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Abstract

The formation of stable patterns is considered in a reaction -diffusion system
based on the cubic autocatalator, A + 2B - 3B, B - C, with the reaction taking
place within a closed region, the reactant A being replenished by the slow
decay of a precursor P via the reaction P > A. The linear stability of the
spatially uniform steady state (a,b) = (u_l,u), where a and b are the
dimensionless concentrations of reactant A and autocatalyst B and u is a
parameter representing the initial concentration of the precursor P, 1is
discussed first. It is shown that a necessary condition for the bifurcation
of this steady state to stable, spatially non-uniform, solutions (patterns)

is that the parameter D<3-2vV2 where D=Db/Da (Da and Db are the



diffusion coefficients of chemical species A and B respectively). The values
of i at which these bifurcations occur are derived in terms of D and A (a
parameter reflecting the size of the system).

Further information about the nature of the spatially non-uniform solutions
close to their bifurcation points is obtained from a weakly nonlinear
analysis. This reveals that both supercritical and subcritical bifurcations
are possible. The bifurcation branches are then followed numerically using a
path-following method, with p as the bifurcation parameter, for

representative values of D and A. It is found that the stable patterns can
lose stability through supercritical Hopf bifurcations and these stable,
temporally periodic, spétially non-uniform solutions are also followed

numerically.

1. Introduction

Cubic autocatalysis has been shown to form the key step in a number of
complex reaction schemes, see, for example, the review lecture of Gray [11.
In particular, Hanna et al. [2] and Saul and Showalter [3] have demonstrated
that cubic autocatalysis provides a good model for the iodate - arsenous acid
reaction. The mechanism of cubic autocatalysis also has similarities with
many models arising in mathematical biology, see, for example, that given
originally by Schnakenberg [4] which has been discussed by Murray [(5,6] and
Acuri and Murray [7]. This rate law has also been suggested for enzyme
reactions (glycolysis), Sel’kov [8].

In this paper we consider the prototype chemical reaction scheme based on
the cubic autocatalator,

A + 2B — 3B rate k, ab°, (1)

B—C rate k_ b, (2)
where a and b are the concentrations of the reactant A and the autocatalyst B
and the kl are rate constants (both reactions are assumed to be isothermal).

It has been shown that the reaction scheme given by (1) and (2) can, in an



open system (the c.s.t.r.), exhibit a range of complex behaviour, see, for
example, D’Anna et al [9], Gray and Scott [10,11,12,13] and Gray and Roberts
[14]. Here we suppose that the reaction is taking place inside a closed
system with the reactant A now being replenished by the slow decay of a

precursor P, via the simple isothermal step,
P — A rate koﬁ. (3)

where p is the concentration of reactant P. The reaction scheme (1)-(3) has
been discussed in some detail for a well-stirred system (ie one with no
spatial variations), allowing for the slow decay of the precursor P, Merkin et
al [15] and also under the "pool chemical” approximation (where the
concentration of P is assumed to remain constant throughout), Merkin et al
[168]. The slow uncatalysed reaction step A — B can have a substantial effect
on the overall reaction, and this has been discussed by Merkin et al [17],
again for the well-stirred system.

In the present paper, we consider the reaction scheme (1)}-(3) taking

place inside a closed vessel without stirring. This allows for spatial

variations in the reactant concentrations throughout the vessel, arising via
the combined mechanisms of reaction and molecular diffusion. The development
and propagation of reaction-diffusion waves from initially non-homogeneous
distributions of reactants for this scheme has been considered by Merkin and
Needham [18]. Also the formation of partially stable (transient) spatial and
temporal pattern forms for this scheme has been studied by Needham and Merkin
(191]. In both of these papers it was assumed throughout that the diffusion
coefficients for the species A and B are equal. This assumption is plausable
for many chemical reaction schemes for which (1}-(3) provide a basis, where
the diffusion coefficients of the two species represented by A and B are of a
comparable order of magnitude. However, in many biological contexts, for
example 1in enzyme reactions, the diffusion coefficients may differ more
significantly between species. The aim of the present paper is to study the

effects on stability and pattern formation in the reaction scheme (1)-(3) when



the diffusion coefficients of the species A and B are unequal.

As in [19], for analytical convenience, we restrict the spatial variation
to one dimension, and measure distance in this dimension with the coordinate
X. The vessel is taken to have length £ with impermeable boundaries at x =
0,f. Physically this will model a thin layer of reacting material confiined in
a vessel which is much longer than its width.

"The equations governing the evolution in concentration of the reactants

in the vessel are, as in [19],

= 2_
Qg = D 8_2 kop 3
3t Poax
da a%a - -=2
—~ =D —= + kp - kab" , > (4a)
5T a 6§2 0 1
ab 3°b ——2 _
— =D — + k. ab - kb
5t b 6§2 1 2
Here Di (i = p,a,b) are constant diffusion coefficients and t is time. In

addition to equations (4a) we have the boundary conditions associated with the

impermeable walls, namely
—_=——='—;— On}_(-=0,e. (4b)

Following [19], we consider the situation in which the precursor P is
initially uniformly distributed throughout the vessel with constant
concentration P, Thus we have the initial condition,

p(x,0) =p  , 0<x<L . (5)

In addition, the reaction kinetics are taken to satisfy the following
scalings:

(i) the time scale associated with the decay of the precursor P in reaction

(3) is much longer than the time scales associated with reaction steps

(1) and (2).

(ii) the initial concentration, P, of the precursor P is large compared to

typical concentrations of the intermediate species A and B.



To exhibit formally the simplications available under these conditions,
it is appropriate at this stage to introduce dimensionless quantities. Typical
scales for p and x are clearly P, and ¢ respectively. We denote typical
scales for a, b by a, bS and a scale for t by ts, which is to be based on the
faster time scale associated with reactions (1) and (2). On balancing orders
of magnitude for the production (or loss) of reactants A and B from reactions

(1) and (2) over a time scale t , we deduce appropriate scales as,
s

(8)

These scales are then used to introduce the dimensionless quantities,

a=aa , b=bb , p=pp , x=4£& , t=tt. (7)

s s 0 s

The resulting dimensionless equations governing the evolution of chemical

species P, A and B are, from (4a) and (7),

g% = A g—% -€p (8a)
Poax
2
fa _ 2 22, pp - ab? (8b)
ot a 2
ax
ab 8°b 2
— = A — +ab -b (8c)
at b 2
ax
while conditions (4b) and (5) become
op _ da.  _ b _ _
% 0, Ervi o, I 0 at x=0,1 (9a)
p(x,0) =1 , 0<x<1 (9b)

Here we have introduced the dimensionless parameters

K
A = (i = p,a,b), o=k—°, po= —2 (10)

The Ai give a measure of the relative rates of diffusion of the three species,
o compares the two reaction rates associated with the production and
autocatalytic steps and the parameter p measures the initial rate of
production of A from P.

