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Abstract

A method is described for determining those approximations to wave scatter-
ing by bed topography which are based on second-order ordinary differential
equations. The development of a decomposition method allows the scatter-
ing matrix for an extended section of varying topography to be assembled
in a piecemeal fashion. In particular, the scattering matrix for a ripple bed,
consisting of an arbitrary number of periodic undulations, is expressed in
terms of the scattering properties of a single ripple. The structure obtained
reveals the main features of ripple bed scattering, including resonant reflec-
tion at certain frequencies. The analysis is allied to numerical calculations
to compare five different models of ripple bed scattering.



1 Introduction

A number of approximations have recently been devised to the scattering of
water waves by a ripple bed, which consists of a section of periodic undula-
tions set in an otherwise flat, horizontal bed. The presence of resonant peaks
in the amplitude of the wave reflected by a ripple bed has attracted particu-
lar attention and the ability of a model of wave scattering by topography to
predict these peaks has been used as a measure of its validity.

The investigation described in this paper was provoked by one particular
feature of approximations to scattering by ripple bed, noticed in numerical
computations. It was found that different models of the scattering process
can give quite different scattered wave fields for a single ripple, but very
similar fields for a sufficiently large number of ripples. This phenomenon
applies, for example, to the modified mild-slope equation of Chamberlain
and Porter [5] and Kirby’s [7] extended mild-slope equation. On the other
hand, the mild-slope equation of Berkhoff [1], [2] produces different results
again for one ripple and does not always give acceptable results for several
ripples.

The initial aim was to identify the process which can, in some cases,
erase the discrepancies in the scattered wave amplitude predicted by different
models, as the number of ripples increases.

We are concerned only with a particular class of such models in which
scattering by two-dimensional topography is approximated by a second-order
ordinary differential equation. Such an equation arises by the removal of the
vertical coordinate from the full linear boundary value problem for scattering.
Chamberlain and Porter [5] have recently given an account of this approxi-
mation method. To encompass the three models equations referred to above,
and variants of them, we base the development on a general second-order
ordinary differential equation, specifying only minimal requirements on its
coeflicients.

The investigation has two main strands. We first show that the ampli-
tudes of the scattered waves for any given bed topography are given in terms
of the boundary values of any two linearly independent solutions of the un-
derlying differential equation. Ultimately we choose to generate two solutions
by solving initial value problems, thus reducing the numerical calculations to
the simplest possible form. The inherent structure of the problem is thereby
detached from the numerical solution process, as far as this is possible. In
this sense, the present method contrasts with Chamberlain’s [3] approach to
the mild-slope equation.



The objective in consigning the computational aspects of the problem
to a subsidiary role is that it allows certain properties of the solution to be
identified analytically. We can show, for instance, that certain relationships
between the scattered wave amplitudes, established by Newman [9] for the
full linear wave scattering problem, also hold for all approximations to that
problem, of the type considered here. These so-called symmetry relationships
are an intrinsic part of the problem rather than of its exact solution, in the
sense that they are automatically satisfied, whatever the accuracy of the
solution. Thus, for example, the fact that the wave energy balance equation
is satisfied does not imply that an accurate solution has been determined.
This information allows the relationships to be used, even for approximate
solutions, as well as disqualifying them as checks on numerical solutions.
In fact, a further relationship, not found by Newman, can be retained as a
check, if used correctly, as we describe in Section 2.

The second main part of the development exploits and extends the de-
composition method, introduced by Chamberlain [4]. This method consists
of assembling the scattering properties of an extended topography from those
of its constituent parts. Topography can thus be decomposed into a num-
ber of convenient elements and the scattering characteristics of each element
determined independently of the others.

This approach is particularly significant in relation to ripple beds. By
using decomposition and the symmetry relationships referred to earlier, we
derive explicit formulae for the scattered wave amplitudes for a patch con-
sisting of an arbitrary number of ripples in terms of those for a single ripple.
Numerical calculations are therefore required for only one ripple. In addition
to the obvious computational saving, the replication formulae which gener-
ate the wave field for several ripples from that for one ripple meet our initial
objective. The mechanism which produces the resonant peaks referred to
earlier is apparent in the structure of the replication formulae.

