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Abstract

The initiation of reaction-diffusion travelling waves in two regions each
governed by simple isothermal kinetics is considered when the two regions are
coupled together. The basic reaction in each region 1is quadratic
autocatalysis with the decay of the autocatalyst to an inert product in Jjust
one of the regions being allowed. The situation when the coupling is
achieved via the reactant is discussed in detail and compared with previous
results obtained when the coupling is via the autocatalyst. Substantial
differences both in the conditions for the formation of travelling waves and
in their wultimate propagation speed are seen between the two coupling
mechanisms. The permanent-form travelling wave structure is shown to depend
on the initial input of autocatalyst when the coupling is via the reactant,

which is not the case when the coupling is via the autocatalyst.

1. Introduction

Recent experimental studies (Maselko and Showalter 1991, Winston et al. 1991,
Gaspar et al. 1991) have begun to examine the coupling of chemical waves
across membrane surfaces. Such systems are of interest, not least because of

their implications for trans-membrance signalling in biological contexts.



These experiments typically make use of an ion-exchange membrane, such as
Nafion, onto which one component of the reaction is selectively absorbed (and
potentially immobilized). The remaining components are provided from the
surrounding solution, which acts as a reservoir of these species, but these
cannot all penetrate into the membrane due to electrostatic repulsion.
Coupling from one side of the membrance to the other is achieved via the
exchange of electrically neutral components, and the strength of the coupling
can be controlled by varying the experimental conditions. The analogies
between autocatalytic systems with chemical feedback and non-isothermal
systems such as flames which rely on thermal feedback is also of relevance, as
thermal coupling can readily be envisaged in the combustion context.
In a series of recent papers (Merkin et al. 1993, Metcalf et al. 1993, Needham
and Merkin 1994) we have considered, in some detail, the initiation and
propagation of reaction-diffusion waves in coupled isothermal autocatalytic
systems. In particular, we considered the coupling of two reaction regions
which we refer to as region I and region II. In region I we assumed an
autocatalytic reaction, of the form

A+mB> (m+1) B rate k ab" (1a)
together with some autocatalyst decay or termination process, of the form

n

n B> C rate k, b (1b)
In region II we assumed that the reaction was purely autocatalytic, of the
type given by step (la). Throughout we assumed that the two regions were
coupled together by the linear diffusive interchange of just one of the
reactant species A or B.

In Merkin et al. (1993) we gave a systematic analysis of the case when there
was quadratic autocatalysis (m=1) and linear decay (n=1) in region I and
quadratic autocatalysis in region II, with the two regions being coupled via
the autocatalyst B. We showed that conditions for the initiation of

travelling waves depended on both the strength of the coupling between the two

regions and on the strength of the decay step relative to the autocatalytic



production step (characterized by dimensionless parameters 75 and Kk
respectively), but not on the initial input of B into the system provided it
was not entirely non- trivial. We found that, when formed, the
permanent—form travelling wave had an essentially new structure which could
not be deduced directly from a knowledge of the wave forms that arise in each
of the regions separately (when these are not coupled together). We also
found that the propagation speed depended on both k and ¥y

In the course of our discussion of the particular case mentioned above, we
found that the linearized problem, based on small inputs of the autocatalyst
B, could, when viewed in the appropriate way, provide clear insights into the
conditions under which waves would be initiated as well as giving the
propagation speeds of such waves. We extended this idea in Needham and
Merkin (1994) to cases where there could be either quadratic or cubic
autocatalysis (m=2) with either linear or quadratic decay (n=2) in region I
coupled to either quadratic or cubic autocatalysis in region II. We found
that the linearized theory could, in most cases, resolve the question as to
the conditions under which waves could be formed and provided the appropriate
propagation speed. These were found to depend on both the coupling strength
parameter Vg and the decay rate parameter k and were different in each of the
cases considered. The case for which the basic linearized theory was
inconclusive (cubic autocatalysis in regions I and II, with quadratic decay in
region I) because of a zero eigenvalue was resolved by a consideration of the
higher order terms in the expansion for small inputs.

