Preconditioned Conjugate Gradient

Methods for Serial and Parallel Computers

Andrew D. Pollard

September 1992

Submitted to the
Department of Mathematics,
University of Reading,
in partial fulfillment of the requirements for the

Degree of Master of Science

Abstract

Various Preconditioned Conjugate Gradient Methods are investigated for the so-
lution of matrix systems arising from the discretisation of a simple two dimen-
sional partial differential equation of interest to the Oil industry.

Consideration is given to the implementation of these methods on serial comput-

ers and efficient parallel implementation on a network of transputers.

Acknowledgements

I would like to thank Dr.N.K.Nichols, Dr.P.K.Sweby and Dr.M.J.Baines of the
Mathematics Department, University of Reading, and Dr.J.J.Barley of BP Re-
search, Sunbury, for their help, support and advice during this work.

I would also like to acknowledge the financial support of the SERC.

Contents

List of Figures
List of Tables
Notation

1 Introduction

2 Matrix System Generation
2.1 OilRecovery [2]
2.2 Discretisation oo
2.3 Structure of the Matrix Problem

2.4 Sample Problems o000

3 Conjugate Gradient Methods
3.1 Standard Iterative Methods
3.2 The Conjugate Gradient Method
3.3 The Preconditioned CG Method

3.4 Preconditioners

4 Serial Implementation

iii

vi

11

13

17

17

21

24

26

36

4.1 Serial PCG Algorithmo
4.2 Implementation Details,
4.3 Performance Metrics

4.4 Serial Implementation Results

Parallel Implementation

5.1 Transputer Systems oo
5.2 Parallelising Serial Algorithms
5.3 Parallelising the Matrix Problem
5.4 Communication Harnesses and Libraries
5.5 Parallel Preconditioner Implementation
5.6 Performance Metrics oo

5.7 Parallel Implementation Results

6 Conclusions

A Basic Matrix Theory

i

61

61

66

69

70

73

76

77

83

85

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

3.3

Labelling the Grid Block I';; oo oo 000000 8
Problem 1 pressure distribution for a 20 by 20 grid. 14
Problem 1 fluid flow field for a 20 by 20 grid. 14
Diagram of k(x,y) for problem 2 15
Problem 2 pressure distribution for a 20 by 20 grid. 16
Problem 2 fluid flow field for a 20 by 20 grid. 16
Work involved in problem 1 as problem size increases 50
Work involved in problem 2 as problem size increases 51
Convergence Rates for problem 1 (20 by 20) 53
Convergence Rates for problem 2 (20 by 20) 54
Problem 1 Iteration Matrix Figenvalue Spectra. 56
Problem 1 Iteration Matrix Eigenvalue Spectra (contd.) 57
Problem 2 Iteration Matrix Figenvalue Spectra. 58
Problem 2 Iteration Matrix Eigenvalue Spectra (contd.) 59
Transputer Networks 63
Reading Transputer System Network 64

Sample split of A over three processors 69

i1

5.4 Inner Product transfers for four processors

5.5 Inner Product transfers for five processors

v

List of Tables

4.1

4.2

4.3

4.4

4.5

5.1

5.2

3.3

5.4

3.5

Parameters for the POLCG method 44
[terations and timings for Problem 1 (10 by 10) 45
[terations and timings for Problem 1 (20 by 20) 46
[terations and timings for Problem 2 (10 by 10) 47
[terations and timings for Problem 2 (20 by 20) 48
Reading Network Transputer Information 64
CG for problem 1 with increasing number of processors 79
CG for problem 2 with increasing number of processors 80
DCG for problem 1 with increasing number of processors 81
DCG for problem 2 with increasing number of processors 82

Notation

Symbol Meaning

A matrix arising from problem discretisation

A preconditioned matrix = M~1A

a® diagonals of A

o parameter in CG algorithm

b f right hand side of matrix equation

b preconditioned right hand side of matrix equation
I¢] parameter in CG algorithm

D diagonal of matrix A

Ax width of grid block

Ay height of grid block

E, parallel efficiency for p processors

fij approximation to right hand side of matrix problem
g gravitational acceleration

2,9 counters

kK permeability of medium

K condition number of matrix

L lower triangular part of matrix, Cholesky factor of matrix
M preconditioning matrix

n dimension of A, = nx X ny

ne number of grid blocks in z-direction

ny number of grid blocks in y-direction

vi

Symbol Meaning

n outward normal vector to region {2

Q region in which problem is being solved

w SOR relaxation parameter

P number of processors/subproblems, pressure of fluid
Pij approximation to pressure of fluid

PBH pressure at injection well

j 2% solution vector to matrix problem

P search direction vector in CG algorithm

p density of fluid, spectral radius of matrix

q production rate of fluid at production well

R set of real numbers

8,8; block size

SpsSy parallel speedup with p processors

U upper triangular part of matrix

u Darcy velocity of fluid

i viscosity of fluid

~ transmissibility at injection well, parameters in polynomial approx.
I'y; grid block region

0] porosity of medium, functional to be minimised
A mobility of fluid, eigenvalues of matrix

Aij approximations to mobilities

vii

viii

Chapter 1

Introduction

There are basically two approaches to obtaining the solution of a matrix system of
equations — direct methods or iterative methods. Direct methods solve the system
in a known (finite) number of steps, and any errors incurred arise only from the
use of finite precision arithmetic. They are often impractical when the matrix is
large and sparse, due to fill-in destroying the sparsity. lterative methods, on the
other hand, generate a sequence of approximate solutions that (should) converge
to the solution of the problem. These methods are more applicable to large,
sparse systems, essentially due to the fact that only a matrix-vector product is
required, thus the matrix need not be explicitly stored.

This dissertation deals with the Conjugate Gradient and Preconditioned Con-
jugate Gradient iterative methods, with respect to large, sparse matrix systems
arising from the discretisation of two dimensional fluid flow obeying Darcy’s Law,
such as in Oil Recovery. Various types of preconditioning are examined for imple-
mentation on serial computers and efficient implementation on a parallel system

comprising of a network of transputers.

In Chapter 2, the governing pressure equation for Oil Recovery is presented,
a simplified version derived for the purposes of the dissertation, the finite differ-
ence approximation used to generate the matrix system derived, and some sample
problems given. In Chapter 3, the Conjugate Gradient and Preconditioned Con-
jugate Gradient algorithms are presented, with the description of a number of
preconditioning strategies. Chapter 4 indicates, in more detail, the implementa-
tion of some of the preconditioning strategies on serial computers, and describes
the metrics that are used to compare them. The architecture of the transputer
system, and the parallel programming primitives needed to use it, are described in
Chapter 5, as well as the parallel implementation of the Conjugate Gradient and
Preconditioned Conjugate Gradient algorithms with their preconditioners, and
the metrics for their performance. Finally, in Chapter 6, closing comments are
made and some conclusions drawn about the optimum preconditioning strategies.

Appendix A describes some basic matrix theory that is used throughout the

dissertation.

Chapter 2

Matrix System (eneration

2.1 Oil Recovery [2]

Oil reservoirs are beds of porous rock saturated with various fluids and gases.
There are three stages to the recovery of the oil. The primary stage involves boring
into the rocks and letting the natural pressure of the fluids in the rocks to force
the oil to the surface. The secondary stage, reached after the production from the
primary stage has decreased substantially, has other fluids injected in an attempt
to displace the oil towards the production well. Typical injection fluids are water
or steam. There may still be a substantial amount of the original reservoir oil left
in the reservoir after secondary recovery, and a tertiary recovery process, such as

surfactant flooding [2], can be used to extract some of the remaining oil.

2.1.1 Modelling the Recovery Process

Here, the secondary stage of recovery is investigated, where a fluid is injected

into the injection well to keep the pressure constant there. This allows the use

of a single phase (one component) flow model [2]. This model gives the ‘mass
continuity equation’, i.e. the equation representing the fact that the fluid cannot
disappear,

Vo) = o (p9) + 2.)

where p is the density of the fluid, ¢ is the porosity of the medium that the fluid
is flowing in, i.e. a representative measure of how much space in the medium is
available to hold the fluid, f is the forcing function representing the effect of the
injection and production wells, i.e. the rate of the fluid leaving the medium, and
u is the velocity of the fluid.

As well as the mass continuity equation, a relationship between the flow rate
and the pressure gradient is required. Such a relationship, albeit an empirical

one, was developed by Darcy (1856) for a single phase flow, i.e.

K
u = —;(Ypirpg) (2.2)

where u is the Darcy velocity, p is the pressure of the fluid, K is the absolute
permeability tensor, i.e. the willingness of the medium to allow fluids to flow
through it, p is the viscosity of the fluid, i.e. the internal resistance of the fluid to
flow within itself, and g is the gravitational acceleration. The permeability tensor
has to be determined experimentally. In most practical problems it is possible

(or necessary) to assume that K is a diagonal tensor, e.g. in two dimensions

If k, = k,, the medium is called isotropic, otherwise it is anisotropic.