The paper is organised in the following way. In Section 2 we develop an
efficient solution method and deduce the intrinsic symmetry relationships,
for any bed topography. Section 3 develops the decomposition process which
leads to the ripple bed replication formulae. The remaining two sections are
devoted to the implementation of the methods. In Section 4 we select, and
briefly describe, a particular numerical method and list five equations of the
type under consideration. These equations provide the basis for the results
given in the final section, where we illustrate and discuss the established
theoretical features of scattering by ripple beds.



2 The scattering matrix

We consider approximations to wave scattering on water in which the free
surface elevation is given by Re(n(z)e~*") where the angular frequency o is
assigned and 7 satisfies the equation

n"(e) +pn'(z) +gn(z) =0  (—o0 <z <o) (2.1)

Here p(z) and ¢(z) are given real-valued functions which depend on the still
water depth h(z) and are such that

(i) p =0 and ¢ = k* where h is a constant, k being a constant depending

on h;
(i) f2! p(x)dz = 0 for any points zo and z; such that h(zo) = h(z1).

We assume that p, ¢ and h are continuous and require n and 75’ to be contin-
uous.
One further stipulation is made, that

h(z) :{ b (2 <),

ho, (2 21, > 1),

where h,, and h, are constants. Throughout this account, m and n de-
note natural numbers with m < n. The subscript notation is introduced in
anticipation of the decomposition method described later.

It follows from our assumptions that

Am neikm(m—lm) + Bm neikm(lm_m) (51» < lm),
n(z) = { Anmeikn(ln—z) + Bnmeikn(z—ln) (z > ln), (2.2)

where the constant wavenumbers k,, and k, are those corresponding to the
depths h,, and h,, respectively. The prescribed amplitudes A, and A,
of the incoming waves and the amplitudes By, , and B, of the scattered
waves, which are to be determined, are related by a scattering matrix Sy

defined by

B A R T,
m,n — Sm = mn Sm n = m,n n,m . 2'3
(5 )=o) (B B2)- 9
The scattering coeflicients Ry, ,, (RBnm) and T n (Tnm) are, to within known
phase terms, the amplitudes of the reflected and transmitted waves respec-

tively, corresponding to a wave of unit amplitude from the left (right). Our
principle aim is to determine Sy, .



The core of the problem is to solve

n"(z) +pn'(z) +qn(z) =0 (ln <z <ly) (2.4)

subject to continuity of n and %’ at # = [,,l,. This continuity, used in
conjunction with (2.2), provides boundary conditions for (2.4) in the form

N'(lm) + tkmn(ln) = 2tknAmp, 7' (la) — tkan(ln) = —2ik, Apm (2.5)
and shows that the scattered wave amplitudes can be found from
Bm.n b n(lm) - Am,n, Bn,m = n(ln) . An,m- (26)

Now let 1; and 7, denote real-valued, linearly independent solutions of
(2.4) and note that their Wronskian

w(e) = (@) — mph(e) =voes (- [ pO)d),  (@7)

where wg is a real, non-zero constant. The function n = ayn; + aqn, satisfies
(2.4) and it also satisfies (2.5) if the constants a; and a; can be chosen so
that

alf;,l + a2fn-t,2 = zikmAm,m alfn_,l + a2fr-1—,2 = —2iknAn,m

where

B =nil) £ikani(l)  (@=m,n, j=1,2). (2.8)

If we introduce the matrices

= (B E) o-(5 ) - (0 2 ) e

which are related by F' — F = 2: DV, we see that a; and a, satisfy

a1 oy A'm,n
F(M)_QzD(An,m)
and that (2.6) implies

Bm,n . ay Am,n
(5o )=v(e)-(0)

Assuming for the moment that F' is non-singular, we can eliminate (a;, a;)T
between the last two equations to give

Bm.n . =17 -1 Am»"
(Bn,m)_ D™ FF D<An,m).
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Reference to (2.3) shows that
Spn = —D VFF-1D, (2.10)

which determines the scattering coefficients in terms of the wavenumbers &,
and k, and the boundary values of 1; and 7, and their derivatives. The
problem is therefore solved by calculating the boundary values of any two
linearly independent solutions of (2.4).