In both the above papers the coupling between the two regions was through the
autocatalyst B. The alternative configuration, where the coupling is achieved
via reactant A, has been discussed in Metcalf et al. (1993) Here we
considered two specific cases, namely the same case as in Merkin et al (1983)
(quadratic autocatalysis in regions I and II with a linear decay step in I)
and cubic autocatalysis with linear decay in region I with region II being

unreactive, with reactant A being free to diffuse. When we come to compare



the problems described in Merkin et al. and Metcalf et al. with the same
kinetic mechanism we find that the mode of coupling has a major influence on
both the conditions for the initiation of a travelling wave and on the
structure and speed of the waves that form. As we have already mentioned,
when the coupling is via autocatalyst B both the conditions for initiation of
waves and their resultant speed and structure are strongly influenced by both
the parameters zB and k. However, when the coupling is via reactant A we
found that travelling waves are formed for all values of the relative decay
strength parameter k and the coupling strength parameter R A further
difference between the two systems 1is that the propagation speed is now
independent of both k and 7A, being the same as for the standard
Fisher-Kolmogorov wave (see, for example, Britton, 1986) that would arise
naturally in region II if this were decoupled from region I. The parameters k
and v, do have an influence on the structure of the permanent-form travelling
waves, with the concentration of autocatalyst B being identically zero in
region I if k =z 1, for all 7(

Further differences between the two methods of coupling regions I and II arise
from how the travelling waves are initiated by the localized initial input of
autocatalyst B. When the coupling is via autocatalyst B we found that the
conditions for travelling waves to develop and the speed and structure of any
such waves was independant of whether B was introduced into region I or region
IT (or both). However, when the coupling is via reactant A, the propagation
speed and the structure of the waves that form depends crucially on whether
the autocatalyst is introduced into region I or into region II.

The purpose of this paper is to emphasis the major differences that arise in
reaction-diffusion waves governed by simple isothermal autocatalytic kinetics
when the mode of coupling is through the autocatalyst, more of which is
produced by the reaction, or by the reactant species, which is consumed by the
reaction. We start by giving the equations for both cases. We then

summarize the results given in Merkin et al. (1993) (for coupling through B)



and then go on to describe the two, essentially different, permanent-form
travelling wave structures that can arise when the coupling is through
reactant A, depending on whether the autocatalyst is introduced initially into
region II or not. One of these wave forms has been discussed by
Metcalf et al. (1993) whereas the other is new.

2. Equations

Throughout we assume that there is quadratic autocatalysis with linear decay
(steps la and 1b with m = n = 1) in region I and quadratic autocatalysis in
region II.

(a) Coupling through autocatalyst B

The dimensionless equations for this case are, from Merkin et al (1993),

da aza
._1 . o BB (2a)
at 171
ax
o8, 9°B,
3 - 2 « B = kB * 7 (Bz - 31} (2b)
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Baz azaz
at 2 a282 (2
ax
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at s * azﬁz oy (B1 B 62} (2d)

where the o« and Bi (1 1, 2) are the (dimensionless) concentrations of
chemical species A and B respectively and the suffices refer to regions I and

IT.

(b) coupling through reactant A

Here the equations are, from Metcalf et al (1993),

aal a al
at oy = 7A(“2 - al) (32)
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g, 9°B,
3t 2 +.a181 &K B1 (3b)
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for i = 1, 2, where the Bo

(3c)

(3d)

(4)

(5)

are constants and the functions gi(x) are

continuous and non-negative on [x|5 ¢ with a maximum value of unity.