Assumption (i), (ii) above are the basis for the ‘pool chemical’



approximation, defined formally by
o << 1 with u=0(1) as ¢ — 0 (11)
This limit will be taken for the subsequent analysis.
Equation (8a) can be integrated directly, subject to (9a,b), so that the

concentration of the precursor P is everywhere given by,

ot

p(x,t) = e (12)
The precursor decays slowly and uniformly, producing the reactant A. It can
therefore be eliminated from equation (8b) to leave,
da 82a -0t 2
= A — + e - ab” . (13)
ot a 2
ax

Equations (13) and (8c) show that at large times the system will settle to the
chemical equilibrium solution where all the autocatalyst B has been converted
to the final stable product C and a uniform residue of reactant A is left
behind.

The real interest in this model is therefore to determine the transient
features that can be observed before the final chemical equilibrium Iis
achieved. Equation (13) shows that these transient features will be slowly
varying over a time scale of 0(0—5. Thus we may analyse this transient
behaviour by making the "pool chemical" approximation in equation (13). This
involves making the approximation e 7t = 1, and studying the behaviour of
solutions of the resulting autonomous equations for each constant value of O <
< o For each fixed u, the resulting behaviour will then provide a good
approximation to the slowly evolving transient behaviour over a time scale of
0(¢"'). This has been shown to be the case for the well-stirred (spatially
uniform, i.e. putting Aa = Ab = 0) version of the equations, [15]. In [15]
it was seen that, provided ¢ was sufficiently small, the system behaved
“quasi-statically", i.e. the response of the system at a particular value of t
was the same as that determined under the pooled chemical approximation [16]
for the corresponding value of ue_ot (treated as though this were a constant).

The only differences between the "slowly decreasing u" and the "constant p"



cases were seen near bifurcations in the latter case, which required in the
former case a finite time for the solution to adjust to a new bifurcated
solution state.

Under the "pool chemical" approximation the equations governing the

concentrations a,b become,

L N S (14a)
at a 2
ax
8b 3°b 2
— =A — +ab” - b (14b)
at b 2
ax
with the boundary conditions
92 _% -9  atx=0,1 (14c)
ax ax

and suitable initial conditions.

Earlier work on this system [18,19] made the further simplification
Aa = Ab = A, requiring that the species A, B have diffusion coefficients that
are (approximately) equal. For small molecules this is a sensible choice as
very little variation is found between diffusion rates. However for reactions
involving larger molecules, such as enzyme reactions, it is important to allow
for different diffusion rates and in this context a factor of ten difference
is not unreasonable. It is also worth noting that the autocatalytic scheme
(14) has many similarities with biological mechanisms where the rates of
diffusion of the species may differ considerably, see for example Arcuri and
Murray [7].

The governing equations (14) have been studied extensively for the
spatially uniform case, [16], and it is instructive at this point to
summarize
these results before analysing the full equations. There are three ranges of
i to consider.

(i) 1 =< o

The only locally stable states of the system are the unique steady state S



and the conversion state C,

a pt + « , b=0 ,

(with « an arbitrary constant), whereby all the autocatalyst has been depleted
via step (2) and only the constant production of A from the precursor P via
step (3), with P at its inital concentration P, under the pooled chemical
approximation, remains.

At u = 1 the steady state S loses its stability through a supercritical
Hopf bifurcation, which leads to the creation of a stable limit cycle L in
n < 1. The steady state S remains unstable for each 0 < u < 1, while the
limit cycle L increases in amplitude, without bound as p — Moo= 0.90032, when
it is terminated at a heteroclinic bifurcation on equilibrium points at
infinity. The conversion state C remains stable for all 0 < p < 1.

Thus we have,
(ii) uhsu51

The only locally stable states of the system are the conversion state C
and the limit cycle state L.

(i1i) 0 < p <y

Th;_;;I;_;;;ble state of the system is the conversion state C.

In this paper the effects of diffusion are 1included. With equal
diffusion coefficients, Aa = Aa, it has been shown [19] that the uniform
steady state S remains locally stable for p > 1. While for p < 1 there is a
sequence of Hopf and pitchfork bifurcations from the spatially uniform steady
state S, all leading to partially stable spatially or spatiotemporal periodic
solutions. Observations of these states would be at most transient and on a
time scale much less than O(c '). The spatially homogeneous states L and C
remain as the only states which are locally, absolutely stable. The present
analysis examines the effect on this situation of allowing for unequal

diffusion rates. For small differences, the perturbation is regular and the

situation is qualitatively unchanged. However, for differences in diffusion



rates of 0(1), new features emerge.
We begin, in the next section, by analysing the local stability of the

uniform steady state S.

2. The Linearized Theory

Here we consider the temporal stability of the uniform steady state S
when subject to a disturbance of small amplitude. We linearize about S

by writing

a=pt+alxt) +... b=p+bxt)+.. (15)

On substituting from (15) into (14a,b), and retaining only the leading

order terms, we obtain

- ‘2_
Ba _, 22, 2a+2b=0
at aaxz
> (186)
— 2_
ab 8™ 2 — =
g h —p K a-b=0
ax
subject to the boundary conditions
da _ 8b
&—&—0 OnX—O,l. (17)

The solution to the 1initial-boundary value problem (16), (17) 1is readily

obtained as, [19],

I
a(x,t) = }:: [A:exp(w+t) + A;exp(w_t)]cosrnx
r=0
o (18)
b(x,t) = E:: [B:exp(w+t) + B:exp(w“t)]cosrnx
r=0
for 0 < x < 1, t > 0. Here Af, Bt (r = 0,1,2,...) are constants related to
the Fourier cosine series expansion of the initial disturbance while
Kk =rmwaA r=0,1,2,... (19)



and w w,(k ;p) are the two roots of the quadratic dispersion relation,
= r

+
W+ pluk Jo + qlpk ) =0 (20 )
with,
2 2
p(u,kr) = (1 + D)kr +u” -1, (21a)
alpk ) = Dkr4 + (Dp? - 1)kr2 T (21b)

In the above we have put D = Ab/A , the ratio of the dimensionless diffusion
a
coeffients of B and A respectively. The roots are ordered so that,
Re(w+) z Re(w ). (22)

The next step is to examine the dispersion relation in detail.