There remains the issue of whether F' is invertible. Suppose that there
exists a particular pair of linearly independent solutions 7, and 7, for which
F is non-singular and consider a different such pair, say 7, and 7, with the
corresponding matrix F' written as F. Clearly, there exist constants a, b, ¢
and d such that 9, = any + bne and 75, = ey + dn2 with ad — be # 0 and it is
easy to verify that det(F) = (ad — be) det(F). It is shown in Section 4 that
there is a particular linearly independent pair of solutions of (2.4) for which
F~1 exists and hence F' is non-singular for every linearly independent pair.

Certain relationships between the scattering coefficients follow directly
from (2.10) which implies that Sm,ngm,n = hS_m'nSm,n = [ and that conse-
quently | det(Sp,»)} = 1. Therefore

lb)vm,n|2 +Tm,nTn,m = ]Rn,m|2 + Tm,nTn,m = 11

Rn,me,n + _Rn,me,n = -Rn,an,m + Rm,nTn,m = O’
|Rm,an,m . Tm,nTn,mI . 13

from which follow the further identities

|Rn,mRm,n| + |Tm,nTn,m| = 1$
IRn,mI == IRm,n|a (211)
arg(Tomn) — arg(Thm) = 2aqm,
arg(Ro nBnm) — arg(TnnTnm) = (202 + )7,

for some integers a; and as;.
Explicit expressions for the components of Sy, are given by (2.9) and

(2.10) in the form

S,m’,n = Q;:n ( _Pm,n 2Zk’n'LUm ) ,

2tk w, —Pmn (%:12)

where (2.7) and (2.8) have been used to simplify the off-diagonal terms,

-+ — —+ — _ _
Pm,n = fm,lfn,2 - fm,?fn,l? Qm.n = fn-l;l nm2 fnt? n,19 (2-13)
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and w, = w(ly) for @ = m,n. We note that | Py n|? + 4kmkpwmwn = |Qmpnl
is a consequence of |det(FF~1)| = 1 and that the identity

kW | Tom| = knwm| T nl (2.14)

follows from (2.3) and (2.12).

Chamberlain [4] has established the identities (2.11) and particular forms
of (2.14) for the mild-slope equation and extended mild-slope equation (which
are given in Section 4). Here we have shown that the identities hold for any
approximation to scattering by bed topography governed by an equation of
the form (2.1). We have shown, moreover, that the identities (2.11) are
satisfied not only by the components of the exact scattering matrix Sy, , but
also by any approximation to these components. Thus if we assign arbitrary
values to 7;(la), 75(la), for @ = m,n and j = 1,2, the components of Sy,
evaluated from (2.12) will necessarily satisfy (2.11). The same remarks apply
to (2.14), if the chosen boundary values of #; and 7, are consistent with
(2.7). However, if the values w,, and w, of the Wronskian are calculated
approximately as part of the process of solving (2.4) for n; and 7, (2.14) will
not generally be satisfied. Used in this sense, (2.14) is the only relationship
of its type which can serve as a check on the accuracy of a numerical solution.

3 Decomposition, recurrence relations and

replication formulae

Suppose now that the undulating section of the bed occupies the interval
(l1,In). By decomposing the undulations into N — 1 sections occupying the
contiguous intervals (I, ln41) for m =1,2,..., N — 1, the overall scattering
matrix Sy n can be constructed from the scattering matrices for the individual
sections.

The notation has been devised with decomposition in mind and we need
to note only that the incoming and outgoing waves to the left of (I1,/2) and
to the right of (Iy_1,In) are also those for the whole interval ({1, {x). Thus,
referring to (2.2), we have

Aip=Ain, Biza=hBinN, Avn-1=An1, Bnwn-1= Bnga. (3.1)

According to (2.3), the scattering properties of the individual sections are

given by
Bm m+1 ) ( Am m+1 )
' SR - ’ m=12,...,.N—1 3.2
( Bm-l—l,m s Am+l,m ( ) ( )

6



and these are supplemented by the matching conditions
Bm,m—l = Am,m+1, Am,m—l = Bm,m+1 (m = 2, 3, O ,N e 1), (33)

which ensure that the wave amplitudes coincide at the interfaces between
adjacent sections. The coupled (tridiagonal) system consisting of (3.2) and
(3.3) can be solved for By and By,n-1 in terms of A; 3 and Ay,n-1 and this
allows Sy y to be constructed using (2.3) and (3.1).