3= Coupling through the autocatalyst

The condition for the initiation of permanent-form travelling waves 1in

the system described by equations (2) and initial-boundary conditions (4, 5)

is that
27B—1

k < for y > 1

WB—l B

whereas waves are initiated for all k if 7B = 1.
If we introduce the travelling co-ordinate
y = x - vt
where v is a (strictly) positive constant into equations (2),

equations for the permanent-form travelling waves as

’

a”+va -af =0
1 1 171

7

B1” g ¢ B S kB, * 7 (Bz -

'
o+ vo
2 2

- a282 =0
Bz * sz K oc232 T Y% (B1 - Bz) =0
(where primes denote differentiation with respect to y).

conditions are:

oa > 1,

) Bi >0 asy->w

and that conditions are uniform at the rear of the wave,

implies that

which,

(6)

(7)

we obtain the

(8a)
(8b)
(8c)

(8d)

The boundary

(9a)

in turn,



@ - «®, B 50 as y o> - (9b)
1 1

(i = 1, 2), where the ais are non-negative constants.
In Merkin et al. (1993) it was shown that a non-trivial solution of equations

(8) required that the propagation speed v satisfies the inequality
172

vev o =vZ |2 (-y) - k+ Vic+ 4sz (10a)

min
with the permanent-form travelling wave which arises as the large time
solution from initial conditions (4) , in fact, propagating with speed Y o
A further consideration of equations (8) showed that

o« > 0, Bl >0on-o <y<w/ (i=1, 2) (10b)
Consequently, the structure of permanent-form travelling waves which can arise
will be such that the concentrations of both reactant A and autocatalyst B
will be strictly non-zero in each region. This result is independent of how
the waves are started i.e., whether one of Bo(l) or BOQ) is zero. It is
this result we compare with the case when the coupling is through reactant A,
which we discuss in the next section. Finally, we note that inequality (10b)
can be improved to

s

¢« <a <1 on-w<y<owo (i=1 2) (10c)
1 1

4, Coupling through reactant A

Here we start by considering the reaction - diffusion system given by
equations (3) and initial-boundary conditions (4, 5).

{(a) initial-boundary value problem

We have already established in Metcalf et al. (1993) the bounds

0sa (xt)=1, 0sp (xt)=2+ BO(“ + BO(Z) (i =1,2) (11a)

for - o« < x < w, t = o. A consequence of (l1la) is that the initial-boundary

value problem (3,4,5) has a unique global solution. We have also established
that when k = 1,

Bl (x,t) > 0 uniformly inxas t 5 (11b)

We now consider the nature of the solution of the initial-value problem

if either BOU) = 0 or Bém = 0. We start by considering the case BOQ) = 0,



i.e. we assume there is no initial input of autocatalyst into region II. If

we consider the scalar parabolic operator defined by

L [W] Wt -W -W (12a)

xx
then it is straightforward to show that
L [O] = 0, L[Bz] =~ (1 - ocz) {32 =0 (12b)
from (11a). Also, with Bo(m = 0,
Bz (x,0) = 0 for all x (12¢c)
and hence by the comparison theorem (for, example, Britton, 1986) we have
B, (x, ) =0, ~ =< x <o t= 0 (12d)
This leads, from (11la), to
(2)

0 if BO =0 (13a)

B, (x, t)
By a similar argument, it follows that

0 (13b)

B, (x, t) =0 if BO‘“
Results (13) show that if no autocatalyst is introduced into either region
initially then the concentration of the autocatalyst remains zero in that
region throughout.
Now suppose BO(Z) > 0 and consider the function uz(x, t) which satisfies
the diffusion equation and the same initial - boundary conditions as Bz’

namely

D Ll] =0 (14a)
2
(x) x| = ¢ (14b)

u, >0 as |x] » o (14c)
where D [.] is the scalar diffusion operator

DIW] = Wt - W (14d)

XX
It is straightforward to write down the solution of (14) using Fourier

transforms. The main point to note from this solution is that, since Bo(m>0,

u (x, t) > 0 for -— @ < x o, t = 0. Then



D[uz] = 0, D[Bz] =ap =0 (15a)
u (x, 0) = Bz (x, 0) (15Db)
and hence, by the comparison theorem,

BZ (x, t) = u (x, t) >0 for - @< x < w, t Zo0 (18)
We now discuss the consequences of results (13) and (16) on the permanent-
form travelling waves that can arise as long time solutions to initial -

boundary value problem (3, 4, 5).