2.1. The dispersion relation

The roots of the dispersion relation are readily obtained from (21a) as,

- ply, k) iﬁz(u,kr) - 4 qlp,k )

5 (23)

wi(u,kr) =

The local stability of the uniform steady state S is now determined, via (18),
by examining the behaviour of w, (u,kr) in the first quadrant of the (k ,u)
s r
plane. At any point, (k ,u), the functions p and q determine the character of
r

the roots w_. The possibilities can be listed as follows:

(1) q < 0, w,_ real with opposite sign. (24a)
(ii) g>0, p>0, g< % p°, ©, both real and negative. (24b)
(iii) gq> 0, p> 0, q> % pz, W, complex conjugate with negative real

part. (24¢)
(iv) g> 0, p<0, g« % p2, w, both real and positive. (24d)
(v) q>0, p<O0, qg> % p2, W, complex conjugate with positive real

part. (24e)

In addition, on the boundaries w, are real and equal when q = % p2, form an
imaginary pair when p = 0, q > 0, whilst w, = 0 and w =0 when g = 0 with
p > 0 and p < O respectively.

To determine the nature of the regions (i)-(v) in the first quadrant of

10



the (kr,u) plane, we consider the loci of the boundary curves,

p(u,kr)z - 4qlpk) =0 : (25a)
alpk ) =0 , (25b)
p(p,kr) =0 , q(u,kr) >0 . (25c)

On substituting from (21a,b) the equations for the curves defined by (25a-c)

are given by,

k%= prtovZ p+ 1y w k =0, (262)

uo= i M, k=20, (26Db)

2
u2=1—(D+1)k2;u20,k25u—1, (26¢)
r r D2

respectively. Henceforth we will refer to the curves defined by (26a-c) as
e ©p and e respectively. In the quadrant p,k = O, e € and e, have only
r
one point of intersection, which is common to all three curves. This point of
intersection occurs at (k *, u *), where,
r r
o 1 -1

ktz =t (27)

goPle.q . (m+1)[¢nz+ 1 —1],

v D? D
At the above point, the curves eL and ep intersect tangentially, while e
intersects both e, and er transversely. The details of the three curves are

as follows

(i) .

This curve separates regions where w _ are real from where w _ are complex
conjugates. Two distinct cases arise for D § 1. With D < 1, S forms a
"semi-loop" attached to the positive p axis at u = v2 + 1, with the stationary
point of the loop occuring at p = V2, k= 1/¥1-D. For D = 1, the loop breaks

at kP = w, With e, reducing to the pair of straight lines p = v2 £ 1. With D

11



> 1, eE has three branches. One branch cuts off a triangular region in y, kr

=z 0, connecting the point pu=v2-1, k = 0 to p = 0, k = —l—— . The
r r {—D"" l

remaining two branches are monotone increasing with k , emanating from the
r
points u = v2 + 1, k =0 and g = 0, k = 1/VD-1 respectively. Both of these
r iy
branches have the asymptotic form p ~ vD-1 k as k — o.
r r

(ii) e

On this curve w, = 0. The curve has similar qualitative features for

each D > 0, having the form of a single hump between the points pu =0, k =20

r

and u = 0, k = 1/vVD. The maximum on the hump occurs at k = /zgﬁ:l~ with p =
r r

V2 -1

vD

(iii) e
I

A sketch of en in the quadrant k ,u = 0 is shown in figure 2.
r

On this curve Re(w+) = 0 and is defined only up to intersection with the
boundary curve e The form of e is qualitatively similar for all D > O.
The curve is monstone decreasing for 0 = k = k *, with pu=1at k =0 and

r r r

p=p* (< 1) at k =k * A sketch of e_ in nu,k = 0 is shown in figure 2.
r r r I r

2.2. The neutral curve and stability

The conditions required for local stability of the uniform steady state S
are most readily obtained by constructing the neutral curve p = uc(kr) in the
first quadrant of the (kr,u) plane. The neutral curve is the locus of those
points for which Re(w+) = 0 and is thus formed from the union of appropriate
sections of the curves e and e On using (26b,c) we obtain the equation

of the neutral curve as,

(
1-(MD+1)k > ; 0=k =k*
r r r
2
[J.(kr)——'4 e B (28)
) (1 - Dk “)k
r r : K * <k SL
(1 + Dk _*) . )]
\
For each D > O the neutral curve u (k ) connects the point p =1, k = 0 to
C r r

the point w = 0, k = 1/vD, enclosing a bounded region in the lower left hand
r

12



corner of the positive quadrant in the (kr,u) plane.

Qualitative sketches of the neutral curve are shown in figure 3 for the
differing cases D = 1, 3-2v2 = D < 1, 0 < D < 3-2V2 respectively. Any point
above the neutral curve in figure 3 has Re(wi) < 0 (corresponding to stable
behaviour) whilst all points below it have at least Re(w+) > 0 (leading to
instability).

At a given value of p, the stability of the uniform steady state S
requires Re[wi(u,kr)] < 0 for each r = 0,1,2,..., and it is readily deduced
from (28) that a neccessary and sufficient condition for the local temporal

stability of S is provided by

> o) = (29)
[o3 a
max(l,ui,uz}; 0<D<1,

where
(1 - N%%® DA ) N°m°a
“ == a a
(1 + NP DA )
(1 - [N+ 112 2@ DA)(N + 1)° m°a .
2 2 - ~ g We -1
(1 + [N+ 117 n° DA ) nVDAa
a
sz = A (30)
0 ; otherwise ,
with,
_ 1 v2 - 1
N = Integer part of {— ) (31)

a

That is, for each p > pcn (D,Aa), every term in (18) decays exponentially as
t — o, and any small disturbance imposed upon S will die away. However, for
0 < u < “cM (D,Aa), there are terms in (18) which grow exponentially as
t — o, and the system will diverge from the uniform state S when perturbed.

