASS MATRIX PRIME(i ,N,X,KP,U)
IMPLICIT NONE
INTEGER,INTENT(IN) : : N, i
DOUBIE PRECISION, DIMENSION ( 0:N) ,INTENT
DOUBIE PRECISION, DIMENSION ( 0:N) ,INTENT
DOUBIE PRECISION, DIMENSION ( 1:N—1,0:N) INTENT(INOUT) : : KP
DOUBLE PRECISION : : SUM1,SUM2,SUM3,SUM4, e, f , g

IN

(IN) ::X
(IN)::U

DOUBLE PRECISION : : a, b, h, XI, XI1,XI2,XI0,UN,UM, UP, TEST,SUM
DOUBLE PRECISION,EXTERNAL: : UINTER1, UINTER2
INTEGER: : k .M

UN=U(i—1)
UMEU (i)
UP=U(i+1)

a=X(1i-1)

b=X(1i)

M=N%200
B=ABS((X(i)-X(i-1))) /M

XI0=UINTERI(UN,UM,UP, a, i ,a,b)+UINTERI(UN,UM,UP,b, i ,a,b)
X11=0.0D0
X12=0.0D0
X1=0.0
DO k=1M-1
XI=a+tk*h
IF (MOD(k,int (2))/=0) THEN
X12=XI2+UINTER1 (UN,UM, UP, XI,i ,a,b)

ELSE
XI11=XI14+UINTERI1 (UN,UM,UP,XI, 1 ,a,b)
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720

728

736

744

752

END IF
END DO

SUM=(h) * (XI0+2.0D0+XI2+4.0%XI1) /3.0D0
SUMI=SUM ((1.0D0/(X(i)—X(i—1)))**2.0D0)

b=X(i+1)
a=X(1)

h=(X(i+1)-X(i)) /M
XI0O=UINTER2(UN,UM,UP,a,i,a,b)+UINTER2(UN,UM,UP,b,i,a,b)
XI11=0.0D0
XI12=0.0D0
XI=0.0D0
DO k=1M-1
IF (MOD(k,int (2))/=0) THEN
X12=XI24+UINTER2(UN,UM,UP, XI,i ,a,b)
ELSE
XI11=XI1+UINTER2(UN,UM,UP,XI,i ,a,b)
END IF

END DO

SUM=(h) * ( XI042.0D0*XI2+4.0%XI1) /3.0D0
SUM2=SUM* ((1.0D0/(X(i+1)-X(i)))*%2.0D0)

KP(i,i)=SUMISUM2
f=KP(i, i)

b=X(i+1)
a=X(1i)

h=ABS ((X(i+1)-X(i)))/M
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760

768

776

784

792

XI0=UINTER2(UN,UM,UP, a,i ,a,b)+UINTER2(UN,UM,UP,b, i ,a,b)
X11=0.0D0
X12=0.0D0
XI1=0.0D0
DO k=1M-1
XI=a+kxh
IF (MOD(k,int (2))/=0) THEN
XI12=XI2+UINTER2(UN,UM,UP,XI, i ,a,b)
ELSE
XI11=XI1+UINTER2(UN,UM,UP,XI,i ,a,b)
END IF
END DO
SUMEh * ( XI0+2.0D0xXI12+4.0%XI1) /3.0D0
SUMB3=SUM( —1.0D0)  ((1.0D0/(X(i+1)-X(i)))*%2.0D0)
KP(i,i+1)=SUM3

g=KP(i,i+1)

b=X(1i)
a=X(i—1)

h=ABS ((X(1)-X(i-1)))/M

XI0=UINTERI(UN,UM,UP, a,i ,a,b)+UINTERL(UN,UM,UP,b, i ,a,b)
X11=0.0D0

X12=0.0D0

XI1=0.0D0

DO k=1M-1

XI=a+kx*h
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800

808

816

824

IF (MOD(k,int (2))/=0) THEN

X12=XI2+UINTER1(UN,UM,UP, XI,i ,a,b)
TEST=UINTERI (UN,UM,UP, XI, i ,a,b)

ELSE
XI11=XI14+UINTERI (UN,UM,UP,XI, i ,a,b)