By combining (2.1) and (2.2), our fluid flow equation becomes

-

V(S04 p0) = 5rl00) +] (2.3

Then, by making some simplifying assumptions; the fluid density p remains
constant, i.e. there are no temperature dependent changes, there is no gravita-
tional effect, i.e. ¢ = 0, no time dependence, i.e. steady state version, an isotropic
medium, i.e. K = kI, and defining the mobility A to be %, i.e. the ease with

which the fluid moves through the medium, we change equation (2.3) into
V.(\Vp) = f 2.4)

If we assume there is a constant pressure injection well and a constant rate

production well, the forcing function f can be represented by

f=—y(psn — p)o1 + qép (2.5)

where 8; and ép are Kronecker Deltas! for the injection and production wells
respectively, v is the transmissibility [2] of the injector, ¢ is the production rate
of the producer, and py;, is the pressure of the injection well.

The region in which (2.4) is solved is called 2. Assuming that the region €2 is
finite, we require a boundary condition. The simplest boundary condition is a ‘no
flow” boundary, i.e. the region () is surrounded by an area of zero permeability,

so that no fluid can flow out of 2. This condition can be represented by

=

I3
I
(]

(2.6)

—
&
(l

f @ € Q, then the Kronecker Delta 8¢ is defined by Va € Q, 6g(z) =

o
&

e

L O

where u is the above Darcy velocity (2.2) and n is the outward normal to the
region . With the above assumptions, the boundary condition (2.6) can be
written

un=—-\NVpn)= —)\ap =

n So=0 (2.7)

and thus can be satisfied with either A = 0 or g% = 0 on the boundary 0.

2.2 Discretisation

For the purposes of this dissertation, the equation (2.4) is solved on a two-
dimensional rectangular region (), with dimension X in the z-direction, and ¥ in
the y-direction.

The equation (2.4) is discretised using a finite difference approximation, as

opposed to a finite element approximation.

2.2.1 Grid

The region, €2, is divided up into a computational grid with nz grid blocks of
width Az = X/nz in the a-direction, and ny grid blocks of height Ay = Y/ny in

the y-direction. Each grid block, I';;, is defined by
Lij = [0 = DAz, iAz] x [(j — 1) Ay, jAy]

where 2 = 1,2,... ne and j = 1,2,...,ny. On each grid block I';;, the pressure

pi; 1s defined, at the centre of the block, to be the cell average over I';;, i.e.

|
i = yy)dly;
P = ArAy //r p(e,y) dT;

The mobilities A;; are also defined at the centre of each block, although as is
shown later, their values are needed on the block boundaries, i.e. A,_1 ., A

o1
57]7 Z+§7]7

A1

i and)‘i,j-l—% are required.

2.2.2 Finite Difference Operator

By considering each grid block I';;, and integrating equation (2.4) over each grid

779

block, then approximating the integrals, we obtain an approximation to the orig-
inal partial differential equation (2.4). This is known as the ‘integration method’.

In two dimensions it becomes

//F V.(A\Vp)dly; = //] aax 8p aay(gp dF”_/ g, e

Using Green’s Theorem (in two dimensions),

Ju dv
//R(ax—l—ay)d]%— aR—vd:L'—l—udy

we can transform the differential equation side of (2.8) into a boundary integral
around the grid block I';;. Labelling the grid block as indicated in Figure 2.1,

where JI';; is the path ABC D, we obtain

g . Jdp d . 0p B dp @
//ri] 8x()\8x)+8y()\8y)drw B /arw)\ayd vHA dy
B
—/)\ d—l—/)\apdy (2.9)

_/D)\ d—|—/)\apdy

A very simple way of approximating fAB g dz is to give it the value of the length
of the interval AB (A), multiplied by the value of ¢ at the midpoint C (¢¢) of

the interval, e.g.
B
/ gde ~ Age (2.10)
A

7

W(i—1,j) « E(i41,5)

Figure 2.1: Labelling the Grid Block I';;

One way approximate the value of a derivative at a point is to use central differ-
ences, e.g. the value of g—i at a point ', the midpoint of AB, assuming that AB

is in the direction of increasing z, is

dg, g —qa

e =5 (2.11)
Thus, by using equations (2.10) and (2.11), we have
[EAEdr ~ (AP ile ~ AP Ax
JEAEde ~ —(AE)| 1 Ar ~ = (PEP)As 2.12)
JgAZ2dy ~ (AP Ay ~ A (B Ay

%

fé)\%d?} ~ _()\%)L—%,]Ay _)\i7j_%(p—o_pW)Ay

Az

where p, is the value of p at the point *. Combining equations (2.8), (2.9)

and (2.12), we obtain

8 8 d,.0
// p 8y()\8§) dUs; = Axpn + Appr — Aopo + Awpw + Asps (2.13)

where

Av = Am‘+;i§
Ap =)‘i+§,jii
ro =)‘i,j+;i:;+)‘i+;,jigjj+)‘i—;,jigjj+)‘i,j—;i; (2.14)
Ay = Ai_;ﬁjii

Note that Ao = Ay + Ag + Aw + As. The right hand side of equation (2.8) is
now approximated in a similar manner to that of equation (2.10), i.e. ffpi] fdly;
is approximated by the area of I';; multiplied by f evaluated at the midpoint of
Lij,
//F FdUy; ~ AzAy f; (2.15)
z

The equations (2.13), (2.14), and (2.15) are then combined into a matrix
equation of the form Ap = f by writing all the equations simultaneously, mapping
pij onto p, and f;; to f, where n = ¢+ (j — 1) nx (this is the natural ordering of
the nodes p;;), and then letting p be the vector of the p,’s and f be the vector of

the AzAy f,’s.

By negating equations (2.13) and (2.15), we obtain the relation

— ANPN — AEPE + Aopo — Awpw — Asps = —AzAy fo (2.16)

with the A’s as before in (2.14). The above mapping for the p’s and the f’s leads

to a matrix A whose diagonal entries are positive.

2.2.3 Boundary Conditions

Equation (2.7) shows that the boundary conditions can be satisfied by letting 272
and/or A be zero on the boundary 9.
At a boundary, the working of Section 2.2.2 goes ahead exactly as before,

except if, for example, the line DA is on the boundary, then

A ap B A ap B
/D)\a—xdy_/D ASEdy =0

is substituted directly into equation (2.9), knocking out a term of the approxi-
mation.
An equivalent, but easier to implement, effect is obtained by setting A = 0 on

the boundary, since this also knocks out the same term in the approximation.

2.2.4 Forcing Term

As mentioned in Section 2.2.2, the f term is approximated by (2.15). At every-

where except the injection and production well, the forcing function

f=—v(peu —p)or + ¢op

is zero, since both the 6; and ép are zero there. At the production well, 6p = 1,
and so f = ¢ there. At the injection well f is not constant, since it involves the
pressure p, and thus

f==2(prr —p)
The p term is taken over to the differential side of the equation, and hence at
the injection well, the problem turns into a Helmholtz equation. Following the
notation of equation (2.16), Ao is converted into Ao + 4 and the right hand side
term of equation (2.16) becomes —AxAy~ pgy.

10

2.2.5 Mobilities

The mobility, A, is defined in terms of permeability of the medium and the viscos-
ity of the fluid (see Section 2.1.1). The permeability & is not usually a continuous
function, but consists of a number of physical sample values at the centre of each
grid block, thus A is also only defined at the block centres. As shown previously,
A is required at the boundaries of the grid blocks, and hence the values have to
be interpolated. The standard way of doing this is to use harmonic averaging [2],

i.e.

etc.

2.3 Structure of the Matrix Problem

The discretisation of Section 2.2 generates a matrix system

Ap=J

where, due to the regular structure of the grid, A is a symmetric, 5-diagonal

matrix. A has dimension nz x ny. The diagonals of A are the main diagonal, the

11

principle subdiagonals, and the subdiagonals nx rows below the main diagonal.

_ a11 a12 0 o lpp411 0 _
a12 22 asy - 0 Anz42,2 0
0 a3 0
A=
Gpgt11 0 0
0 Gnz42,2
L 0 .

Due to the nature of the grid, this can be simplified slightly, and the matrix A

is, in fact, block tridiagonal,

A B
BT A, B,
A=
BT, Awy1 Buys
Bgy—l Any

where each of the ny blocks A; is an nz by nx tridiagonal matrix, and each B;
is an nz by nz diagonal matrix. The off-diagonal elements are all non-positive,
and the diagonal elements are all positive, except, possibly, the diagonal entry
corresponding to the injection well, where the entry is Ag + 7. If we insist that
v > 0, then this is also positive. If ¥ > 0, then equation (2.14) shows that A is
diagonally dominant, and if v > 0, then A is irreducibly diagonally dominant. If
this is the case, then it is guaranteed that A is also positive definite, and that

A~! exists, and so the system can be solved by the Conjugate Gradient Method.