Before proceeding further, we first examine the nature of u,M (D,A)
c a

13



when O < D < 1. An examination of (28) shows that u M~ 1 when (3-2 v2) =D <
(o]

1. However for 0 < D < (3-2v2), p " is monotone increasing with a piecewise
C

Mo (V2 - 1)

© vD

the limiting forms as A — 0 and A — ». With A << 1 the interval lengths
a a a

linear form and u as D — 0. It is also interesting to consider

of piecewise linear behaviour decrease, with p " becoming smooth as A — O;
[of a
RS2
vD

in particular, p oo, a) for 0 < D < 3 - V2 as Aa — 0. However,
(o] a

with A >> 1, we find that p" = 1 for ‘/22_1 <D< 3 - 2V2 after which p "
a C T[A C
a
. . . V2 -1
increases rapidly and without bound for 0 < D < :
P

a

Of particular interest are those values of D and Aa for which uCM > 1 and
Turing instabilities can exist. In this region the effect of diffusion is to
destabilize the uniform steady state S and gives rise to the possible
development of locally stable nonuniform steady states (or patterns), as will
be demonstrated in the following sections. The above dicussion of uCM shows
that the existence of Turing instabilities necessarily requires D < 3 - 2v2.
Furthermore, for any given D in this range, a Turing instability may be
induced by sufficiently decreasing Aa. Physically this could be achieved by
increasing the size of the reacting system or by decreasing the diffusion
rates of both reactants A and B, whilst maintaining them at a constant ratio.

An examination of (29)-(31) shows that a necessary condition is that
V2 - 1

nzD

A =

a

We now consider the circumstances under which a small amplitude
disturbance to the uniform steady state S will evolve into a small, but
finite, amplitude spatially and/or temporally periodic state. We identify
this type of bifurcation from uniform conditions with pattern formation in the
system. Such a bifurcation will be possible only at values of p for which the
uniform steady state S is unstable (otherwise any small amplitude disturbance
will decay exponentially with time). Thus we restrict attention to the case

where 0 < u < u " (D,A ).
[of a

14



2.3 Local Bifurcations

The details of determining the nature of local bifurcations from the
uniform steady state S follow very closely from Needham and Merkin [19]. As
in [19] it is readily shown that small amplitude spatially and/or temporally
periodic states bifurcate out of S at those values of p for which one of the
curves kP = constant (r = 0,1,2...) intersects either of the curves eR or ef
i.e. at those values of pu for which a neutral mode exists in the linearized
theory. Thus, the linearized theory of the previous section enables us to
identify the bifurcation points in 0 < p < uc& The local behaviour of a
particular bifurcation can then be obtained by developing a weakly nonlinear
theory.

For a bifurcation occuring at u = My with corresponding wave number
kb, (for some positive integer b), the details may be summarized as follows:
(i) for (kb,ub) on e there 1is a Hopf Dbifurcation, leading to the
appearance of a small amplitude spatially and temporally periodic solution
when 0 < |p - u| << 1, with amplitude of 0{|ub - ;41/2] and spatial wave
length 2/b.

(ii) For (kb,ub) on e, there is a pitchfork bifurcation leading to the
appearance of two small spatially periodic patterns when O < |u TR << 1.

These are related through reflectional symmetry and have amplitude of

O[|u - ub|1/2] and spatial wavelength 2/b.

By definition the first bifurcation occurs at u = LlM, when k = Kk {
(o] r r
corresponding to the integer r where, from (29-31) we have
0 ; D>3-2/2
M= IN D=3-2V2, u >u (32)

! 1 2

=
+
—
o]
1A

- <
3-2v2, p <

At this bifurcation point all other wave numbers k , r # " have Re[w+(u {
r - (o4

15



kr)] < 0, and we deduce that the resulting bifurcated pattern is locally and
absolutely stable, at least for O < |ucM - u| << 1. However, each subsequent
bifurcation at u = M < ”cM will lead to a pattern that is at most partially
stable when 0 < |ub - pm| << 1. That is, the pattern is temporally stable to
perturbations composed of all but a finite number of wave numbers kr. In
particular, the set of wave numbers to which the bifurcating pattern is
unstable, are exactly those wave numbers kF agssociated with bifurcations at
larger values of u. In this case the extension of bifurcating branches will
lead to multiple patterned states for each 0 < pu < uCM. At any fixed p < uc&
the number of available patterned states which are locally and absolutley
stable will clearly depend upon how the bifurcating branches behave and
interact globally (ie away from the weak nonlinear limit O < |ub - p| << 1) to
induce changes of local stability and associated secondary bifurcations.
However, before considering the global nature of the branches, we first

complete the details of the local bifurcations. An important point to note is

that the bifurcation at g = u ¥ has either k . 0 and lies on e or has k " >
(o}
r r

0 and lies on e Thus the only pattern which can be locally and absolutly
stable at bifurcation is either spatially homogeneous and temporally periodic
(a trivial pattern) or a steady spatially periodic pattern.

We can also obtain information about the number of local bifurcations

occuring in p = ucw It is readily shown, from (28), that for any fixed D,

when Aa 2 1/1r2 D, the only local bifurcation in pu = u " is that at u = p‘M= 1,
(o}

C

which has corresponding k = 0 (via (29)-(31)). This leads to the spatially

r

homogeneous, stable, temporally periodic state in 0 < 1 - p << 1. In this
case we would expect only trivial pattern formation in 0 < p < 1, as no
further local bifurcation branches appear as p decreases from unity. However,

for Aa < —%— the total number of local bifurcations in g = g "is given by,
D ©

N =R + R_+1, (33)
b 1 2

where,

16



\/\/ﬁ2+1—1

R1 = Integer part of ;
™ VA D
a
(34)
R2 = Integer part of N S
n VA VD
a

A total of [R1 + 1] of these are Hopf bifurcations from the curve e and

therefore have pu* = u = 1. The remaining R2 are pitchfork bifurcations from

b
(V2 - 1) ! . .
the curve e and have 0 < N < "2 =7 We label these bifurcation points
vD
(1) M (1) (2) (Nb)
i = ' - > > .. > i
as M (i 1,2, , Nb), with M N TN M , with the

corresponding pattern denoted by P'. A lower bound on the spatial wavelength

associated with these patterns at bifurcation is given by % for the steady
2

periodic patterns and %— for the spatially and temporally periodic patterns.
1
As noted earlier, the only pattern which is locally, ,absolutely, stable
at bifurcation is that which emerges from the steady state S at p = uCM, with
the remaining patterns being only partially stable at their bifurcation.
Thus, with decreasing pu, we are able to deduce that the system will behave in
the following way when it is disturbed from the uniform steady state S with an

arbitrary small, perturbation:

(i) TRV .

c
The uniform steady state S is locally absolutely stable, and the
disturbance decays away exponentially as t — w, with the system returning to

S.