(b) Permanent—-form travelling waves

On introducing the travelling co-ordinate y, given by (7), the equations

for the permanent-form travelling waves are:

«”+ v’ - “131 Y, (az - al) =0 (17a)

B +vB  +aB-kB =0 (17b)

a” +va’'-ap +y (o —a)=0 (17¢)
2 2 272 A 1 2

BZ + VB2 + “282 =0 (17d)

The boundary conditions ahead of the wave are
« »>1, B >0asy-»w (i=1, 2) (18)
1 1
When we consider the conditions that must apply at the rear of the wave (where
conditions must become uniform) we find that there are two possibilities,

namely either

o« > o (i, = 1,2), B1 > 0, Bz > BS, as y > - (19a)

or
o« > AS, Bi 50(i=1,2) as y > - m (19b)
where AS = 0 and BS >z 0 are constants. Thus we are looking for a

non-negative, nontrivial solution to equations (17) subject to boundary
conditions (18) and (192) or (19b).

We first observe from equation (17d) that, whenever boundary conditions (19b)

apply, Bz(y) =0 on - o <y < o, since, in this case,

I e (y) B, (y) dy =0

-



It then follows, since o, (y) > 0 from Metcalf et al (1993), that 82 (y) = 0.

We now discuss the structure that permanent-form travelling waves take

(2)

for different initial input conditions. Consider first the case BO > 0

(1)

and f3 > 0, i.e. some autocatalyst is introduced into both regions. Now,
o Yy

from (3d), we have, in the initial-value problem,

d o0 [s¢]
It J Bz (x,t) dx = I @ (x,t)B2 (x,t) dx =z O (19¢)
= - 00
via (11a). Therefore
)
- 2)
J Bz (x,t) dx = Bo J g, (x) dx = M >0 (19d)
- ® -0
for all t > O. We conclude that Bz (x,t) does not tend to zero uniformly in
Xx as t > o as this would violate (19d). Hence, in this case, any travelling

wave which forms from the initial-value problem must be a travelling wave
satisfying conditions (19a) as y » - « (with BS > 0). This is the situation
that was analysed in Metcalf et al (1993). Here we showed that BS, the
concentration of B at the rear of the wave in region II satisfies

Bs > 0 with Bs =2 if k=1 (20a)

BS <2if k<1
We also showed that Bl = 0 if k 2 1 and that the wave speed v satisfies the
inequality
v zv =2 (20Db)

Further consideration of the full initial-boundary value problem (3, 4, 5)

then revealed that the permanent-form waves do, in fact, ultimately travel

with their minimum possible speed i.e., their wave speed approaches

v = 2as t > o

min
Next consider the case when BOQ) = 0 (with 30“) > 0 to achieve a wave at
all). Here we have, from (13a), that Bz = 0 in the wave and it is boundary
conditions (19b) that must apply. We are able to establish general

properties of the travelling waves that arise in this case:

R1. No travelling wave exists with « =1 (i =1, 2).
1

10



R3.

R4.

R5.

Follows directly from Metcalf et al. (1993)

In the travelling wave ai (y) >0on-e0<y < o (i = 1, 2).
Follows directly from Metcalf et al. (1993)

No travelling wave exists with B1 = 0.

With both 61 = 0 and 82 = 0 equations (17) reduce to a pair of coupled
second order linear equations, from which it is readily shown that the
only solution which satisfies boundary conditions (18, 19b) is the

trivial solution al = ", az =i

From this result we can conclude that any permanent-form travelling wave
must have some range of y over which Bl(y) > 0 and we can then extend
this result to.