A recurrence formula for solving the system can be derived directly by
decomposing the interval (Iy,l,4+1) into (I1,1,) and (I, lh41). From (2.3) we

( Bl,n ) — S ( Al,'n ) ( Bn,n+1 ) — S ( An,n+l )
Bn,l e An,l ’ Bn+1,n it An+1,n ,

and the corresponding matching conditions are A,; = Bpnt1 and By =

have

Ayt Solving for By, and By, in terms of Ay, and Anyy, and using
the adopted convention for labelling the scattering coeflicients, it is readily
found that

Sl,n+l e

i ( Rl,n - Rn,n+1 det(Sl,n) Tn,lTn+1,n )
1 e Rn,l Rn,n+1 Tl,nTn,n+1 Rn+1,n - Rn,l det(sn,n+l) ’

(3.4)

which holds for n = 2,3,..., N—1. Thus 5}, can be determined successively
for n = 3,4,...,N once S, 41 is known for n = 1,2,...,N — 1. This
process, which is equivalent to solving (3.2) and (3.3), is valid provided that
RoiRuns1 # 1forn =23,...,N —1. It is not difficult to show that, if
R Rimme1 = 1 for some m satisfying 2 < m < N —1, then (3.4) is replaced
by Sint1 = diag(Ryn, Rat1,n) forn =m—1,m,..., N —1. Thus the section
(l,1,) is purely reflecting for n = m,m +1,...,N.

Further progress can be made if the bed undulations are periodic, for then
the recurrence relations implied by (3.4) can be solved explicitly. Suppose,
then, that there is an identical bed shape on each of the intervals (I, lm+1)
for m = 1,2,...,N — 1. Obviously Syny1 = Si2 forn =1,2,...,N — 1,
allowing us to deduce from (3.4) that

Ripnt1 = Rin+ Angl,nTn,lRl,% (a)

Bipn = A7 TaThe, (b) (n=1,2,...,N—1), (3.5)
Roy11 = Ron+A'T12T51Re1,  (€) T ,
Tos1n = AT 1Ton, (d)



where
An =1- Rn,1R1,2- (36)

We can solve (3.5) for the components of S; n in terms of those of Sy,
on the assumption that Ty, # 0. (If 712 = 0, the situation is trivial and
Ry1 = Ry, Riy = Rip and Ty = Ty = 0.) We also assume that
T12 = T, although this is not necessary for the solution of (3.5) to proceed.
It is, however, a consequence of (2.11) and (2.14) in the present circumstances
since h(l;) = h(ly) implies that &y = k, and wy = w, (because f,llz p(€)dé = 0).

It is shown in the Appendix that

Rin = Rigon(on —Thaon-a)7,

Ri2Ryy = RpiRin, (3.7)
Tin = Tiglon —Tepon-1)7t,
Tny = Tin,

where the real numbers oy and o, are determined by the recursion relation

cos(arg(Ty,2))
Opg1 — 2———"“0,+ 0,1 =0 n=23,...,N—-1),
s T2 ' ( ) (3.8)
o1 = 0, 09 =
It is also deduced in the Appendix that
[Rinf? = [Biaffok (|RualPok + 1 Thal) 7
|Riz2l|Bnal = [RoallBanl, (3.9)
Tinl = |Tial (|Raal?o + | Tial?) ™,
Tnal = [Tawl-

These formulae reduce the computation of the scattering matrix for an
arbitrary number of ripples to that for a single ripple. They also reveal some
aspects of the process of scattering by ripple beds as we indicate in Section

3.

4 Implementation

The general scattering problem posed has been reduced to that of finding
any two real-valued, linearly independent functions 7, and 7, satisfying

(@) +pri(e) +qni(e) =0 (ln <z <ly, j=12),  (41)

possibly for a number of intervals (I, [,). More precisely, we require only
the boundary values 7;(ly), 7;(la) for y = 1,2 and @ = m,n to construct
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the scattering matrix Sy, using (2.12). As two boundary values may be
specified for each function, four boundary values in all are to be determined.
We could follow Chamberlain {3] by using variational principles in con-
junction with integral equations to estimate the required values. Indeed, the
freedom we have to choose four boundary values can be exercised to produce
simpler integral equations than those encountered by Chamberlain.
However, we adopt a different strategy by imposing initial conditions on

m and 72, namely

m(lm) = m(ln) =1, 71(Im) = na2(lm) =0, (4.2)

which implies that the Wronskian (2.7) is given by

w(e) = exp (= [ ple)de). (4.3)

Using the initial conditions (4.2) and referring to (2.9), it is not difficult to
show that det(F) = 0 implies that w(l,) < 0, which contradicts equation
(4.3). Hence F is invertible for the current choice of 7; and 7, (and hence for
any other linearly independent pair n; and 5 by the argument in Section 2).