END IF
END DO

SUMEh * ( X10+2.0D0xXI12+4.0%XI1) /3.0D0
SUMA=SUM (( —1.0D0)  ( (1.0D0/(X(i)-X(i—1)))*%2.0D0))
KP(i,i—1)=SUM4

e=KP(i,i—1)

END SUBROUTINE MASS_MATRIX_PRIME

SUBROUTINE TRIDIAG_SOL(N,Y,KP, Phi)

IMPLICIT NONE

INTEGER,INTENT(IN) : : N

DOUBLE PRECISION,DIMENSION(1:N) :: Alpha,S,C

DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(INOUT) : : Phi
DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(IN) :: Y
DOUBLE PRECISION,DIMENSION (0:N) :: Z

DOUBLE PRECISION,DIMENSION (1:N—1,0:N) ,INTENT(IN) : : KP
DOUBLE PRECISION: : a, b

INTEGER: : i

S=0.0D0
a=KP(1,0)
b=KP(1,1)
c(1)=KP(1,2)

Alpha (1)=b
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832

840

848

856

S(1)=Y(1)

DO i=2,(N-1)
a=KP(i,i—1)
b=KP(i,1)

c(i)=KP(i,i+1)

Alpha(i)=b—(a*c(i—1)/Alpha(i-1))
S(i)=Y(i)+(a*S(i—1)/Alpha(i-1))

END DO

Z(N—1)=S(N—1)/Alpha(N-1)

DO i:(N—Q),l,—l
Z(i)=(S(i)+c(i)*Z(i+1))/Alpha(i)

END DO

Z(N)=Z(N—1)

Z(0)=Z(1)

DO i=0,N

Phi(i)=Z(i)

WRITE(UNIT=16 FMT="(E12.6) ’) Phi(i)

END DO

END SUBROUTINE TRIDIAG_SOL

SUBROUTINE EULERS(N,X, h_vector ,k,dPdX)
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872

880

888

896

904

IMPLICIT NONE
INTEGER, INTENT(IN) : : N

DOUBLE PRECISION, DIMENSION ( 0:N) ,INTENT(INOUT) : : X
DOUBLE PRECISION, DIMENSION ( 0:N) INTENT(IN) : : dPdX
DOUBLE PRECISION, INTENT(IN) : : k

DOUBLE PRECISION, DIMENSION (1 ,N—1) INTENT(IN) :: h_vector
INTEGER: : i

DO i=0N

X(1)=X(i)+k*dPdX(i)

END DO

END SUBROUTINE EULERS

SUBROUTINE Cvector (X, Cvec,N,i,t,U, Thetal)
IMPLICIT NONE
INTEGER, INTENT(IN) : : N, i
DOUBLE PRECISION, INTENT(IN) : : t
DOUBLE PRECISION,INTENT(IN) : : Thetal
DOUBLE PRECISION, DIMENSION (0:N) INTENT(IN) : : X
DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(IN) : : U
DOUBLE PRECISION, DIMENSION ( 1:N—1) ,INTENT(INOUT) : : Cvec
DOUBLE PRECISION,EXTERNAL: : UINTER1, UINTER2
DOUBLE PRECISION : : h, XI0 , XI2 , XI1 , a , XI,SUMCI,SUMC2, UN,UM, UP, b ,SUM, TEST
INTEGER: : k ,\M

MEN%300

a=X(i-1)

b=X(1i)
B=ABS((X(i)-X(i—1))) /M

UN=U(i—1)

UMEU (i)
UP=U(i+1)
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912

920

928

936

944

XI0=(a—X(i—1))«UINTER1(UN,UM,UP, a, i ,a,b)+(b-X(i—1))*UINTER1(UN,UM, UP
7b k) i ’a‘ K b)
X11=0.0D0
X12=0.0D0
DO k=1M-1
XI=a+kxh
IF (MOD(k,int (2))/=0) THEN

XI12=X12+(XI-X(i—1))*UINTERL(UN,UM,UP,XI,i,a,b)

ELSE
XI1=XI1+4(XI-X(i—1))«UINTER1(UN,UM,UP,XI,i,a,b)