12

2.4 Sample Problems

For the purposes of this dissertation, it is assumed that the viscosity of the fluid
is unity, i.e. g = 1, and so the mobility X is the same as the permeability k. The

forcing function (2.5) has values of its parameters set as

v = 1.0
peHg = 2.5
g = —1.0

The region € is the unit square [0,1] x [0,1]. The injection and production
wells are at point (0,0) and (1,1) respectively. Two choices are given for the

permeability function £.

2.4.1 Problem 1

The permeability is chosen so that it is constant everywhere

k(z,y) =1, (z,y) €[0,1] x [0,1]

On a 20 by 20 grid, scaling the output pressure so that it is in the range zero to
one (the pressure at (0,0) is 3.50973, and that at (1,1) is 3.50000), the pressure
distribution over (), as seen in Figure 2.2, is obtained.

The corresponding fluid flow field, obtained by calculating the gradient direc-
tion for each point in the pressure distribution, is shown in Figure 2.3, where the
flow direction is shown by the arrow direction, and the magnitude of the flow

shown by the arrow body lengths.

13

Pressure

Pressure

Figure 2.2: Problem 1 pressure distribution for a 20 by 20 grid.

Figure 2.3: Problem 1 fluid flow field for a 20 by 20 grid.

14

L)

Eonl
Il
—_
<o
Eonl
Il
<o
—_
Eonl
Il
—_
<o

Qo - — — -

(0,0) 0.333 0.667

Figure 2.4: Diagram of k(x,y) for problem 2

2.4.2 Problem 2

The permeability is chosen to be a non-uniform function, such that

0.1 0.333 <2 <0.667
k(x,y) =
1.0 otherwise
as in Figure 2.4. On a 20 by 20 grid, again scaling the output pressure so that it
is in the range zero to one (the pressure at (0,0) is 3.51695, and that at (1,1) is

3.50000), the pressure distribution over €2, as seen in Figure 2.5, is obtained.

The corresponding fluid flow field, is shown in Figure 2.6,

15

Pressure

PW
7 7z - = - - —— _— - - - ///
Va P A - —— _— - s I 4 /
VY A et E S A S ST A
1 /1 4 7 7 7 - —-—— 7 Fd 7 4 / {
VY Y A A A Gt AN AN A A Y |
[A A A A e O AN A A O
A Il 4 A 4 7 - - 7 4 4 1 4 4 4
/Y Y R A A 2 e S A A A A 4
4 A 4 1 4 4 - - 7 4 4 4 1 A A
A A 4 4 4 4 T - - 7 S 4 1 1 A A
A A 1 4 4 /4 S - - - v 4 4 1 A A
L Y R A A e S A A | A
4 1 1 1 4 4 T - - 4 4 1 4 4
4 Il 4 4 4 A S —_— 7 4 1 1 4 4
4 4 4 A 4 4 L 4 4 1 /1 4
A A A e S A S S A B |
L R T B T P i
/S s s s m———— - .,y
/ VAR G G —_——— = = = = oy g Vi

IW

Figure 2.6: Problem 2 fluid flow field for a 20 by 20 grid.

16

Pressure

Chapter 3

Conjugate Gradient Methods

First, this chapter briefly describes the standard iterative methods for the solution

of the matrix equation

Ax = b, (3.1)

assuming A is symmetric and positive definite, conditions satisfied by the dis-
cretisation of the partial differential equation in Chapter 2. Next, the Conjugate
Gradient Method is developed and some of its properties are given. Lastly, the
idea of preconditioning is presented, and a number of preconditioning strategies

are described.

3.1 Standard Iterative Methods

The standard iterative methods given in [7] are based on rearranging equa-

tion (3.1) by splitting the matrix A into A = M — N, and forming the iteration

Mz" = NzF +b

or "' = M7'NzF 4+ M~'b (3.2)

where k is the iteration number. The emphasis is on a choice of M so that an
equation such as Mz = b is easy to solve at each iteration.

Partitioning A so that A = L + D 4 U, where

_ 0 0 0 _
asn 0
L = a3; a3 0
0 0
Up1 Qn2 tppn-1 0
D = diag(ayy, -, an,) (3.3)
_ 0 ajy -+ -+ ap, _
0 0
U=10 0 . -2
0 ap_1n
o 0 --- 0 0

i.e. D is the diagonal part of A, L is the lower triangular part of A, and U is the

upper triangular part of A, leads us to a number of standard iterative methods.

3.1.1 Convergence

The convergence of iteration (3.2) to the solution = A~'b depends on the
eigenvalues of the iteration matrix M~'N. In particular, if the spectral radius,

p(M~'N), is less than one then the iteration will converge [7].

18

3.1.2 Jacobi

Using iteration (3.2) and equation (3.3), with M = D and N = —(L 4+ U)
we obtain to the Jacobi Method. This method is easily parallelised since each

equation in (3.2) is decoupled from the rest.

3.1.3 Gauss-Seidel

Alternatively, setting M = (D + L) and N = —U gives us the Gauss-Seidel (GS)
method, where, essentially, at each iteration a lower triangular system has to be
solved, although it is not implemented this way. The effect is that the value of
each unknown requires the value of the previous one, and this leads to problems

in parallelisation, due to the implied order for finding the unknowns.

3.1.4 Successive Over-Relaxation

A modification of the GS step, at each iteration combining the Gauss-Seidel new

iterate with the old iterate, using a parameter w,

B+l _ k41 k
Tgop = WZgg + (1 - w)lSOR

leads to the Successive Over-Relaxation (SOR) method, and w is called the re-

laxation parameter. In matrix form the iteration is
M,z"" = N,z + wb (3.4)

where M, = D 4+wl and N, = (1 —w)D —wU. With the correct choice of w the
rate of convergence can be significantly greater than that of GS. Unfortunately,

in complicated problems, an eigenvalue analysis of the iteration matrix may need

19

to be performed in order to find an optimum w, although there do exist adaptive

methods that will converge to the optimum w as the iterations proceed.

3.1.5 Chebyshev Semi-Iterative

Another way to accelerate the convergence of an iterative method is to combine

previous iterates z!,..., 2" with coefficients v;(k), 7 =0,1,...,k such that

k
y" =2 k)
7=0

is an improvement over z*. The choice of suitable coefficients can be obtained

from the Chebyshev polynomials, assuming the iteration matrix is symmetric [7].

3.1.6 Symmetric SOR

The assumption that Chebyshev requires a a symmetric iteration matrix rules out
GS and SOR, but it is possible to symmetrise them by combining the standard
method with a backward method in which the unknowns are generated in the

reverse order. In the case of SOR, backward SOR is given by (cf. equation (3.4))
Ma"* = Nya* + wb (3.5)

where M, = D +wU and N, = (1 —w)D — wL. See [7] for details.

3.1.7 Block Versions

Block versions of the above iterations can be formed, and in this case D, L and
U are the block diagonal, block lower triangular and block upper triangular parts
of A respectively. The serial and parallel implementation of these methods has

been investigated in [17].

20

3.2 The Conjugate Gradient Method

Although there are several ways to derive the Conjugate Gradient Method [5,
12], the derivation of the Conjugate Gradient method for the solution of equa-
tion (3.1), as given in [7], is presented.

The starting point is to consider the functional ¢(z), defined by

1
P(x) = §£TA£ — b

where b € IR" and A € R*". It can be shown [17] that the minimum value
of ¢ is —L)TA_IQ/Z, at the point # = A~'h. Thus, minimising ¢ and solving

equation (3.1) are equivalent.

3.2.1 Steepest Descent

At a point z*, the functional ¢* (= ¢(z*)) decreases most rapidly in the direction

of —V&”, the residual r* at the kth step, i.e.
—Ve¢r =rf=b— A" (3.6)
A new iterate, 211, is defined by
=2ttt ae R

where « is chosen to minimise ¢*+!. This is done by setting

which gives

The global convergence of the steepest descent method [7] is obtained from the

inequality

1 1 -1 1 1 -1
Pzt + §QTA b< (1 - IQQ(A)) <</5(:L‘k) + iéTA b)

As can be seen from this inequality, if ko(A) is large, then the rate of convergence
is slow. To overcome this problem, instead of minimising along the set of residual
vectors {r’,r',...}, we minimise along a set of ‘search directions” {p",p',...}.