(ii) =u<upu
b c

The uniform steady state S is unstable to the single mode with wave

number Kk W which has exchanged stability with the locally, absolutely stable
r

pattern created in u < p,M through the local bifurcation at p = p W Thus,

(o3 [oF

the uniform steady state S develops into the pattern P1 as t — w.

17



(1ii) 0 < p < “b(Z)

As p decreases below ubw), the uniform steady state S becomes unstable

to an increasing number of modes with wave number k , k ,...., as pu
1 e
. . . (2) (3) .
decreases through the successive bifurcation values ub , ub ,--., Whilst
an increasing number of possible patterned states P2, Pa,..., are becoming
available on the bifurcation branches. These may achieve local, absolute,

stability via secondary bifurcations, and provide potential candidates into
which the system may develop as t — .

2l < M o< ucﬁ There are two

We now consider further case (ii), when ub(
situations to discuss:

(iia) D= 3 - 2v2

With D = 3 - 2v2 = 0.171573, we have p "~ 1 and k e 0, via (29)-(31).
C

r

Thus the stable pattern to which the system develops is the spatially,
homogeneous temporally oscillating state (which is the 1limit cycle state L of
the well-stirred system). We conclude that in this case no non-trivial
patterns can persist at small amplitude. Stable pattern formation, if it
occurs at all, must be associated with stabilization at lower values of u, on
the global extensions of the local bifurcation branches discussed in this
section.

(iib) D<3-2vV2
(v2 - 1)
nzD

For D < 3 - 2v2 and A > the situation is as described above.
a

However, with A = £!g—%—ll, Turing instability is possible. That is, we can
@ n D
have HCM > 1 and k " > 0. 1In this case the local bifurcation at p = u " leads
[of
r

to a stable, nontrivial, steady, periodic pattern to which the system will

develop as t — ®. The wavelength of this pattern, when O < |u e pl << 1 is
[

%i, with amplitude of O(|u . ull/z). This pattern will persit for each
[of
r
(2) M
“b <H <P .
(o3
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The above predictions have been made on the basis of a linear stability
analysis of the spatially uniform steady state 5. To determine the state to
which the system will evolve when S is temporally unstable the full nonlinear
equations must be considered. We start by considering the solution near the
pitchfork bifurcations identified above by developing a weakly nonlinear
theory.

3. Non-local pattern formation

In the previous section we have shown that, in order for the system to
bifurcate locally to a stable, non-homogeneous, steady state (pattern), we
must have ubM > 1 (where an is defined by (29)). This, in turn, gives a
necessary condition for the local bifurcation to stable pattern forms that

D<3-2V2 (35a)
For the rest of our discussion we limit attention to values of D which satify
condition (35a). Also, with condition (35a) satisfied the bifurcating

solutions with wave number k =r m VYA > O correspond to a value My where
r a

[1 - Dk z]kz
r

ho o= - d (35b)
1 + Dk
r

Note that a direct consequence of (35b) is that we require Dk 2 < 1. We start
r

our discussion of the nature of the spatially non-homogenous solution branches

with a weakly nonlinear analysis i.e. we develop a solution on the assumption

that |up - pb| << 1.

3.1 Weakly nonlinear theory

We begin our discussion by putting
Ho= W ye® | 0 <e<<1 (36)
where My is given by (35b) and where y = * 1, depending on whether the pattern
form bifurcates initially into p < pb(y = 1) or pu > M (y = -1). We then

proceed with the solution, as in Needham and Merkin [19], by looking for a

solution by expanding about stationary state S 1in powers of €. We find that
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the cubic nonlinearity generates an inhomogeneous forcing term at 0(e?)
formed from the fundamental neutral mode. This, in turn, leads to secular
terms, which are of 0(e3t). To overcome this problem and to obtain a uniform
expansion we use the method of multiple scales, [20], in which we introduce
the slow time variable T = et. Consequently, we first put
alx,t,T) = u_l + ulx,t,t), blx,t,t) = pu+ vix, t, 1) (37)
and look for a solution of the resulting equations for u and v by expanding in
powers of € of the form
2 3
u=u €+ u € +u_ € +...
1 2 3
(38)
2 3
v=v €+ vV_€ +v_€ +....
1 2 3
where the coefficients u, v are all functions of x and the two time
1 1
variables t and <. The leading order terms satisfy the linear homogeneous
problem (16), with p replaced by M The solution of these equations can be
solved in terms of Fourier series with all wave numbers present. However, it
is only a particular wave number k (with My given by (35a)) which gives a
r
neutral mode. Consequently, the solution approaches this mode as t — o, and

the solution we require at this stage is then

u d1
H = A(T) q cos (rmx) (39a)
1 2

where A is, as yet, an undetermined amplitude and where

1+ Dk °
_ - (39b)
K

r

Q-|Q-
-

\8}

At O(ez) we obtain a linear inhomogeneous problem. The equations are the
same as at the previous stage but now involve quadratic forcing terms
resulting from the nonlinear interaction of the leading order terms. We
require only the solution of this system in the limit as t — o, finding after

some calculation, that
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2y |-1 - 4Dk 8 d,
v | = 5 + SR 5 " | cos(2rmx) +B q cos rmx (40a)
2 2ub 0 4k 2
r

\V]
=
M
l
s
>

where B is a further function of the slow time T and where

2
b

2

r

E=2p dd + dzz/ub, A=2p® - (ak ® o+ ubz) (1 - 4Dkr2) (40b)