In the travelling wave B1 (y) >0 for - @« <y = m,

Suppose 31 becomes zero at a finite value of y = Yo (say), then, since we
require a non-negative solution, we must have Bll (yo) = 0. Now,
for a given a (y), equation (17) is a second order linear homogeneous
equation with no singularities on - @ < y < ®w. Thus any initial-value
problem has a unique global solution on - o < y < o (see for
example, Grimshaw, 1990) ,. The above conditions on Bl at yo provide
initial conditions for the unique global solution B1 = 0, and by R3 only
the trivial solution is then possible.

Hence we must have B1 (y) >0 on - o< y < a

In the travelling wave ai(y) <1, (i=1, 2) on - w <y < .

Putting ¢ = o, + @, equations (17a, c) give

" + v @9 = a Bl (21a)

which can be integrated to give

¢ = e_vy{ alﬁl ds (21b)
N

Then, from R2 and R4, ¢’ > O and hence

2A < a + a <2 (21c)
S 1 2

11



R6.

R8.

RS.

Now suppose that a (y) = 1 for some range of vy. From boundary
conditions (18, 19b) and ineqality (21c) o, must have a local maximum
on this range, at y = Y, (say), with then o (yl) = 1, al’(yl) = 0,
o« i (yl) = 0, «, (yl) < 1. However, equation (17a) gives

o ” (y,)) = a (v} B, (y) + RCAS “2(y1)) >0 (21d)
This is a contradiction and hence we must have o (y) <1 on - o<y < o
A similar argument applied to equation (17d) gives az(y) <lon - o<y
< . This result can be extended to
In the travelling wave As < (y) on - w <y < o.
Suppose there is a finite range of y over which o, (y) = AS, then

there must be at least one value of vy, Y, (say), at which o,

takes a local minimum, 1i.e, o« (y2)5 As’ o (yz) = 0, o, (yz) =0
and, from (21c) @ (yz) > A . Equation (17d) gives
s
o, (yz) =7, (a2 (yz) - (yz)) <0 (22)

This is a contradiction and the result then follows
R7. A <1
8

This is clear from inequality (21c)

A travelling wave exists only if k < 1.

00
Apply J ...dy to equation (17b) and boundary conditions (18b) to get

[ (al - k) Bl dy = 0 (23a)
Using R5, we get
0= J (oc1 . k)Bldy < (1 - k) { Bldy (23b)
-0 —00

From which it follows, using R4, that we must have k < 1.
The wave speed v satisfies v =z v = 2V1l-k.
min

For y large, equation (17b) can be linearized to:

12



B +vB/ + (1k) B =0 (24a)

ALY
The solution to equation (24a) involves functions of the form e ' where

vtV V-4 (1-K) (24b)

For non-negative solutions we must have v = 2vVi-k and the result

follows.
We can use the argument given in Merkin et al. (1983) to show that, for
initial data with compact support, the permanent-form travelling wave which
evolves as the large time solution of the initial-boundary value problem will
travel with its minimum possible speed, i.e., the wave speed v = Vi = 2vV1-k.
We note that the propagation speed in this case is different to the case
treated by Metcalf et al. (1993), where BOQ) > 0. There it was found that
the waves had a propagation speed given by (20b).

Finally, we consider the case when Bou) = 0 (and BOQ) > 0). Here Bl =0
and Bz > 0 in the wave and the results follow directly from Metcalf et al.
(1993) . The behaviour in this case is analogous to the case when k = 1,
discussed in this paper.