The boundary values to be calculated are 7;(l,) and 7l(l,) for j = 1,2,
in terms of which the quantities defined in (2.13) are given by

Pon = _ikm(né(ln)_ikn"h(ln)) (m (I ) = ikami(ln)),
Qm,n = ka(né(l")_lanZ(ln)) ( ( )—Zl”nnl( )) } (44)

These, together with w,, = w(l,,) = 1 and w, = w(l,) form the scattering
matrix (2.12).

By choosing the initial conditions (4.2) the approximation process is
greatly simplified, for we can call upon a large class of well-established nu-
merical methods. We rewrite (4.1) as a coupled pair of first-order differential
equations by introducing the function ¥ = n’. Our aim therefore is to solve

y' =f(z,y)

in which y = (7,%)7 and f = (¢, —ptp — qn)¥ where y(I,.) is given. The
scattering matrix S,, , is known once y(l,) is found and consequently a simple
linear scheme of the form

M M
S aiyiri =Dz By (i=0,1,...,0 = M),
=0

j=0

in which Az = (I, 1)/ J,y; ® y(ln+jAz) and f; = f(l,+jAz,y;), is used

to approximate y([,). Such numerical schemes are defined on choosing Az,

9



M,a;and B; ( =0,1,..., M) and their use is well-documented (see Lambert
[8] for example). For the purposes of results presented in this paper we use
an implicit 3-step method (i.e. M = 3) which is accurate to O(Az)*. The
two additional starting values required are approximated using the classical
4-stage 4th order Runge Kutta method.

The number of subintervals J in the interval (I, 1,) used in the linear
scheme may be monitored using equation (2.14). As mentioned in Section 2
this relation is not automatically satisfied by approximate solutions to the
problem. For ripple bed problems of the type discussed in Section 5 this
check is most efficiently carried out over the extent of a complete ripple since
in this case (2.14) reduces to |Tmn| = |Tum|-

It only remains to give the different versions of equation (2.1) that we
shall use to present results in the next section. These are as follows.

e The mild-slope equation.
(uon”) + k*uon = 0. (4.5)

The modified mild-slope equation.

(uon’) + (k*uo + urh' + uzh")p = 0. (4.6)

e An approximate mild-slope equation.

({uo — 6(2uy + sech®kh)}n’) + k*(up — 26u;)n = 0. (4.7)

e An approximate modified mild-slope equation.

({uo — 6(2uy + sech®kh)}n’) + <k2(u0 — 26uq) — u15"> n=0. (4.8)

Kirby’s extended mild-slope equation.

(uon')" — sech®kh(8n') + k*uon = 0. (4.9)

The functions ug, u; and wuy are given by

1 Iy
= — tanh k/ (]. ) .
& ok TR + sinh i
sech’kh
] 31 1 [ — .1 [’
Uy (K + snh ) {sinh K — I cosh K'} |
ksech?kh 4 3 . : . s :
Uy = 12K + sinb KJF {Ix + 4K”sinh K — 9sinh K sinh 2K

+ 3K (K + 2sinh K)(cosh2 K —2cosh K + 3)} ,
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in which K = 2kh.

Note that in (4.5) and (4.6) A is the undisturbed fluid depth, whereas in
(4.7), (4.8) and (4.9) the undisturbed depth is h — § where h represents
a slowly varying component of the depth onto which a small-amplitude,
rapidly-varying component ¢ is superimposed.

In each of the five equations listed above the wavenumber k is the positive
real root of the dispersion relation

o? = gk tanh(kh)

in which ¢ is the acceleration due to gravity. Note that this definition of k
implies that in equations (4.7), (4.8) and (4.9) k is independent of §.