Defining the new iterate this time as
M = 2F 4 apf (3.7)

and, again, minimising ¢**t!' by setting

a¢k+1

Jda =0

gives

(p")"r"

(pF)TAp

O =

(3.8)

In order to ensure a reduction in the size of ¢, Bk must not be orthogonal to r*,

e. (Bk)Tﬂk # 0, and the search directions Bk are taken as A-conjugate to all the
previous search vectors [7], i.e. PL, Ap* = 0 where P,y = {p°, ..., p* 1} € R™*.
This is the basis of the Conjugate Gradient (CG) method. From [7], the required

search directions are given by
Bk _ fk T 6Bk—1 (39)

where

(3.10)

22

3.2.2 CG Method

Using equation

from [20] and equation

fk-l_l — b— Agk-l—l — fk o OéApk

from [5] we can rearrange the equations (3.6), (3.7), (3.8), (3.9), and (3.10) into

the standard CG algorithm, as devised by Hestenes and Stiefel (1952):- Choose

an initial guess 2%, set r® = b — Az® and p = r? then do for £ =0,1,2,...,n
b (r*)Tr*
(p*)* Apt
e SR +ak}2k
5 (pk+1) Tkt
(rF)Trk
Bk+1 R -l-ﬂk}jk

3.2.3 Convergence of CG

If algorithm (3.11) is performed in exact arithmetic, the (exact) solution is ob-
tained in at most n steps (and the method would be a direct one). However, when
finite precision arithmetic is used, rounding errors lead to a gradual loss of or-
thogonality among the residuals, and the finite termination property is lost. This
is not serious, since in 1971, Reid [20] showed that when CG is treated purely as
an iterative method for large, sparse systems, convergence to a required accuracy
usually occurs in many less than n steps. If the matrix A has m distinct eigen-
values, then CG will converge in at most m iterations. Thus, if A has a series of

23

clustered eigenvalues, then the convergence will be more rapid. The termination
criterion is based on a maximum number of iterations, k.., and some measure
of the size of r*.

From [7] an error bound on the CG method can be obtained in terms of the

A-norm, ||.||4, and after k iterations

wa(4) - 1) (3.12)

VVka(A)+ 1

This bound is usually far too pessimistic, and the accuracy of the {z*} is often

|z — 2*[|4 < 2|z — 2°|a (

better than inequality (3.12) predicts. One useful consequence of inequality (3.12)

is that the CG method converges very quickly in the A-norm if ko(A) & 1.

3.3 The Preconditioned CG Method

As noted above, if k3(A) &~ 1, then CG converges quickly. The idea of precondi-

tioning is to convert equation (3.1) into an equivalent problem

|82
Il
=i

A (3.13)

where A is close to the identity matrix, so that &» (/1) ~ 1. This can be achieved
by pre-multiplying equation (3.1) by a the inverse of a symmetric, positive definite

matrix M € R"™" giving

Comparing this with equation (3.13) gives us
A=M"'A i=r b=M"'b
and the basic CG method can be applied to equation (3.13).

24

In order to get A close to the identity it is required that M is a good approx-
imation for A, so that M=1A ~ I.
Note that the basic CG algorithm is the preconditioned CG algorithm with

the identity matrix [as the preconditioner.

3.3.1 Preconditioned CG Algorithm

Applying algorithm (3.11) to equation (3.13) we obtain the following Precondi-
tioned CG (PCQG) algorithm:- Choose an initial guess z°, set r® = b — Az® and

p® = M=% then do for £ =0,1,2,...,n

ko (fk)TM_lrk
T
&k—l_l _ 7k +akBk
6k _ (Ek—l_l)TM_lfk-l_l
(fk)TM_lfk
Bk—l—l — M_lfk—l—l —I_ﬂk}zk

The presence of M~" in algorithm (3.14) places an extra restriction on the
choice of M, that is M must be computationally simple and inexpensive to invert.
The hope is that any extra work involved in preconditioning the equation is more
than offset by the reduction in number of iterations required to reach convergence
to a required tolerance. Unfortunately, as is shown later, there are choices of M
that at first examination would appear to be good, but actually involve far more

work than the basic CG algorithm does.

25

3.4 Preconditioners

This section details various types of preconditioner M. There are five main types

considered:-

1. M based on splittings of A,i.e. A=M—-N

2. Complete or incomplete factorisations of A, e.g. A= LLT + E
3. Approximations of M = A~!

4. Tterative solution of Mz = r

5. Reordering of the equations and/or unknowns, e.g. Domain Decompo-

sition

3.4.1 Splittings of A

Here M is chosen such that A = M — N, i.e. M is a part of the matrix A, and N
is the remains of the matrix. M and N need not be disjoint matrices, although

they are in this discussion.

Diagonal Preconditioning

The simplest choice for M is D = diag{ay;,aqs,...,a,,} and this is equivalent
to a rescaling of all the equations, such that the diagonal of D™ A is all ones. D
is very easy to invert. It can be shown that if A is 2-cyclic then D is optimal

among all diagonal matrices, i.e. k9 is minimised.

26

Tridiagonal Preconditioning

Due to the structure of the matrix equations arising from the discretisation in
Chapter 2, that is 5-diagonal matrices, another choice for M is the tridiagonal

part of A, i.e.

a11 d12 0 0
g1 dgz dgz
432

an—l,n—l an—l,n

0 e 0 Uppn—1 Upp

This choice of T' is relatively simple to invert, being just a forward and backward
substitution. As mentioned in Section 2.3, the A obtained from the problem
discretisation is actually block tridiagonal, and thus T' consists of ny tridiagonal
blocks each of size na by na.

Another tridiagonal preconditioner would be the tridiagonal part of A™!,
which should be more a accurate approximation than the inverse of the tridi-
agonal part of A, but, unfortunately, a way to compute this inexpensively could

not be found.

27

Block Diagonal Preconditioning

Instead of taking just the diagonal elements of the matrix A, diagonal blocks of

A can be used, e.g. s such blocks A;, possibly of differing sizes

_ A 0 0 |
0 A 0
M= 0
Assr 0
0 0 0 A,

and thus, the solution of Mz = r in the PCG algorithm reduces to the solutions
to a series of smaller independent problems.

In the discretisation in Chapter 2, a natural block size is nx, and in this case
all the A;’s are tridiagonal. Another natural size is any integer multiple of nx,

and here all the A;’s are 5-diagonal.

Blocked Tridiagonal Preconditioning

As above, tridiagonal preconditioning can be ‘blocked’ to introduce independent
smaller subsystems. With a block size of nz, this reduces to the Block Diag-
onal Preconditioning with block size of nz, and incidentally, it is the same as

Tridiagonal Preconditioning.

3.4.2 Factorisations of A

Standard techniques for the direct solution of equation (3.1), involve factorising
A into the product of two matrices A; and A, such that systems A,z =56, 1 = 1,2

are trivial to solve.

28

Cholesky Factorisation

If A is symmetric and positive definite, then A can be written as
A=1LL" (3.15)

where L is lower triangular [7]. Equation (3.15) then uniquely defines L, and
since L is lower triangular L'z and L~z are easily calculated for any vector z,

and the solution to (3.1) is given as
z= (L) (L")

Equation (3.15) can be solved column by column recursively to obtain L [7] as

follows

do:=1,2,...,n

Ly = \/An' — Y LA (3.16)
doj=i4+1,04+2,...,n

i—1
[= AJ¢‘ZZ:1LJkLik
v Li;

The square root operation is expensive to calculate and often inaccurate, so there
exists an alternative statement of Cholesky which avoids it, where A is written

as

A=LDL"

where the diagonal of L consists of all ones.

Incomplete Cholesky Factorisation

For large sparse matrices A, the calculation of L is both very time and storage
consuming, and the sparseness of the original matrix A is lost due to the mas-
sive amount of fill-in in L. Since only an approximation to A is required for the

29

preconditioning (calculation of the complete decomposition would solve the prob-
lem immediately!), the Incomplete Cholesky Decomposition of A can be defined.
First, a sparsity pattern is defined to impose on L, i.e. a set of matrix entries, P,
are chosen which are forced to be zero in L. Algorithm (3.16) is still used, but
whenever an L;; arises with (¢,7) € P, it is set to zero and the algorithm con-
tinues. Thus, these elements of L. are neither calculated or stored. The simplest

choice for P is

P={(0,)|A;=0;4,5=12,....,n}

that is, the sparsity pattern of A is enforced on L. In [15], this choice of P
is referred to ICCG(0), one of a family of methods. This choice of P is used

throughout this dissertation, and is referred to as ICCG. Thus

A=LLT+ F

where £ is a small error matrix whose non-zero entries all lie in P, and the
preconditioning matrix M can be taken as LLT, which only requires a forward
and backward substitution to invert.

In algorithm (3.16) it is crucial that all the L; are greater than zero. If
L;; = 0 then the algorithm breaks down, and if L; < 0, then LLT is not positive
definite [12] and the CG method cannot be used. It is shown in [15] that if A is
an M-matrix! then the ICCG algorithm always gives L;; > 0, but, unfortunately,

ICCG on an arbitrary positive definite matrix is not guaranteed to work. A

YA = (a;;) is an M-matrix if @;; < 0 for ¢ # j, A is non-singular, and A=! > 0.

30

simple counter-example is given in [12],

_ 3 =2 0 2_
-2 3 =2 0
0 -2 3 =2

i 2 0 =2 3_

Complete Cholesky decomposition gives L4y = %, while ICCG gives Lyq = —5.
All is not lost though, since an exact decomposition of A is not required, and [12]
suggests that if an L;; arises such that L;; < 0, it is simply set to some positive
value? and the algorithm is continued. This only causes the ith diagonal element
of F to be non-zero, all other non-zeros are still in P. If L;; < 0 rarely occurs,
i.e. if the decomposition is mostly stable, this adaptation should work quite well,
and the experiences in [12] confirm this.