Further insights into the structure of the permanent-form travelling waves

can be gained by looking for a solution of equations (17), with Bz = 0, for v,
large and v, small. We start with the case v, large. Here an examination
of equations (17) shows that « > e in the limit as v, > o This suggests

looking for a solution, valid for 7A large, in the form

@ = A +y o o+ ... (i=1,2) (25a)

" I’

B +v B +AB -kB =0 (25b)

At O (WA_l) we obtain, from equations (17a,c)

_ = A 7 4 ‘o
% % A0 \ AO AoBl,o (26a)

13



o - o =A" + v A’ (26b)
0 )
From which it follows that
A” +vA’-AB =0 (26¢)
0 0 2 01,0
On putting B1<) = 2 E& A (26c) gives the same equations (subject to the
same boundary conditions) that were treated in detail by Merkin et al. (1989).
For strong coupling the concentrations of reactant A in both regions
become equal with the wave propagating as though region I were decoupled from
region II, though with double the concentration of autocatalyst in this
region.
For weak coupling, v, <<1, and equations (17) suggest looking for

a solution in this case by expanding

O = +y a o+ ... (i =1, 2) (27)

At leading order we obtain

o =1 (28a)
2,0

with x o B1 o satisfying the equations

’ ’ 2

o« “"+va T -o B =0 (28b)
1,0 1,0 1,0 1,0

Bl,o + v 61, o + a 1’§ e k B 1’0= 0 (28c)

together with the boundary conditions

LR 1, B1,o >0 as y - o, % 5o, B1,o >50asy>- (28d)

The solution of these equations has been discussed in detail by Merkin et al.

(1989), where it was shown that a solution exists for all k < 1 and v = 2
vi-k, with a1,o satisfying the inequality O < oo < aL0< 1.

Expression (28a) shows that a non-uniformity develops in the solution as

y 5> - o (as the boundary conditions (19b) are not fully satisfied). To

obtain further information about this non-uniformity we need to consider the

equations of O (WA) in expansion (27). These equations are linear and the

14



details of their solution is not important, except for the behaviour as

Yy > — oo, We find that

(1-e ) (1-a )
s s Y

o -7 Y B > 0, a -

1,1 v 1,1 2,1 v (29)

as y » - o, where « is known from the solution at leading order. Expression
s

(29) suggest that we need an outer region of thickness O (7;4) at the rear of

this region, in which we put

Y = Yy, o = A1 (Y), @, = A2 (Y), {31 =0 (30)

At leading order the equations satisfied by A1 and A2 are

vA + A-A =0 (31a)
1 2 1

4

vA + A-A =0
2 2

subject to, from (28d, 29)

(1—«5) (1—as)

A ~a - Y +..., A ~1+
1 s v 2 v

Y +. .. (31b)

as Y > O. The solution of equations (3la) which satisfies the matching

conditions (31b) is readily found to be

(1+e ) (1—as) A = 1te 1~
= S —_ ¥ = s s
A1 = — 5 exp(2y/v) 2 5 * |3 exp(2y/v) (32)
From (32) we have AS = % (1+a¢ ) at the rear of the wave, with this limiting
s

form being approach from above by az but from below by o, This shows that,
at least for 7A small, there will be a region of the wave where al < A
S

(c) Numerical results

(i) Initiation in one or both regions

The initial-boundary value problem (3,4,5) and the permanent-form
travelling wave equations (17) were integrated numerically to illustrate the
various differences in behaviour detailed above. We integrated equations (3,
4, 5) with 9, = 0.5, k = 0.5, Bo‘“ = 1.0 and with 30(2) = 0.01 and with 30‘2)

= 0.0. The results are shown in figure 1, in which we plot the position of

15



the travelling front (where o« {(x,t) = 0.5) for the two cases. We can see
that the propagation speed v(t) rapidly approaches a constant (straight line)
in both cases. However, this speed is different in the two cases, v(it) > 2

(2) 0.01, v(t) approaches a value

when 30(2) = 0.01 as t > o, whereas for Bo
which correlates well with 2vV1-k for t large. Thus we see that the final

speed of the wave depends on whether reaction is initiated only in region I or

in both regions. In the latter case, we would obtain wave fronts in both
regions in the absence of coupling, one propogating with speed v = 2v1-k
(region I) and the other (region II) with speed v = 2. When these are

coupled, the higher speed wave in region II determines the velocity in the
overall system. For the case BOQ) = 0, there would be no wave in region II
in the absence of coupling and the natural speed for the wave in region I is v
= 2 V1-k as before. In the present case, the two regions are coupled through
exchange of the reactant A, so even with the coupling no autocatalyst 1is
produced in region II and hence there is no actual ‘reaction event’ in this
region. Depletion of the reactant in this case arises only through the loss

by exchange into the rear of the wave in region I.