At 0(€’) we again have a linear inhomogeneous problem with the same left
hand sides as before, but now with right hand side forcing terms which arise
from the nonlinear interaction of the previous terms in the expansion. When
we come to consider the nature of the solution of this system as t — « we
find that secular terms arise. These have essentially three sources; the
interaction of solutions (3%9a, 40a), the form for u given by (36), and
differentiation with respect to the slow time variable T. Following the
method of multiple scales, we equate these terms to zero which , in turn,
leads to an equation for the amplitude function A(t). We found that the most
straightforward way to proceed was to follow Auchmuty and Nicolis [21] and
apply the solvability criteria for the linear operator, given essentially by
equations (16), with known forcing terms at both 0(e?) and O(e’). We found,

after a somewhat lengthy calculation, A(t) to be given by the equation

o
dA _ 2 b

where C is a constant, positive for all parameter values, and where

3 2
L 288 7 190 246 + 1 91 =pk 2= ADr%r (41b)
d,® 24(1 - 0)(46” + 50 - 1) ) ’

with expression (28) requiring 6 < 1. Consider equation (41la). If G > 0 we

take ¥ = 1 so that the bifurcation pattern form appears, initially at least,
in p < M- A further consideration of equation (41a) shows that this solution

is stable, with

1/2
4y,
A — A =1+ |— as T — o (42)
s
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Alternatively, if G < 0, we take ¥y = - 1, so that the bifurcated pattern form

appears initially in up > H but now the non-trival steady states

1/2
il
b
= = i
As s [TCT] of equation (4la) are unstable,.

This leads us naturally to consider the function G = G(8) for 0 < 8 < 1.
It is straightforward to show that G has two positive zeros (at 91 = 0.048449,
92 = 0.243089) and that the denominator is zero at 63 = (V41 - 5)/8 = 0.175391
and at 8 = 1. Thus for 0 < 8 < 91, G < 0, for 8 < 8 <8, G>0, (|G] >
aseeea), for93<9<92,G<Oandf‘or‘92<6<1,G>O.

We now examine the consequence of the above discussion on G for the
possible pattern formation as the dimensionless parameters u, D and Aa of the
system are varied. Suppose these parameters are such that only the first mode

(r = 1) can grow with all the other modes (r = 2,3,...) being stable. This

172 -1/2

requires k1 < D and k > D for all r > 1, (figure 3c}, giving the
r
condition
Leoa pn® < (43a)
4 a
Thus 6 > 62 and the only possibility is for G > O. Furthermore, we require

Moy > 1, so that the homogeneous stationary state S is stable. This leads to

the extra condition that A nz should lie in the interval
a
1—D—\/1—8D+D2< 2 1-D+ V1 - 6D+D°

D) Aan < =5 ., D<3-2v/2 (43Db)

Here we are using the notation M to refer to the value of p at the

, T

bifurcation corresponding to wave number Kk . Hence, 1in this case the
r

bifurcation is always supercritical (stable). If we characterize the solution

branches by giving b(0) the value of b on x = 0, we have, from (33a) and (42)

that

" 1/2
b(0) = p_* [_"] (- 7 R T (43c)

close to the bifurcation point at u = “K

Next consider the case when the dimensionless parameters are such that
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the first two modes (r = 1, r = 2) can grow, with all the higher modes being

stable i.e. we have k1 < k2 < D_l/z, giving the condition

1 2 1

=5 & < =

3 Aa Dn a (44a)
Thus 6 can now be in one of the ranges 91 < 6 < 63 (G > 0), 63 < B8 < 92

(G < 0) or 92 < 8 < % (G > 0). Also, we have that

b,2 b,l 3

> >
ub,l “b,z when e 63
Thus there are three possibilities as the bifurcation parameter u is

decreased. Pattern forms can bifurcate from the homogeneous stationary state

S first at either u =y

. 2 . 2
> =
» (if Aa Dn 93) or at p B (ir Aa Dn” < 83L

In the former case the bifurcation can be either supercritical or subcritical
(unstable). Whereas in the latter case it is always supercritical. This

discussion can be continued in an obvious way and the bifurcations

characterized as increasing numbers of modes become unstable. We note that

when Aa Dr® = 93 = (v41 - 5)/8, Mo, = K, and the bifurcation becomes
degenerate. We next examine this aspect in more detail along the lines

suggested by Schaeffer and Golubitsky [22] and Bauer et al. [23].

3.2 Solution near the degeneracy

From (35b) we can see, for a given value of D, that, when A = AO =
a
4l ; 2 = 0'01777, the bifurcations with wave numbers k1 and k2 occur at the
8r D D
same value of p = p_ = racs = 0.3508 D_1/2, (for p > 1 we require
0 1/2 0
4D
D < % (33 - 5v41) = 0.1230). To obtain a solution near this degeneracy

(double zero eigenvalue of the linear system (16)), we first write
A= Ao + 7 8 0 < 8 << 1 (45a)
where ¥y = + 1 as before. We then apply transformation (37) and look for a

solution by expanding
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0] 1 2
(45b)
v ul u2 2 u3 3
= 5 + 5% + 57+
v v v \"
1 1 3

and concentrate at this stage on obtaining the steady state solutions.
At 0(8) we obtain the linear homogeneous system (16) with p replaced by
M, (and the time derivates put to zero). This system has the

non-trivial solution

u dl(l) d1(2)

o = A1 4 (1) | cos mx + A2 4(2) cos 2 T X (46)
1 2 2
d1 (J) = 2
where — = To determine the amplitudes A and A_ we need
d_ (j) .2 2 1 2
2 Ajm o+ u
0 0
to consider the equations at O (62). Here we again obtain the linear system

(16) but now with forcing terms on the right hand side involving resonant
terms in cos m x and cos 2 T X. We then invoke the Fredholm alternative to
provide a solvability condition for these equations, which, after some
calculation, results in equations for A1 and A2 in the form