A small modification can be made to the ICCG algorithm, and that is to
enforce the equality of the row-sums of A and LL? by altering the diagonal

elements. This leads to a slightly better approximation of A [10].

Blocked Incomplete Cholesky

In Section 3.4.1, the idea of Block Diagonal Preconditioning was introduced to
introduce smaller subproblems which were more easily solved. The idea here is to
solve each subproblem obtained with the Block Diagonal Preconditioner with the
ICCG algorithm, instead of calculating the exact solution, for the same reasons

that the ICCG algorithm was developed above.

’In [12] Li; = z;;ll | Lij |+ 20—y s

31

3.4.3 Polynomial Approximation

If p(J) < 1, then from [22], the inverse of I —.J can be expressed as a power series
in J, ie.

(I—J)" ij_J+J+J2+J3+ (3.17)

k=0

If Ais written as A = D+L+U, as in equation (3.3), then J = —D~!(L+U) is the
Jacobi iteration matrix (see Section (3.1.2)), and [7] shows that p(J) < 1. Thus,
if Ais written as A = D(I —J), and (I — J)™" expanded as in equation (3.17),

the inverse of A can be expressed as
A" = (DI —-J)!
= (I-J)y'D
- {i 7y

_ Z YL+ U)FD (3.18)

The idea of polynomial preconditioning is to truncate the power series (3.18) after
m terms and obtain an approximation M~! for A™!. If the series is truncated

after the £ =1 term, then
M'=D' - DY L+U)D! (3.19)

has the same sparsity pattern as A, hence no fill-in has occurred. The idea in [11]
is instead of having a truncated power series of the form (3.18), a parameter is

introduced for each term in the approximation, thus

Z W=D DL+ U))* D™ (3.20)

and then to choose the 7;’s such that the spectral radius, p(M, ' A), is minimised,

i.e. the convergence of the PCG method maximised. The observation for equa-

32

tion (3.19) still holds, i.e. M; ' still has the same sparsity as A. This method is
also used in [4], although there it is for approximating the inverse of a tridiagonal
matrix, and three sets of values are given for vy and 7y with m = 1; approximately
0.9412 and -0.4706, 1 and -1, and 1.1429 and -1.1429. The values given in [11]
for 49 and v are 1.0 and -1.0, and g and —>. See [11] for details of how these

values were obtained.

3.4.4 Tterative Methods

Since each iteration of the PCG algorithm involves the solution of a system of the
form Mz = r, an idea is to perform a number of iterations of one of the standard
iterative methods as described in Section 3.1, where M is the required part of
A. Hence, any iterative method based on the splitting of A = M — N may be
accelerated by the use of the CG method, as long as M is symmetric and positive
definite. The case where one iteration of the Jacobi (Section 3.1.2) iteration is

performed corresponds to the diagonal scaling method in Section 3.3.

3.4.5 Domain Decomposition

The idea of domain decomposition can be illustrated by dividing the region the
problem is being solved on,), into two non-overlapping subregions €); and (),
(2 = Q1 UQ3). The mesh points are ordered so that those in £; come first, those
in 3 come next, and all those not in €y or {3 (the mesh points on the interface
08y U 09, and those on the global boundary 9€) come last. The three groups of

mesh points are called z, z, and z; respectively, and the resulting matrix system

33

is of the form

A 0 B
0 A, B
BT BI 4,

(3.21)

where A;, 1 = 1,2 are symmetric positive definite, the B;, 1 = 1,2 are sparse, and

the third block row and column are much narrower than the first two. This is

basically a rearrangement of the equations and unknowns for the original matrix

system (3.1). Equation (3.21) can be expanded to the p subdomain case, where

the matrix system becomes

Ay o0 0
0 A,
BT ... pT

B,

Ay

=P

by

(3.22)

Common preconditioners used with domain decomposition are either the it-

erative method type (Section 3.4.4) or a matrix splitting type (Section 3.4.1).

The iterative type is used in [13] where one iteration of a symmetric Gauss-Seidel

method is performed, i.e. for equation (3.21), with initial estimate z(*) = 0, the

following applies

Step 1. Algg*)

Az
Step 2. Abgél)
Step 3. Alggl)

Azi(zl)

and similarly for equation (3.22) in the p subdomain case.

b, — B«

(*)

1

(@1 - Bllz(al)

@2 - B2§£1)

34

T
_Bzg

)
)

(%)

2

The splitting type is explored briefly in [7], e.g. with the p = 2 case (c.f.

equation 3.21). Set

i 0 0o St |

where i i
My, 0 0
L=10 M 0

BT BT S |

then i i
My 0 B

M = 0 M, B, (3.23)
BT BT s, |

with S, = B?M{lBl —I—BQTMQ_IBQ. The block parameters My, M3, and S are now
chosen to give an effective preconditioner. The comparison of equations (3.21)
and (3.23) shows that it makes sense to let M; approximate A; for ¢« = 1,2, and
to let S, approximate A,. The latter can be achieved if S ~ A, — BI M 'B, —
BIM;'B,. There are several ways to approximate S due to the fact that the
BIM™'B;, i = 1,2, are dense and need to be approximated, e.g. a polynomial
approximation to the M;'’s as in Section 3.4.3.

Domain Decomposition ideas are not investigated in this dissertation due to
the discretisation in Chapter 2, which always generates a 5-diagonal matrix and
the fact that Domain Decomposition alters this structure. They do deserve some

attention, though, due to the opportunities for parallel computation as described

in [13].

35

Chapter 4

Serial Implementation

This chapter outlines the serial implementation of the PCG algorithm (3.14)
with some of the preconditioners in Section 3, complete with any implementation
peculiarities. The metrics used for the comparison of various preconditioners
are then introduced, and finally, results for all of the serial preconditioners are

presented.

4.1 Serial PCG Algorithm

Algorithm (3.14) is not the most efficient algorithm in terms of work and storage
space; only one matrix-vector product ABk and only one M ~! calculation (solution
of Mz = r) need be done per iteration. Values can be saved from previous
iterations, and the indices of the vectors z, r, p, etc. can be dropped, just by
using them to represent the latest vectors. The following algorithm uses, apart

from the storage of the problem (3.1) and the preconditioner matrix M, three

36

vectors and five scalars of storage,

z= Az
r=b—z
p=M"r
lip = ET}_v
doi=0,1,...,{
z = Ap
nip = }_7Tg (4.1)
nip
o =
lip
T = x+ap
ro=r—az
z = Mz
nip = r'z
nip
5= 3r
1p
p o= z+0p
lip = nip

An extra vector of storage may be needed in the parts of algorithm (4.1) where
the inverse of the preconditioner M~ is involved. The iterating is stopped after a
predetermined maximum number of iterations, or when a measure of the residual
size is small enough, e.g.

I/ = r'r < tol?

37

4.2 Implementation Details

The nature of the problem being solved, and the types of preconditioner chosen to
be implemented, allow several storage and time saving optimisations to be done.

The preconditioners chosen to be implemented in serial were :-

o CG - Standard Conjugate Gradients (Algorithm 3.11)

o DCG - Diagonal Scaled CG (Section 3.4.1)

e DBCG - Diagonal Block Preconditioned CG (Section 3.4.1)

o ICCG - Incomplete Cholesky Preconditioned CG (Section 3.4.2)

e DBICCG - Diagonal Block Incomplete Cholesky Preconditioned CG (Sec-

tion 3.4.2)
e DBTCG - Tridiagonal Diagonal Block Preconditioned CG (Section 3.4.1)

e POLCG - Polynomial Preconditioned CG (Section 3.4.3)

The tridiagonal preconditioner (Section 3.4.1) has not been included, because,
as noted in Section 3.4.1, it is equivalent, for the problem discretisation in Chap-
ter 2, to the DBCG method with block size nx, and also the DBTCG method.
The Iterative accelerated methods (Section 3.4.4) were not considered due to lack
of time. The Domain Decomposition methods (Section 3.4.5) were not considered

due to the different matrix structure obtained from discretisation.

4.2.1 Matrix Storage

Since the discretisation in Chapter 2 generates a symmetric, 5-diagonal matrix
A, it is easy to store A completely using just three vectors length n, a'?, a(") and

38

_ aqy a1 0 - a1 0 _
ao Qoa Aoz - 0 a2,5+2
0 a3y 33
(st 0 0
0 3,542 p1,n-1 CGn_1n
I 0 e A |
maps to
[o o a? 0 _
at’ ol o) 0 af
0 le) old)
a? 0 0
0 af coal el
0 o) o®

Similar types of storage mechanism can be used for most of the preconditioners,
e.g. ICCG (Section 3.4.2) and polynomial approximation (Section 3.4.3) both

have the same structure as A.