A derivation and discussion of these five equations may be found in Cham-
berlain and Porter [5].

5 Scattering by ripple beds

To illustrate the methods described above, numerically and analytically, we
show how the principal features of scattering by ripple beds follow from the
replication formulae.

These formula require the computation of the scattering matrix S, for a
single cycle of the ripple formulation, located on (I3, /3). This is carried out as
indicated in Section 4. We may then use (3.7), (3.8) and (3.9) to determine
the scattering properties of N ripples.

We concentrate on the reflected wave amplitude |R; n|, to align with
previous work, noting that |Ry x| = |Rn 1| and |T1 v} = [Tva| = /1 — |Rin|?

in the cases under consideration. The formulae
-1 :
|Bal? = [Ralfod (1Bualfod + 1Th2l?) 5 |Rial + TP =1, (5.1)

together with (3.8), therefore form the focus of attention.
If we introduce the quantities v € IR and ¢ € C by

B cos(arg(T1,2)) B
=TT cos(f) =7, (5.2)
it follows from (3.8) that
on, = cosec(f)sin((n — 1)) (n=1,2,...,N). (5.3)

The value of § may be chosen as follows. If |y| < 1, we take 0 < 8 < T,
interpreting (5.3) as 0, = (£1)*(n = 1) if vy = £1. If ¥ > 1, 0 = 1w (so

11



that o, = cosech(w)sinh((n — 1)w)) and if v < —1, § = ™ 4 iw (so that
an = (—1)"cosech(w) sinh((n — 1)w) with w > 0 in both cases.

This is a convenient point to remark that the formulae (3.7), with o,
given by (5.3), can be deduced using Floquet theory. The quantity ¢6/p is
the characteristic exponent, in the sense of the account given by Ince [6],
where p = Iy — 1 is the period of the ripple bed. Some care is needed to
include the three cases for # indicated above when using this alternative
approach, which offers no advantages over the decomposition method.

Clearly |R1 n| depends on |R; 2| and =, both of which may be considered
to have been determined numerically. We envisage |R; .| and v as varying
continuously with some parameter (2k/¢ in the examples given later) and
deduce the following properties of |R; n|, considered as a function of the

same parameter.

(a) |Rin| =0 where |Ry 2| =0, for N > 3.

(b) |Rin| =0, for each N > 3, where oy = 0. It follows easily from (5.3)
that |Rin| = 0 where

v=cos(ar/(N-1)) (a=1,2,...,N—2). (5.4)

(¢) Where |y| > 1, |on| increases with N and |oy| — 00 as N — oo.
Therefore, where |y| > 1, the value of |Ry n| increases with N and
|Rin| — 1 as N — oo. The increase is more rapid, and the limit more
rapidly approached, the larger |7|.

(d) Where |y| < 1, oy oscillates, perhaps rapidly, as N increases; |on]| is
bounded above by |cosec(8)|.

We infer from these remarks that the observed resonances in | Ry n| arise
where |y| > 1, irrespective of the value of |R; | there. Of course, where
| Ry 2| is small the resonant peaks will grow more slowly with N, by virtue of
(5.1). We note that |Ry 3| = 0 implies that |T} 2| = 1 and hence that |y| < 1.
Therefore, a prospective resonant peak of |Ry | (for which |y| > 1) cannot
be annihilated by |R; | = 0.

These properties can be illustrated by reference to specific examples of
ripple beds and different model equations. We suppose that the ripple bed
occupies the interval 0 < @ < 27(N — 1) /¢ for some ¢, its depth profile being
of the form

h(z) = ho — d(sin(lz) + sin(mlz)), (5.5)
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which is sufficiently general for our purposes.

Note that, when using the approximate mild-slope equation, the approxi-
mate modified mild-slope equation or Kirby’s extended mild-slope equation,
it is the term d(sin(¢z) + sin(mfz)) which plays the role of é referred to in
Section 4.

In the first example we consider, we take m = 0 and d/ho = 0.16. The
topography therefore consists of a patch of N — 1 sinusoidal ripples. We
shall ultimately examine the scattering characteristics of waves over 10 such
ripples by taking N = 11. However the replication formulae and resonance
analysis allow us to consider the one ripple (i.e. 'N = 2) case and make
predictions about larger N from the simpler case.