A1 ( - R1 ¥ + R2 K + R3 A2 ) =0 (472a)
— 2_
A2 (P1 7+ P2 ul) + P3 A1 =0 (47b)

where the constants R, P (i = 1,2, 3) are given by
1 1

- 1.2
R =-35m (f1(1) d (1) + D d (1) £ (1) ),
R, = (£,(1) -£,(1) p d (1),

_1 B :
R =7 (f‘1 (1) f (1)) Q, with

Q. = 2u0 (d1 (1) d2 (2) + d2 (1) d1 (2) ) + %O dz(l) d2(2)

and P =20 (d (2) £ (2) +Dd_f_(2)),
1 1 1 2 2

P = (f1 (2) - £, (2) R d1 (2),

P = (f1 (2) - f2 (2) ) Q1 with

- 2
Q =2 un d1 (1) d2 (1) + d2 (1) =7/ M, and
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2 2 2
. . .
£ () B AT Ty

£ 2
1 M,
To proceed, we need to determine the signs of coefficients in equations (47).
We find, again after a little calculation, that
R >0, R >0, P >0, P >0and R_P_>0 (48)
1 2 1 2 3 3

We can now determine the solutions of equations (47) (using (48) ) in terms of

the parameter ﬁl as

A =A_ =0 for all pu (49a)
1 2 1
) A1 =0, A2 arbitrary at T ﬁ;_ (49b)
— — = 1/2
A @ 7R1_ Rz By B =e (7P1+ P2“1)(“1R2 7R1) (49¢)
2 R " - P R
3 33

- R1 - P1
This latter solution (49c) for A1 occurs in B, > R and u1< - P for ¥y =1

2 2

- R1 — P1
(i.e. A > AO) or in p < - g and TR for y = -1 (i.e. A < AOL
2 2
- %
To resolve the arbitrariness in solution (49b) at b= K =
2n2 3
Tgﬁz (VA1 - 3) we need to consider the terms of 0 (87). To do this we add
)
into our solution at 0(62), the complementary functions
d1(1) d1(2)

81 d2(1) cos m x + B2 d2(2) cos 2 T X (50)

Then, since the equations are still linear, given by (16), with further

resonant terms on their right hand sides, we again invoke the Fredholm

alternative to obtain a solvability condition. This leads to equations in
the form
B (S +A S)=0 (51a)
1 1 2 2
B.S +S A +S_A°=0 (51b)
2 73 42 52
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for certain constants S1 (i = 1,..5). Equations (51) have the required

n
*

solution B1 =B O provided Ai = - This determines A2 at ﬁl = |t as

4
2 S’
5

2
7v41 + 101 R —
____15__— §— (____ngl__] T Hy o Mo Hy (52)
d2(2) G2 0

>
|

where G2 is the value of G given by expression (41b) evaluated at 6 = Dk2 =
4?\aD1r2. A simple calculation gives G = 7 VAI(VAL + 9) / 720 > 0. It is
clear then that the existence of A2 given by equation (52) requires ﬁz < 0.

To determine the stability of the solutions given above we can either
introduce a long time scale T = 8t and use the method of multiple scales in
the full time-dependent system, or we can linearize these equations about the
appropriate steady states. In either case, we find that the stability is

governed by the eigenvalues of the Jacobian

YR - pu R -R_A - R_A
g = 1 1 2 32 3 1 ) (53)
- 2P3 A1 - P17 B Pz M R
From (61) we can see that the steady state (49a) is: stable for ﬁl > ﬁl
2
and unstable otherwise when ¥ = 1, stable for M, > B unstable otherwise for
2
¥y = - 1. For steady state (489c) the eigenvalues of J are
* o Bl _ — — .2 2

A =5 [P17 + P2 ul] i_¢/(P1y + qul) + 8P3R3A1 (54)

From (54) it follows that this steady state is unstable for all parameter
values for which it exists (and 7 = + 1). The stability of the steady state
(49b) is indeterminate at this stage, (53) leads to a double zero-eigenvalue

and a consideration of the higher order terms is required.

The behaviour of the solution close to u = R is illustrated in figure 4

d_(2)
where we sketch A1 + HETTT A2 ( ~ blo) - uo) against p for the two cases y =1
2
(A > AO) and ¥y = - 1 (X < AOL

We now leave the weakly nonlinear theory and examine the nature of the pattern

forms away from their bifurcation points.
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3.3 Numerical method

To follow the pattern forms away from their bifurcation points we used
the spectral method, see, for example, Canato et al [24], to reduce the pair
of partial differential equations (14a,b) to a system of coupled ordinary
differential equations. Thus we approximated the exact solution by finite
expansions for the functions a(x,t), b(x,t) in terms of the appropriate
eigenfunctions of the Laplacian operator in (14a,b) and boundary conditions
(14c) on the interval [0,1] i.e. we took

N N
alx,t) = }: ar(t) cos(rmx), b(x,t) = E: br(t) cos(rmax) (55)

r=0 r=0

The residual function, obtain when expressions (55) are substituted into
equations (14a,b), is then chosen so as to be othogonal to each of the
eigenfunctions cos(rmx), (r = 0,1,2,....N). This leads to a system of 2(N+1)
ordinary differential equations for the a}(t), br(t) which, because of the
relative simplicity of the cubic nonlinearity, could be easily generated. The
solutions were then followed numerically using the path following package
PATH, Kaas-Petersen [25]. This procedure also calculated the temporal
eigenvalues at each point and thus the stability of the solution could be also
be determined.

The major advantage of using the spectral method over the use of finite
differences or the pseudo-spectral method [26] is that a relatively small
number of terms in expansions (55) are required to generate comparatively
accurate solutions, and consequently large savings in computational time can
be achieved. We found this to be the case for the present problem. We
compared results obtained with N = 5 and N = 10 and found them to be in very
good agreement (better than graphical accuracy). In the results described
below we use the value of b(x,t) on x = 0 (labelling this b(0)) to

characterize the solution branches and use p as the bifurcation parameter.