4.2.2 Preconditioner Implementation

Before the PCG algorithm (4.1) can start, the preconditioning matrix, M, has
to be calculated, and during the iteration, its inverse, M ™! has to be calculated

(possibly implicitly).

39

cG

Since CG is PCG with the identity matrix, M = I, and thus M, or its inverse,

M~! never need to be calculated, and the algorithm (4.1) simplifies slightly.

DCG

In DCG, the preconditioner is the diagonal of A, and hence to multiply by M~

division by the diagonal elements of A is performed.

DBCG

In this case M consists of diagonal blocks M; of A, and each of these diagonal
blocks is either tridiagonal or 5-diagonal. In the tridiagonal case, the solution of
M;z = r is obtained by a simple forward and backward substitution to obtain
the two factors of M;, but in the 5-diagonal case a full' Cholesky decomposition
has to be done to obtain the factors. This requires a problem dependent amount
of extra storage for the factors, and, unfortunately, Fortran 77 cannot allocate
dynamic storage, thus the arrays are just made very large at the start, hoping
there is enough space for the factors given the required problem size.

In the preconditioning phase, the problem is split up into p subproblems (the
size of each problem is automatically determined to make sure each one is an
integer multiple of nz), and M is factored so that M = LLT, i.e. each M; is
factored so that M; = LZ'L;‘»F. During the iteration, each subproblem M;z = r is
solved using the factor L; by forward and backward substitution. As mentioned

in Section 4.1, an extra vector of storage is required for this substitution phase.

! Actually, since A is banded, a banded Cholesky decomposition can be done, requiring less

storage space and time.

40

The splitting of the problem such as above is unnatural, in that the code
required to do the splitting is rather complex, but it has been done here more
for the comparison with a parallel version of the method than to give an efficient

serial implementation.

ICCG

The matrix A is factorised using the Cholesky decomposition (3.16) with the
modifications in Section 3.4.2 for the incomplete decomposition, but by using
the sparsity of A, the entire factorisation can be simplified because most of the
summations in algorithm (3.16) only have one product in them. Reordering the
equations allows the factorisation to be performed in a single loop. As above,
the solution of Mz = r requires an extra vector for the forward and backward

substitution.

DBICCG

Very similar to the DBCG method, but instead of having to do the full Cholesky
decomposition for a 5-diagonal block, the Incomplete decomposition, as above,
is done for each block. Thus, there are a fixed number of vectors required for
the decomposition, unlike DBCG where the number is dependent on the problem
size. As for ICCG, one extra vector is required for the forward and backward

substitution phase.

DBTCG

This is exactly the same as the DBCG method, but with the block size enforced

to be nz, i.e. the blocks are all tridiagonal.

41

POLCG

The polynomial approximation (3.20) M~ to A~! given in Section 3.4.3, with
m = 1, has the same sparsity as A, thus only three vectors are needed to store
it (Section 4.2.1). It is precalculated before the iteration starts, and the equation
Mz = r is solved by a matrix multiplication z = M ~1r.

4.3 Performance Metrics

In order to compare preconditioning strategies, some metrics for determining

efficiency, rate of convergence, etc. , are required.

4.3.1 Timing Metrics

The easiest thing to do is to time how long each part of the PCG algorithms take
for a certain problem size, and count the number of iterations required to reach

a certain accuracy. The four chosen here are

Preconditioning Time The time taken to calculate any preconditioning ma-

trix, and perform the instructions up until the first iteration starts.
Iteration Time The time taken to perform one iteration of the PCG algorithm.

Number of Iterations The number of iterations required to reach the desired

accuracy.
Total Time The total solution time for the PCG algorithm.

The total time metric is the most useful for comparing which are the best pre-
conditioners, although the number of iterations required is interesting.

42

4.3.2 TIteration Matrix Metrics

The idea of preconditioning is to make the condition number of A = M~'A close
to one, so that A & I. This also means that all of the eigenvalues of A are
required to be bunched around one, and hence the spectral radius of A needs to
be small.

Using the EISPACK [21] library of eigenvalue and eigenvector routines, a
complete eigenvalue spectrum,)\(121), can be obtained from the A’s from each

preconditioner. From A(A) it is possible to obtain the condition number, r3(A),

and the spectral radius, p(A).

4.4 Serial Implementation Results

The preconditioners in Section (4.2.2) were implemented in Fortran 77. All the
timings were obtained by running the programs on a single transputer (See Chap-
ter 5). All of the graphs were obtained using the UNIRAS graphics library, and
the eigenvalue spectra were obtained using the EISPACK subroutines, both on
Sun Sparc computers.

Since the DBCG and DBICCG methods require a block size, or alternatively,
the number of subproblems to split the problem into, and the fact that the trans-
puter system available (See Chapter 5) has five processors, it was decided, for both
of these methods, to have the number of subproblems as one, two, three, four,
or five (to allow direct comparisons with the parallel versions (See Section 5.7)).
The number of subproblems is indicated by following DBCG or DBICCG by the

number, e.g. DBCG?2 for two subproblems. DBCGI is equivalent to directly solv-

43

Method Yo gkt

POLCGI1 1.0 -1.0

POLCG2 || 1.1429 | -1.1429

POLCG3 | 0.9412 | -0.4706

POLCG4 || 1.16666 | -0.83333

Table 4.1: Parameters for the POLCG method
ing the problem by Cholesky Decomposition (3.16), ignoring the time spent in
performing one iteration of the PCG method, and DBICCGI1 is equivalent to
ICCG. Four versions of the POLCG were used, with their vy and 77 defined as
in Table 4.1. Occasionally, the results show a TRICG method. This is just a full
tridiagonal preconditioner, and in terms of performance is just about equivalent
to DBTCG (the solution stage takes slightly longer, but the end result is the

same).

4.4.1 Timings

Tables 4.2, 4.3, 4.4, and 4.5 show, in order of increasing total iteration time, the
number of iterations required to reach convergence (in this case for the 2-norm of
the residual to fall below 107®), the preconditioning time, the time per iteration,
and the total time for each of the investigated methods on two problem sizes (10

by 10 and 20 by 20) and for both of the sample problems (Section 2.4). The times

1

16525ths of a second.

involved are measured in ticks of
The Figures 4.1 and 4.2 show the number of iterations and total time required

as the problem size increases (from 5 by 5, i.e. 25 unknowns, to 30 by 30, i.e. 900

44

Method Iterations | Preconditioning Time | Iteration Time | Total Time
DBCG1 1 1511 376 1886
ICCG 17 156 137 2493
POLCG4 27 120 135 3764
DBICCG2 25 166 147 3848
POLCG3 28 120 135 3899
CG 44 55 91 4090
DCG 42 58 100 4282
DBICCG3 27 170 154 4351
DBICCG4 29 178 164 4952
POLCG2 37 120 135 5119
DBTCG 43 96 120 5281
TRICG 43 103 128 5647
DBICCG5 32 186 176 5827
POLCGI1 37 120 135 5827
DBCG2 15 1409 347 6625
DBCG3 23 1306 327 8841
DBCG4 27 1205 307 9514
DBCGH 30 1109 287 9740

Table 4.2: Iterations and timings for Problem 1 (10 by 10)

45

Method Iterations | Preconditioning Time | Iteration Time | Total Time
ICCG 30 634 554 17279
DBCG1 1 17904 2510 20414
DBICCG2 43 673 596 26338
POLCG4 52 484 546 28785
DBICCG3 46 700 634 29885
POLCG3 58 484 546 32080
DBICCG4 48 740 630 33427
CG 93 223 368 34476
DBICCG5 50 775 722 36899
DCG 91 234 405 36962
DBTCG 88 386 484 43033
TRICG 88 417 517 45998
POLCGI1 86 484 546 47454
POLCG2 86 484 546 47454
DBCG2 18 17249 2398 60428
DBCG3 31 16581 2318 88469
DBCG4 38 15955 2239 101066
DBCGH 43 15333 2160 108230

Table 4.3: Iterations and timings for Problem 1 (20 by 20)

46

Method Iterations | Preconditioning Time | Iteration Time | Total Time
DBCG1 1 1510 376 1886
ICCG 21 157 137 3042
DBICCG2 25 166 147 3848
DBICCG3 28 170 154 4505
DBICCG4 30 178 164 5116
DBTCG 44 96 120 5402
DBICCG5 31 186 176 5651
DCG 56 58 100 5706
TRICG 44 104 128 5776
POLCG3 42 120 135 5798
DBCG2 15 1408 347 6624
POLCG4 57 120 135 7830
CG 87 55 92 8063
DBCG3 23 1306 327 8841
DBCG4 27 1206 307 9515
DBCG5 31 1110 287 10029
POLCG2 85 120 135 11627
POLCGI1 86 120 135 11763

Table 4.4: Iterations and timings for Problem 2 (10 by 10)

47

Method Iterations | Preconditioning Time | Iteration Time | Total Time
DBCG1 1 17904 2510 20414
ICCG 38 635 554 21709
DBICCG2 43 672 596 26338
DBICCG3 46 700 634 29886
DBICCG4 48 740 630 33427
DBICCG5 51 774 722 37621
DBTCG 88 385 484 43032
POLCG3 83 484 547 45807
TRICG 88 417 517 45998
DCG 120 234 405 48846
DBCG2 19 17249 2398 62825
CG 188 223 370 69837
POLCG4 128 484 547 70517
DBCG3 31 16582 2319 88471
DBCG4 38 15955 2239 101067
DBCGH 43 15335 2160 108233
POLCGI1 218 484 547 119937
POLCG2 218 484 547 119937

Table 4.5: Iterations and timings for Problem 2 (20 by 20)

48

unknowns).