END IF
END DO

SUMEh * ( X10+2.0D0xXI12+4.0%XI1) /3.0D0
SUMC1=(1.0D0/(X(i)-X(i—1)))*SUM

h=ABS ((X(i+1)-X(i)))/M

XI0=(X(i+1)—a)«UINTER2(UN,UM,UP,a,i,a,b)+(X(i+1)—b)*UINTER2(UN,UM, UP
,b,i,a,b)

XI11=0.0D0

XI12=0.0D0

DO k=1M-1
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952

960

968

976

984

XI=a+k=h

IF (MOD(k,int (2))/=0) THEN

X12=XI2+(X(i+1)—XI)*UINTER2(UN,UM,UP, XI,i ,a,b)
ELSE
XI1=XI1+(X(i41)—XI)*UINTER2(UN,UM,UP,XI,i,a,b)

TEST=UINTER2 (UN,UM,UP, XI,i ,a,b)

END IF
END DO

SUMEh * ( X10+2.0D0xXI12+4.0%XI1) /3.0D0
SUMC2=(1.0D0/ (X(i+1)-X(i)))*SUM

Cvec (i)=(SUMCIHSUMC2) / Thetal

END SUBROUTINE Cvector

SUBROUTINE Theta (X, ThetaV ,N,i,t,U)
IMPLICIT NONE
INTEGER,INTENT(IN) : : N, i
DOUBLE PRECISION,INTENT(IN) :: t
DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(IN) : : X
DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(IN) : : U
DOUBLE PRECISION, DIVEENSION ( 0:N) ,INTENT(INOUT) : : ThetaV
DOUBLE PRECISION,EXTERNAL: : UINTER
DOUBLE PRECISION : : h, XI0 , XI2, XI1,a,XI,SUMCL, UP,UM, b, test
INTEGER:: : k M

M=(N%3000)

a=X(1i)

b=X(i+1)

h=ABS ((X(i+1)-X(i)))/M
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UP=U(i+1)
UMEU( 1)

XIO=UINTER(UP,UM, a,i,a,b)+UINTER(UP,UM,b,i ,a,b)
992 XI1=0.0D0
X12=0.0D0

DO k=1M-1
XI=a+k+*h

IF (MOD(k,int (2))/=0) THEN
1000

XI2=XI24+UINTER(UP,UM, XI,i ,a,b)

ELSE
XI11=XI1+UINTER(UP,UM, XI,i ,a,b)

END IF
END DO
1008

SUMCI=h # (XI0+2.0D0+XI2+4.0%XI1) /3.0D0
ThetaV (i )=SUMCI1
END SUBROUTINE Theta

SUBROUTINE TRIDIAG_SOL1(N, f ,Z,k ,KP)

1016 IMPLICIT NONE
INTEGER,INTENT(IN) : : N
DOUBLE PRECISION,DIMENSION(1:N—1) :: Alpha,S,y,C
DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(OUT) :: Z
DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(IN) ::
DOUBLE PRECISION,DIMENSION (1:N—1,0:N) ,INTENT(IN) : : KP
DOUBLE PRECISION,INTENT(IN) :: k
DOUBLE PRECISION: : a ,b, r

1024 INTEGER: : i
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1032

1040

1048

1056

s=0.0D0
y=0.0D0

a=KP(1,0)

b=KP(1,1)

c(1)=XKP(1,2)

Alpha(1)=b

S(1)=f(1)

DO i=2,(N-1)
a=KP(i,i—1)

b=KP(i , i)
c(i)=KP(i,i+1)

Alpha(i)=b—(axc(i—1)/Alpha(i—1))

S(i)=f(i)+(a*S(i—1)/Alpha(i-1))

END DO

y(N—1)=S(N—-1)/Alpha(N-1)

DO i=(N-2),1,—1

y(1)=(S(i)4c(i)*y(i+1))/Alpha(i)

END DO
DO i=1,N-1
Z(1)=y (1)

WRITE(UNIT=23 FMT="(E12.6) *)Z( i)
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1064 END DO