(ii) Wave Profiles: strong coupling

We next considered the structure of the permanent-form travelling waves

that emerge as long time solutions of the initial-value problem. In figure 2
we show results for k = 0.5 and 7A= 5.0. We took BOQ) = 1.0 for figure 2Za
and BOQ) = 0.0 for figure 2b (in both cases Bou) = 1.0). For this value of

v, the o and o, profiles are virtually indistinguishable in either figure (as
suggested by the large LN analysis) but these profiles are different in the
two cases. In figure 2a the o 5 0 at the rear of the wave (boundary
condition (19a)) whereas in figure 2b they approach a non-zero constant
(boundary condition (19b)). In the first case Bz undergoes a large excursion
in the wave with Bl being very small throughout (being too small to register
on the scale for figure 2a). In the second case, where Bz = 0, Bl achieves

much higher values in the wave. Thus we again see that there are important

16



(2)

differences between the wave structures emerging in the two cases BO > 0

(2)
= 0.
and BO

(iii) Wave profiles: intermediate coupling

In figures 3 we plot the permanent-form wave structure when
(1) (2) . .
7A = 1.0, k = 0.5, B = 1.0, Bo = 0.0 to compare with figure 2b. The
only change between these two figures is the reduction in v, and this shows

itgelf through a slight separation in the « and o, wave profiles.

(iv) Wave profiles: weak coupling

We next took a much smaller value of yA. In figure 4 we plot wave
profiles for v, = 0.1 and k = 0.5, the only differences between the two
figures being that for figure 4a we took BOQ) = 1.0 and for figure 4b we took
BOQ) = 0.0 so different wave structures emerge in the two cases. The o, and
o, profiles are now much more distinct and at the rear of the wave approach
zero in figure 4a but approach a non-zero constant (somewhat larger than
previously seen) in figure 4b. Again, the Bl profile is very small
throughout in the first case, but attains appreciable values in the second
(82 = 0 in the second case, whereas it undergoes a large variation in the
first.) One feature to note about the o, profile shown in figure 4b is, as
predicted by the small WA analysis, the final value at the rear of the wave is
approached from below. This is even more clearly seen in figure 5, where we
take 7;A=0.01(k=0.5,BO‘“=1.0,BO‘2’=0.0).

Finally we examined the structure of the permanent-form waves when the

value of k is reduced. These are shown in figure 6 where we take k = 0.1 and
(1) (2) _ .

BO = 1.0. In both cases BO = 0 and Bz= 0 throughout. Comparing

figure ba (7A = 5.0) with figure 2b we can see that the main difference in

reducing k is to greatly increase the values reached by 31 and to decrease the
values reached by the o« at the rear of the wave. Now we also see that Bl
can achieve values greater than unity, which it cannot do in the uncoupled
system as was shown in Merkin et al (1989) that 31 < 1 in the wave. The same

general trends are seen when we compare figures 6b (WA = 0.1) and figure 4b,
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though now {31 remains less then unity in the wave.

5. Conclusion

We have considered the possible initiation of travelling waves in a
coupled reaction - diffusion system goverened by simple isothermal kinetics.
We took two parallel plane regions with autocatalytic (or chain - branching)
reactions taking place in both, the difference between the two regions being
that in one region we allowed the autocatalyst to decay to some inert product
whereas this reaction step was not present in the other. The main purpose of
our analysis is to compare the conditions under which travelling waves form
and the wave structure of any such waves, when the coupling between the two
regions is achieved either through the reactant (which is used up in the
autocatalytic reaction) or through the autocatalyst (which is produced by the
autocatalytic reaction and is used up in the decay step).