A number of observations can be made from these tables and figures,

e In terms of iteration count the ICCG method is only beaten by the DBCG

methods with a small number of subproblems.

o In terms of total time the ICCG method is only ever beaten by the DBCG1
method (the direct solution), and as the problem size increases the difference

between them decreases, and for large problem sizes in problem 2, ICCG is

better.

o The DBCG2-5 methods, although keeping the iteration count down, have
large iteration times, and the more subproblems there are, the longer the

method takes.

o The DBICCG2-5 methods also keep the iteration count down, but also have
smaller iteration times, thus decreasing the total time. DBICCG2 is usually

the next best after [CCG.

e POLCGI and POLCG2 are always worse than CG in straight iteration time,
and in problem 2, have far many more iterations. POLCG3 and POLCG4
are better than CG, and on problem 1 they perform well (POLCG4 be-
ing better), but on problem 2 POLCGS3 is better, and the performance of

POLCG4 falls off with increasing problem size.

e DCG for problem 1, although decreasing the iteration count, takes more

time than CG, while on problem 2 DCG is a great improvement over CG.

49

Iterations

Iterations

°9 dbegs
7 deg
7 tricg dbteg dbcg4
125
- dbcg3
100—
])
1 o
ol dbeg2
754 @
7 o
] £
B -
50 docgs s
- dbegd dcg
4 o
: oeas dbegt
25—
— /////dbCQE
i dbeg1
0 — T T T [T T T T [T T T T T 1T 9
0 250 500 750 0 250 500 750
Problem Size Problem Size
4 polegl polcg2 polcgl poleg2
] 10.0
125 B
100 75
4 i dbiccgs
7 polegd polcg3
] — 7 dbiccgd
B polegd a 4 polegd
— L] ‘dbiccg3
7% A dbicogs (%23 ~ ecg
-dbiccg4 o dbiccg2
i dbiccg3 2 5.0
B dbiccg2 £ i
50— 7
] iocg 1 oo
] 2.5
254 -
o+—F—F—F—FF1 """ "7 T T T 0o+ T T T T T T T T T T T
0 250 500 750 0 250 500 750
Problem Size Problem Size

Figure 4.1: Work involved in problem 1 as problem size increases

30

Iterations

Iterations

deg

- dbleg tricg

I
e
&
& &
53

T T T T
500

o
n
& —
=}

Problem Size
polcg2
polcg1
A polcgd
7 polcg3.
. dbicggs
dbiccgd
- dbiccg3
dbiccg2
4 iccg
T T T [T T T T [T T T T [T T 1
0 250 500 750

Problem Size

dbegs

25—
4 dbog4
- dbcg3
20
-
o
@ 15 -
= 15—
° i dbcg2
£
= -
] deg
10 a tricg
dbtcg
5] dbegt
07 T T T T T T T T T T T T T T T T T 1
0 250 500 750
Problem Size
polcg2

pologd

pologd

0 250 500 750
Problem Size

Figure 4.2: Work involved in problem 2 as problem size increases

51

e DBTCG(TRICG) for problem 1 has slightly less iterations than DCG, but

slightly more work. For problem 2 there is less work and iterations.

e On problem 1, quite a few of the preconditioners involve more work than
CG, even though they have less iterations, whereas in problem 2 only the
DBCG3-5, POLCGI, and POLCG?2 (also POLCGH4 for larger problem sizes)

are worse than CGQG.

4.4.2 Convergence

Figures 4.3 and 4.4 show the rates of convergence for the various precondition-
ers for the problems with a grid size of 20 by 20. The log,, of the 2-norm of
the residual is plotted against the number of iterations and, alternatively, the

accumulated time. A number of observations can be made from these figures,

e All preconditioners have the characteristic initial oscillations associated
with the Conjugate Gradient methods, followed by the rapid decrease in

residual norm, usually at a constant rate.

e The CG method for problem 2 has a very oscillatory behaviour, as do
POLCGI1, POLCG2 and POLCG4, though to a lesser degree. All others

have the (practically) constant rate.

4.4.3 Eigenvalue Spectra

Figures 4.5, 4.6, 4.7, and 4.8 show the complete eigenvalue spectrum for each
iteration matrix A = M~'A for problems 1 and 2 with size of 10 by 10. Each

of the iteration matrices has 100 eigenvalues. With reference to the theory in

52

Log of Residual Norm

Log of Residual Norm

Iterations

polegl

poleg2

polcgd

dbiccg2
dbiccg3
-9 dbicogd

dbiccg5 poleg4

Iterations

Log of Residual Norm

Log of Residual Norm

Time (Secs)

poleg3
dbiccgd

dbicogs dbicegd

dbiccg2
polegd

0.5 1.0 1.5 2.0 25 3.0

Time (Secs)

Figure 4.3: Convergence Rates for problem 1 (20 by 20)

Log of Residual Norm

Log of Residual Norm

13

o

=4

©

=]

k=l

0

()

o

S

{=2]

o

—

50 100 150 200
Iterations Time (Secs)

13

o

b4

©

=]

k=]

0

Q

i

k3

{=2

o

—
gt dbiccg2
dbiccg2 dbiccg4 . polcg’ dbicogd
dbiccg3 dbiccg5 poleg polcg4 polcg2 dbicegd
dbiccg5

LN N A N B S B S B B N BN E B B B B B
50 100 150 200
Iterations Time (Secs)

Figure 4.4: Convergence Rates for problem 2 (20 by 20)

o4

Section 3.2, the Figures 4.1 and 4.2, the Tables 4.2, 4.3, 4.4, and 4.5, and the

above eigenvalue spectrum figures, a number of observations can be made;

e Unfortunately, the condition number /432(121) does not seem to have a direct
effect on convergence speed, although the smaller it is the more likely a

faster convergence (in number of iterations).

e A similar thing happens with the spectral radius p(zzl), e.g. POLCGI has
a very small spectral radius for problem 1, but the number of required

iterations is large.

e All of the methods, apart from POLCG1 and POLCG2 (and POLCG4 for
problem 2) have the smallest eigenvalue just above zero. This accounts for
the large condition numbers found (maximum/minimum eigenvalues). The
exceptions have at least one negative eigenvalue, thus the iteration matrix A
is not positive definite. This does not seem to make a difference in problem

1, but it may help to explain the awful convergence properties for problem

2.

e POLCGS3 for problem 1 seems to have a good clustering of eigenvalues,

although the convergence is not as good as this should indicate.

e The behaviour of the POLCG methods in problem 2 is far worse than that in
problem 1, although the eigenvalue spectra (when the matrix stays positive

definite) seems to have a similar spread.

e For problem 1, CG and DCG have a similar spacing of their eigenvalues,
which matches their similar convergence behaviour, whereas in problem 2,
CG has a much less even spread, and consequently worse behaviour.

)

o(R) = 7.804 «(R) = 79046.422

6.0

8.0

p(R) = 2.000 «(R) = 72937.188

DBTCG p(R) = 2.000 k(A) = 36469.227
2.0

DBCG2 p(R)= 1.205 k(R) = 1357.177
0.0 1.0 15

DBCG3 p(R) = 1.309 k(R) = 2306.900
0.0 1.0 15

DBCG4 p(R)= 1.342 k(R) = 3126.568
0.0 1.0 15

DBCG5 p(R)= 1.382 k(A) = 3809.648
0.0 1.0 15

ICCG p(R)= 1.237 k(R) = 6405.786
0.0 15

Figure 4.5: Problem 1 Iteration Matrix Eigenvalue Spectra

56

DBICCG2 p(R)= 1520 x(R) = 10020.498

0.0

2.0

DBICCG3 p(R)= 1.528 k(R) = 12232.519

0.0 2.0
DBICCG4 p(R)= 1576 k(R) = 14831.487

0.0 2.0
DBICCG5 p(K) = 1.619 k(R) = 17547.734

0.0 2.0
POLCG1 p(A)= 1.197 k(R) = -4.043

05 05 1.0 15
POLCG2 p(R)= 1.368 k(R)= -4.043

05 15
POLCG3 p(R)= 1.190 k(A) = 30650.188

0.0 15
POLCG4 p(R)= 1.371 «(R) = 24925.361

0.0 15

Figure 4.6: Problem 1 Iteration Matrix Eigenvalue Spectra (contd.)