27



3.4 Numerical results

From the weakly nonlinear theory we have been able to identify various

cases that can arise. Consider first the case when only one non-zero wave
number k1 becomes unstable. We have seen here that the only possibility is
for a supercritical pitchfork bifurcation, 1initially in p < ub . The

bifurcated solution branches (patterns) obtained numerically by the method

described above are shown in figure 5. Here we chose D = 0.01 and A n2 =
a

42.25, giving Moo= 4.142. Figure 5 shows that the stable pattern that
emerges at Mo into p < Moy continues throughout in this region, remaining

stable until it undergoes a supercritical Hopf bifurcation at p = My, T

0.87995. For pu < My oy the non-homogeneous steady solution is unstable. The

Hopf bifurcation at p = By gives rise to stable, temporally periodic,

spatially non-uniform behaviour in p < My (these solution branches are not
shown in figure 5). This aspect will be discussed in more detail below.
Next consider the case when the two modes with wave numbers k1 and k2

become unstable. Here we have seen that there are three cases to consider,

namely Moy > My with the pitchfork bifurcation at p = Moy being

supercritical, u > with the pitchfork bifurcation at p = pu
b,1 Mo, 2 b,1

beingsubcritical and o 2> Mo with the pitchfork Dbifurcation at

Cale 2supercritical. These three cases are shown in figures 6. The first

case is illustrated in figure 6a, where we have taken D = 0.01, A nz = 24.4,
a

giving Moo= 3.8506, Moo, = 1.0888. Here the picture is similar to the

1

previous case. The stable pattern generated at u = Moy remains stable in u <

3

Koy until it under goes a supercritical Hopf bifurcation. The

non-homogeneous steady solution bifurcating from S at po= “bgz does not
interact with this stable pattern.

Next consider the second possibility. This is illustrated in figure 6b,
where we have taken D = 0.01, Aanz = 20.0, with then um1 = 3.6515 “mz =

2.9814. The picture is similar to the previous case, with the stability of

the pattern being lost via a Hopf bifurcation. The main difference is that
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now the spatially non-homogeneous solution that emerges at up = By isg

initially unstable and does so 1into p > “bﬂf There then follows a
saddle-node bifurcation which stabilizes the solution producing a stable
pattern as before.

Finally, consider the third possibility. This is illustrated in figure
6c where we have taken D = 0.1, Aa n = 1.4, with the ubJ_ = 1.0277

Mo, = 1.2568. In this case the bifurcation diagram is more complicated. The

primary bifurcation is now at p = “mz producing stable patterns in p < “mz'
These lose stability, again through supercritical Hopf bifurcations. Now a
secondary loop of solutions is seen which remains unstable throughout, this
branch can be thought of as either emerging from the pitchfork bifurcation
from the homogeneous solution at p = Moy or as emerging from a pitchfork

>

bifurcation from the original bifurcated solution branch emerging at u = “mz
after this branch has gone unstable at the Hopf bifurcation. Note that the
crossing of these two branches of solution appears to co-incide with the one
of the Hopf bifurcation points, however, this seems to be purely accidental.
The branch of non-homogeneous steady solutions, which become unstable at the
Hopf bifurcation undergo further bifurcations, first through a pitchfork
bifurcation to further unstable branches. These then undergo saddle-node
bifurcations producing branches of stable patterns.

To complete the discussion we consider the stable, spatially non-uniform,
periodic solutions which are generated at the supercritical Hopf bifurcation .
We fix attention on the first case discussed (figure 5, with D = 0.01,
Aanz = 42.25, with “ml = 0.87995). Similar behaviour was found in the other
cases considered. These periodic solution branches were followed numerically
still using the path-following PATH and a graph of the maximum amplitude
reached by b(0,t) is shown in figure 7. This graph shows typical Hopf
bifurcation behaviour for values of pu close to “H,f However, as n 1is
decreased away from My oy the amplitude grows and eventually the periodic

behaviour breaks down and the conversion state C (i.e. a ~ ut, b — 0) is the
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only configuration left. The shape of the graph shown in figure 7 1is very
similar to the equivalent one for the well-stirred systen, [1B6].

We examined these periodic solutions in more detail by obtaining
numerical solutions of the original initial-value problem (14) with initial
conditions that reflected the steady, though now unstable, solution at that
value of . The results are shown in figure 8 for a range of values of ;
with values of b being given at x = 0.0 (0.2) 1.0. The graphs are shown after
the transients had died away. The large difference in amplitude between b at
x = 0.0, and at x = 1.0 arises from the asymmetry in the initial conditions

through the asymmetry in the steady (unstable) solution. (Note that the

system is symmetric about x = %; the transformation x — 1 - x leaves (14)
invariant}. For pu = 0.875 the oscillations are in phase with the same

amplitude variation, giving rise to a ‘solid body’ type oscillatory behaviour.
However, as u is decreased, the oscillations become increasingly out of phase
(and grow in amplitude). This can be seen most clearly in figures 8c, (p =
0.82) and 8d (u = 0.80). In all the cases we considered we found no secondary
bifurcations of these periodic solutions, which remained with a single period
throughout.
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Captions for Figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

A sketch of the curve e as defined by equation (26b).

A sketch of the curve e, as defined by equation (26c). u* and kr*
are given by expressions (27).

Sketches of the neutral curves, as given by (28), for (a) D =z 1,
(b) 3-2/2=D< 1, (c) 0<D<3~-2v2
The behaviour of the bifurcated solution branches close to the
degeneracy at “0’ AO as obtained from the weakly nonlinear
analysis,

() A > A (b) A <A Here sketches of b (0) - p  against L= u

- p, are shown.

Figure 5. Bifurcation diagram (a plot of b(0) against u) for D = 0.01,
Aanz = 42.25 when only the first mode k1 becomes unstable. Here
represents a stable solution, — — — — an unstable solution, e
a supercritical pitchfork bifurcation, o a subcritical pitchfork
bifurcation and m a supercritical Hopf bifurcation.
Figure 6. Bifurcation diagrams when the first two modes k1 and k2 become

unstable

(a) D= 0.01, A n° = 24.4, where B > B and the bifurcation at

a > ’
u=n is supercritical.

(b) D = 0.01, A m = 20.0, where w , > m , and the bifurcation at

a ’ ?
u=p is subcritical.

(c) D=20.1, A 7 = 1.4, where Mo, > By and the bifurcation at

a ’ )

A is supercritical.
?

(the nomenclature is the same as for figure 6).
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Figure 7. A graph of the maximum amplitude of b(0,t) for the spatially
non-uniform periodic solutions emerging at “H,1 = 0.87995 (with D =
0.01, An" =42.25).

Figure 8. Graphs of the oscillatory solutions for b at x = 0.0, 0.2, 0.4, 0.6,
0.8, 1.0 with (a) p = 0.875, (b) p=0.85, (c) p=0.82, (d) p=

0.80.
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