When the coupling takes place via the autocatalyst we found conditions
which involved both the relative decay rate strength k and coupling rates L
for waves to form. These are given by expression (6). We also found that
the propagation speed of any waves that form involves both Vg and k, as given
by expression (10a). A further feature of this case is that the initiation
and propagation speed of the travelling waves is independent of how the
autocatalyst is introduced into the system (into an otherwise uniform expanse
of reactant).

Considerable and important differences are seen when we consider the
regions being coupled via the reactant. The conditions for the initiation of
waves and their ultimate propagation speed depend on how the autocatalyst is
introduced initially into the system. If some autocatalyst is introduced into
both regions, then travelling waves form for all values of the decay rate
parameter k and coupling strength LR In this case the waves propagate with
an asymptotic wave speed v, & 2 (in dimensionless units). However, if the

autocatalyst is not introduced into the region without the decay step,
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travelling waves form only if k < 1 (for all values of WA), with the further
difference being that the asymptotic wave speed Vo T 2v1-k in this case.

Further differences are seen when we come to compare the structure of the
permanent-form travelling waves that are initiated. When the coupling is via
the autocatalyst, the concentration profiles of the autocatalyst are
pulse-like, approaching zero at the rear of the wave, while the concentrations
of the reactant approach differnt (constant) non-zero values at the rear of
the waves. When the coupling is via the reactant, the structure of the
permanent-form travelling waves depends on how they were initiated. When some
autocatalyst is introduced into both regions, the concentration profiles of
the reactant and of the autocatalyst in one region all approach zero at the
rear of the wave, while the concentration profile of the autocatalyst in the
other region approaches a (relatively large) constant value. When the
autocatalyst is introduced into just the one region, the concentration of the
autocatalyst in the other region remains zero throughout and essentially
different permanent-form wave structures are seen. The non-zero autocatalyst
concentration is pulse-like, but now the concentrations of the reactant
approach the same (constant) non-zero value at the rear of the wave.

The fact that we find essentially different behaviour between the two
coupling mechanisms is, perhaps, not entirely unexpected. We have already
observed differences in coupled well-stirred (spatially wuniform) systems
governed by cubic autocatalator kinetics, Leach et al. (1991, 1892) when the
coupling is via the reactant or via the autocatalyst. However, the fact that
we get essentially different asymptotic structures (permanent-form travelling
waves) depending on how these waves are initiated is novel and, perhaps,
unexpected as this feature has not been observed in all our previous studies
on reaction - diffusion travelling waves.
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Captions for figures

Figure 1 Position of the travelling front plotted against t obtained from a
numerical integration of equations (3,4, 5) with ¥, = 0.5, k = 0.5, B =

1.0 for (30(2’ = 0 and 30‘2’ = 0.01.

Figure 2 Permanent - form travelling waves for v, = 5.0, k = 0.5 and BOU)

1.0 with (a) (30(2’ = 1.0, (b) (30‘1’ = 0.0.
Figure 3 Permanent - form travelling wave for 7A = 1.0, k = 0.5, BO“) = 1.0

and 130(2’ = 0.0.
Figure 4 Permanent - form travelling waves for ¥,z 0.1 k = 0.5 and 30“) =
1.0 with (a) 80(2) = 1.0, (b) (30‘2’ = 0.0.

Figure 5 Permanent - form travelling wave for 7A = 0.01, k = 0.5, B =

0
) _
1.0, BO = 0.0
Figure 6 Permanent - form travelling waves for k = 0.1, BO“) = 1.0, BOQ)
= 0.0 and (a) v, = 5.0, (b) v = 0.1
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