END SUBROUTINE TRIDIAG_SOL1

SUBROUTINE TRIDIAG_SOL2 (N, Cvec ,W, k ,KP)
IMPLICIT NONE
INTEGER, INTENT(IN) : : N

1072 DOUBLE PRECISION,INTENT(IN) : : k
DOUBLE PRECISION,DIMENSION(1:N—1) :: Alpha,s ,U,C
DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(OUT) : :W
DOUBLE PRECISION, DIMENSION (1:N—1,0:N) INTENT(IN) : : KP
DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(IN) : : Cvec
DOUBLE PRECISION : : a, b, r
INTEGER: : i

1080

s=0.0D0
‘W=0.0D0
U=0.0D0

1088 a=KP(1,0)
b=KP(1,1)
c(1)=-KP(1,2)

Alpha(1)=b
S(1)=(Cvec(1) /k)

DO i=2,N-1
1096
a=KP(i,i—1)
b=KP(i, i)
c(i)=XKP(i,i+1)

Alpha(i)=b—(axc(i—1)/Alpha(i—1))
S(i)=(Cvec(i)/k)+(a*xS(i—1)/Alpha(i-1))
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1104 END DO

U(N-1)=s (N—1)/Alpha (N-1)

DO i=(N-2),1,-1

U(i)=(S(i)+C(i)*U(i+1))/Alpha(i)

1112 END DO

DO i=1N-1

W(i)=U(i)

WRITE(UNIT=24 FMT="(E12.6) *)W(i)

END DO

1120

END SUBROUTINE TRIDIAG_SOL2

SUBROUTINE THETA SOLVE(N,W,Z HT, ThetaNew )
IMPLICIT NONE
INTEGER,INTENT(IN) : : N
DOUBLE PRECISION,DIMENSION (1:N—1) INTENT(IN) : : W, Z ,HT
DOUBLE PRECISION,INTENT(OUT) : : ThetaNew
1128 DOUBLE PRECISION: : A B
INTEGER: : i

A=0.0D0
B=0.0D0

DO i=1,N—1

A=A+Ht (1) *Z (1)
1136 B=B+Ht (1) +W(1i)

END DO

ThetaNew=A/B
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END SUBROUTINE THETA_SOLVE

1144 SUBROUTINE TRIDIAG_SOL3(N,M,U,RHS, tau , NEGINFINITY)
IMPLICIT NONE
INTEGER, INTENT(IN) : : N
DOUBIE PRECISION, DIMENSION ( 1:N) : : Alpha ,S,C
DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(INOUT) : : U
DOUBLE PRECISION, DIMENSION ( 1:N—1) INTENT(IN) : : RHS
DOUBLE PRECISION, DIMENSION (1:N—1) : : Z
DOUBLE PRECISION, INTENT(IN) : : tau , NEGINFINITY
1152 DOUBLE PRECISION, DIMENSION ( 1:N—1,0:N) ,INTENT(IN) : :M
DOUBLE PRECISION,PARAMEIER: : Ir =0.03D0, Sigma=0.2D0,D=0.8D0xIr ,KK=10.0D0
DOUBLE PRECISION, PARAMEIFR : : K1=2.0D0x Ir /(Sigmaxx2.0D0) ,K2=2.0D0x (Ir D) /(
sigma+%2.0D0)

DOUBLE PRECISION: : a , b
INTEGER: : i

1160 S=0.0D0
a=M(1,0)
b=M(1,1)
c(1)=M(1,2)
Alpha=0.0D0

Alpha (1)=b
S(1)=RHS(1)
1168
DO i=2,(N-1)
a=M(i ,i—1)
b=M(i , i)

c(1)=M(i,i+1)

1176 Alpha(i)=b—(axc(i—1)/Alpha(i-1))
S(i)=RHS(i)+(a*S(i—1)/Alpha(i—1))

END DO
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Z(N—1)=S (N—1) /Alpha (N—1)

DO i=(N-2),1,—1
1184

Z(1)=(S(i)4+c(i)*Z(i+1))/Alpha(i)