Figure 1 shows graphs of |R; | plotted against 2k/¢ for the mild-slope
equation, the modified mild-slope equation and Kirby’s extended mild-slope
equation. The corresponding curves for the approximate mild-slope equation
and the approximate modified mild-slope equation are very much like their
unapproximated counterparts and are omitted from the graph for clarity.
That the three curves shown are markedly different, but it is significant that
the modified mild-slope equation and the extended mild-slope equation give
approximations which are very close to each other near 2k/¢ = 1.

Figure 2 shows «, defined in (5.2), also plotted against 2k/¢ for the mod-
ified mild-slope equation. The v curves for all five models referred to in
Section 4 are so similar as to be virtually indistinguishable on the scale used
in the figure. As our ultimate interest is to examine how resonance occurs
for 10 ripples the lines cos(an/10), & = 1,2,...,9 are also shown on Figure
2. We recall from Section 3 that the intersections of these lines with the v
curve coincide with the positions of the zeros of |Rj 11].

Resonance will occur in those intervals where |y| > 1, but these cannot
be identified clearly from Figure 2. However, since |y| > 1 if and only if
Im(6#) = Im(cos™' 7) # 0, we can determine the resonance bands by plotting
Im(#). This is done in Figure 3 for the mild-slope equation and modified mild-
slope equation. The corresponding graph for the approximate mild-slope
equation is virtually indistinguishable from Figure 3(i) and the graph for the
approximate modified mild-slope equation is almost exactly like Figure 3(ii),
except that the peak near 2k/¢ = 2 is missing. The graph of Im(8) for the
extended mild-slope equation is also very like Figure 3(ii), but again without
the second peak. It is clear from these figures that only the modified mild-
slope equation will detect resonance near 2k/¢ = 2 and that the mild-slope
equation will produce smaller resonances near 2k/¢ = 1 since we already
know from Figure 1 that its approximation to |Rj 2| is smaller there than
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Figure 1: |R; »| for the mild-slope equation (i), the modified mild-slope equa-
tion (ii) and Kirby’s extended mild-slope equation (iii) for one sinusoidal
ripple with d/hy = 0.16.

Figure 2: Graph of v using the modified-mild slope equation for one sinu-
soidal ripple with d/hg = 0.16. The positions of the zeros of |R| for the 10
ripple case are indicated using broken lines
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Figure 3: Im(8) using the mild-slope equation (i) and the modified mild-slope
equation (ii) for one sinusoidal ripple with d/ho = 0.16.

25

Figure 4: Comparison of reflected amplitudes for a patch of 10 sinusoidal
ripples with d/ho = 0.16 using the mild-slope equation (i), the modified
mild-slope equation (ii) and the extended mild-slope equation (iii)
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that given by using the modified mild-slope equation.

One prediction we can make at this point concerns the size of the resonant
peak near 2k/¢ = 1 for the modified mild-slope equation and the extended
mild-slope equation. It has been observed that the graphs of Im(#) for these
two models are almost identical and we have seen that values of |R; 5| are very
similar near 2k/¢ = 1. These two facts are sufficient to tell us that, despite
the other differences in the two models evident in Figure 1, the resonant
peaks for these two models will be largely identical as IV increases.

Figure 4 serves to verify the predictions made above. Graphs of | Ry 1]
are shown for the mild-slope equation, the modified mild-slope equation and
Kirby’s mild-slope equation. The figure confirms that

1 The zeros of |Ry 11| occur where v cuts the lines cos(ar/10), a =
1,2,...,9 and are virtually identical for all of the model equations;

2 Only the modified-mild slope equation shows any resonant behaviour

near 2k/{ = 2;

3 The principal resonances obtained using the modified mild-slope equa-
tion and the extended mild-slope equation are very similar despite the
differences in |R; 5| for these models.

In the second example we take m = 1.5 and d/ho = 0.33 in (5.5). In this
case the bed form does not have period 27 /£ but rather 47 /¢. Our ultimate
aim here is to consider the case where N = 9, corresponding to 8 sinusoidal
ripples superimposed on 12 sinusoidal ripples. In order to use our replication
formulae we must divide the ripple patch into 4 regions each of length 4 /£.
Thus, in the notation of Section 2, we set {; = 4x(j — 1)/¢ j = 1,2,...,5,
and we take N = 5 to obtain the effects of the full bed.

Figure 5 shows graphs of |R; | plotted against 2k/¢ for the mild-slope
equation, the modified mild-slope equation and Kirby's extended mild-slope
equation. The corresponding curves for the approximate mild-slope equation
and the approximate modified mild-slope equation are very much like their
unapproximated counterparts and are again omitted from the graph.

In Figure 6 the 4 curve corresponding to the modified mild-slope equation
is shown; the corresponding v curves for the other four models are the same,
as far as the eye can distinguish. The broken lines are at cos(ar/4), a =
1,2,3 and cut the v curve at the zeros of | Ry s|.

In Figure 7 we give graphs of Im(0) for the mild-slope equation and mod-
ified mild-slope equation showing the intervals in which resonance will occur.
The heights of the peaks of Im(8) taken in conjunction with the value of | Ry 5|

16



Figure 5: |R; 2| for the mild-slope equation (i), the modified mild-slope equa-
tion (ii) and Kirby’s extended mild-slope equation (iii) for one period of the
doubly-sinusoidal ripple with d/hg = 0.33.

Figure 6: Graph of v using the modified-mild slope equation for one period
of the doubly-sinusoidal ripple with d/ho = 0.33. The positions of the zeros
of |R| for the N = 4 case are indicated using broken lines
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Figure 7: Im(0) using the mild-slope equation (i) and the modified mild-slope
equation (ii) for one period of the doubly-sinusoidal ripple with d/ho = 0.33.

Figure 8: Comparison of reflected amplitudes for a patch of 8 sinusoidal
ripples onto which 12 sinusoidal ripples are superimposed where d/ho = 0.16.
Approximations used are the mild-slope equation (i), the modified mild-slope
equation (ii) and the extended mild-slope equation (iii)
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at that value of 2k/{ indicate the heights of the resonant peaks. This feature
is confirmed in Figure 8 where graphs of |R; 5| are shown for the mild-slope
equation and the modified mild-slope equation. The corresponding graph for
the extended mild-slope equation is included for comparison.
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Appendix

The objective is to solve (3.5) for the components of Sy y on the assumptions

that T2 # 0 and Ty, = T3,1. The relationship

cos(arg(T}
1 — RBy2Re0 + T12,2 =2Tp, 7= ——( ng( Im)), (A1)
1,2
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which follows from (2.11), simplifies the algebra.
We first determine A,, noting from (3.5¢), (3.6) and (A1) that

Appr = 29Ty —AJ'TE, (n=23,...,N-1),
Az = 2’7T1,2 == T12,2'

If we put A, = Ty oun/tn-1 (n = 2,3,...,N) and define u; = 1, we easily
find that uy = 2y — T, and that

Uppl — 29Un + U1 =0 (n=2,3,...,N —1),

which allows ug, g, ...,un, and therefore Az, Ay, ..., Ay, to be calculated.
In fact, since Ry 2Rny =1 — Ap, by (3.6), we at once have

1T
Rl,zRN,1 _ un 1UN 1,2UN. (A2)
-1

Also (3.5b) can be written in the form Ty 41 = T3 pUn—1/Un, repeated use of

which gives
T
Tin = = (A3)
UN-1

By using (3.5a) and (3.5d), or (2.11), it can now be shown that

Ry1Ran = Ri2Rny,  Ing=Tin. (A4)

Formulae which are practically more convenient are obtained on replacing
the sequence (u,) of complex numbers by a new sequence (o) of real num-
bers. This is achieved by setting Ry 2R210n = tn—1 — T12un, which implies
that u, = 0ny1—T1 20, and that opy1 —2v0,+ 01 =0(n =2,3,...,N-1),
together with oy = 0 and o, = 1. The formulae (A2) and (A3) imply that

Ry 20 T
Ry = oo ; Tin= =i )
on — Ty 20N on —Ti20N-1
(A4) remaining unchanged.
Finally, it is easy to show that 2 — o,_10,41 =1 (n =2,3,...,N — 1)

and hence that |oy — Ty 20n-1|* = |Ri2)%0% + |T12]*
A summary of the formulae obtained here is given in the main body of
the text.
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