END DO

1192

END DO
U(0)=exp (Klxtau) % (1.0D0—exp (NEGINFINITY—(K2—1.0D0) xtau))
U(N)=0.0

END SUBROUTINE TRIDIAG_SOL3

1200

SUBROUTINE M MATRIX (i ,N,X,M)
IMPLICIT NONE
INTEGER,INTENT(IN) : : N, i
DOUBLE PRECISION, DIMENSION (0:N) ,INTENT(IN) : : X
DOUBLE PRECISION,DIMENSION (1:N—1,0:N) ,INTENT(INOUT) : :M
DOUBLE PRECISION : : SUM1, SUM2, SUM3, SUM4,SUM
1208 DOUBLE PRECISION,EXTERNAL: : func
DOUBLE PRECISION: : a,b,h, XI, XI1,XI2,XI0
INTEGER:: : k , MI

a=X(i-1)
b=X(1)
MI=int (N*200)
h=ABS ((X(i)-X(i-1)))/MI
1216
XI10=(b—a) #*24(a—a) #*2
X11=0.0D0
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XI12=0.0D0
XI1=0.0

DO k=1,MI-1
1224 XI=a+kx*h
IF (MOD(k,int (2))/=0) THEN
XI2=XI2+((XI—a) **2)
ELSE

XI1=XI1+4((XI-a) **2)

1232 END IF
END DO

SUM=(h) % (XI0+2.0D0%XI2+4.0%XI1) /3.0D0
SUM1=(((b*x3—ax*%3)/3)+b*(ax*x2)—ax(b*x2)) /((X(i)-X(i—1))*%2)

a=X(1)
b=X(i+1)
1240

h=ABS ((X(i+1)-X(i)))/MI
XI0=(b—b) xx2+(b—a) x*2
XI1=0.0D0
X12=0.0D0
X1=0.0
1248 DO k=1,MI-1
XI=a+kx*h
IF (MOD(k,int (2))/=0) THEN
X12=X12+ ((b—XI) #%2)

ELSE
1256 XI1=XI14+((b—XI) *%2)
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END IF
END DO

SUM=(h) % (XI0+2.0D0*XI2+4.0%XI1) /3.0D0
SUM2=(((b*x3—ax*+3) /3.0D0) +((ax*2)xb—ax(bxx2))) /((X(i+1)-X(i))**2)

1264

M(i , i )=SUMI+SUM2

a=X(1)
b=X(i+1)

1272 h=ABS ((X(i+1)-X(1i)))/MIL

XI0=(b—b) *(b—a)+(b—a) *x(a—a)
XI1=0.0D0

X12=0.0D0

XI=0.0

DO k=1,MI-1
1280

XI=a+kx*h
IF (MOD(k,int (2))/=0) THEN

X12=X12+4((b—XI) (XI—a))
ELSE
XI1=XI1+ ((b—XI) x(XI—a))
1288

END IF
END DO
SUM=h # (X1042.0D0% X12+4.0%XI1) /3.0D0
SUMB=SUM ((1.0D0/ (X(i+1)-X(i))) ##2)
M(i,i41)=—1.0D0x*(((b*x3—axx3)/6.0D0)+((a*x*2)*b—ax(bxx2))/2.0D0) /((X(

PH1)-X(1)) *#2)
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1296

a=X(i-1)
b=X(1)

h=ABS ((X(i)-X(i—1)))/MI

XI0=(b—a) *(a—a)+(b—b) *(b—a)

1304 XI1=0.0D0
X12=0.0D0
XI=0.0
DO k=1,MI-1
XI=a+kx*h
1312 IF (MOD(k,int (2))/=0) THEN
XI2=XT12+((b—XI) *(XI-a))
ELSE
XI1=XTI1+((b—XI) *(XI-a))
END IF
1320 END DO

SUME=h # ( X10+2.0D0xXI12+4.0%X11) /3.0D0

SUM4=((1.0D0/ (X(i)-X(i—1)))#*2)*SUM

M(i,i—1)=—1.0D0% (((b#x3—ax#3)/6.0D0)+((axx2)xb—ax(bxx2))/2.0D0) /((X(
P4+1)-X(1))*x2)

END SUBROUTINE M_MATRIX
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