57

o(R) = 6.936 «(R) = 71046.438

6.0 8.0

p(R) = 2.000 k(R) = 42685.652
0 15 2.0
DBTCG p(R) = 2.000 «(R) = 23589.611
05 1.0 2.0
DBCG2 p(R) = 1.303 k(R) = 947.616
0.0 05 1.0 15
DBCG3 p(R)= 1313 k(R) = 1628.781
0.0 1.0 15
DBCG4 p(R)= 1.333 «(R) = 2209.923
0.0 05 1.0 15
DBCG5 p(R) = 1.369 k(R) = 2717.922
0.0 15
ICCG p(R) = 1.264 K (R) = 3740.349
0.0 15

Figure 4.7: Problem 2 Iteration Matrix Eigenvalue Spectra

38

DBICCG2 p(R)= 1.538 «(R) = 6022557

0.5 1.0

2.0
DBICCG3 p(R) = 1.547 k(R) = 7532.340
2.0
DBICCG4 p(R) = 1.602 k(R) = 9316.622
0.0 05 1.0 15 2.0
DBICCG5 p(R)= 1.648 x(R) = 11180.312
0.0 0.5 1.0 15 2.0
POLCGH1 (R) = 1.985 1.617
15 a0 20 15 2.0
POLCG2 p(R) = 2.269 1.617
15 1.0 05 0.0 2.0 25
POLCG3 p(R)= 1543 k(R) = 22918.445
2.0
POLCG4 p(R) = 2.070 c(R) = -4.799
05 25

Figure 4.8: Problem 2 Iteration Matrix Eigenvalue Spectra (contd.)

39

e DBTCG has a better bunching of its eigenvalues around one, and, as pre-

dicted by theory, better convergence than DCG (in terms of iterations).

e The DBCG methods all have similar spectra, and although not shown,
DBCGTI has all its eigenvalues equal to one, and converges in one iteration!
DBCG?2 has a lot of repeated eigenvalues, and DBCG3-5 just have these
repeated eigenvalues spreading out. All of them are pretty well bunched,

and their convergence (in iterations) echoes this.

o The ICCG and DBICCG methods have similar properties to the above

DBCG methods.

60

Chapter 5

Parallel Implementation

First, this chapter describes the hardware and software of the transputer system
in the Mathematics Department!. Next, the difficulties in parallelising a serial
algorithm are presented, and an alternative PCG algorithm, more suited to a
parallel programming environment, is described. The problem discretisation, as
given in Chapter 2, is then investigated for use in parallel, and some of the pre-
conditioners introduced in Chapter 3 parallelised. Lastly, metrics are introduced
to allow comparison of the various parallel PCG algorithms, complete with the

results of these comparisons.

5.1 Transputer Systems

5.1.1 The Transputer

The transputer (INMOS 1985) is a single chip microprocessor designed for the

construction of parallel systems [9]. To allow this, the transputer has on chip

!The system is currently on loan from the Rutherford Appleton Laboratory as part of the

DTI/SERC Initiative in the Engineering Application of Transputers.

61

memory, a RISC? processor, a hardware process queue to allow concurrent run-
ning of multiple processes on a single transputer, and four bi-directional serial
communication links to connect to other transputers, all on a single VLSI® chip.
The newer transputers (T800 series) have 4Kb of internal memory and also have
a built in floating point unit, whereas the older ones (T414 series) only have 2Kb
of memory and are only integer based. Both transputers usually have external
access to larger (21Mb) memory, but this takes longer to access than the in-
ternal memory. All components of the transputer operate concurrently, so that
communication, floating point computations, and other processor work can occur
simultaneously. The communication between units within a single transputer is
much faster than communication between transputers. During communication,
both processes must be synchronised for the transfer, i.e. they both must pause
while the transfer takes place. If both processes are on the same transputer, the
communication is performed via the local memory, otherwise the communication
hardware is used. The transputer communication hardware has a very small mes-
sage start up time, the same order as the time to transfer a byte of data, thus
even small packets of data are transferred efficiently. There is no great need to

send very large data packets as in other multiprocessor systems.

5.1.2 Transputer Networks

The four communication links allow various interconnection topologies to be im-

plemented directly, e.g. pipelines, rings, two dimensional arrays, trees (See Fig-

?Reduced Instruction Set Computer, the idea being it is easier to make a very fast simple
processor than a complex slower one.

3Very Large Scale Integration.

62

=] LI I JL]

: : :
Pipeline Ring

Tree

\
2D Array

Figure 5.1: Transputer Networks

ure 5.1), and possibly p-dimensional hypercubes with 2° processors, each one
connected to p other processors (p < 4). More complex interconnection networks
can be implemented if switching nodes are used, where basically some (or all) of
the communications links go into a large switch that can be programmed to de-
fine the network topology. An example of this is the Meiko Computing Surface?.
The more connected a network is, the more different types of network can be

embedded in it, i.e. in a two dimensional array, a ring or a pipeline also exist.

*There is a Meiko Surface in the Computer Science Department, Reading, but by the time

access to 1t became available it was too late to investigate.

63

PCHTl T2 4T3 —T4—T5

Figure 5.2: Reading Transputer System Network

transputer T1 T2 T3 T4 T5
processor type T800 T800 T800 T800 T800
clock speed (MHz) 17.5 20.0 20.0 20.0 25.0

external memory (Kb) 2048 1024 1024 1024 1024

memory access delay 3 cycles | 2 cycles | 2 cycles | 2 cycles | 4 cycles

Table 5.1: Reading Network Transputer Information

The network for a particular transputer system is usually a hardware feature (the
Meiko is an exception), and in the system available in the Mathematics Depart-
ment, it consists of five transputers linked in a pipeline (see Figure 5.2), with one
end of the pipeline connected to a PC compatible. The types of transputers in
this system are described in Table 5.1. The transputer T'1 is termed the master or
root processor, and the others are slave processors. Unfortunately, a p processor
pipeline has 2p + 1 unused communication links, and, therefore, does not make
optimum use of the communication facilities, since if two non-adjacent processors
want to communicate, they have to pass information through all of the processors

in between.

5.1.3 Classification of Parallel Systems

The macroscopic structure of a parallel computer can be classified according to

Flynn’s Taxonomy [9], this system being based on how the machine relates its

64

instructions to the data it is processing. Since a transputer system is built up from
a number of independent processors, each with their own memory, a transputer
system is a member of the MIMD (Multiple Instruction stream, Multiple Data
stream) class of parallel computers. If, however, each transputer executes the
same program, but on its own data, then it can be considered to be a SIMD
(Single Instruction stream, Multiple Data stream) system. This is how it has
been chosen to use the Reading System, due to the nature of the problem to be

solved, i.e. give each processor part of the matrix system.

5.1.4 Software Model

The transputer is designed to efficiently implement the OCCAM language. How-
ever since the standard numerical analysts’ language is FORTRAN 77, parallel
FORTRAN 77 is available, e.g. Reading has the 3L parallel FORTRAN 77 pack-
age [1].

There are two main types of software parallelisation available in 31. FOR-

TRAN, tasks and threads.

Tasks

A task is a FORTRAN program. The structure of tasks within a system is
static, i.e. tasks are not created and destroyed dynamically during execution, and
no hierarchy exists, e.g. tasks cannot have subtasks. The structure of tasks is
controlled in the 3L system by a configuration file that indicates the distribution
of tasks among the various available processors and describes the links between

them [1, 16]. Each task is a separate entity, no data is shared between them, even

65

if they are on the same transputer. They can only communicate via channels
which are fixed one way communication paths. A complete transputer application
consists of a collection of one or more tasks. A task may contain several concurrent

threads.

Threads

A thread is a FORTRAN subroutine. They can be created and destroyed dy-
namically and a thread my be created within another thread. Starting a thread
is like making a subroutine call, except that the calling program regains control
immediately, and the thread runs concurrently with the calling program. Threads

can share FORTRAN common blocks, and thus can communicate directly.

Communications

The 3L FORTRAN runtime library provides a simple interface to allow tasks to
communicate. Basically, it consists of send message and receive message function
calls which send and receive a packet of data to or from a channel. The possible

channels are determined indirectly by the configuration file [16].

5.2 Parallelising Serial Algorithms

The most obvious approach to parallelise an algorithm is to examine it and convert
it into a procedure that operates on composite mathematical objects, such as
vectors or matrices, and to split these objects over all of the processors. However,
the latest and most efficient serial method is not always suited to this adaptation,

and often an older, less efficient serial method may possess a higher degree of

66

inherent parallelism, and be more adaptable.

When a problem is split into a number of subproblems, it is desired that each of
the subproblems are independent from the others. This would allow each problem
to be solved on a separate processor. Unfortunately, very few algorithms split up
into totally independent subproblems, and some global communication needs to
be done, e.g. calculation of an inner product where both vectors are distributed
over the network. During such a global communication, all processors have to wait
to receive their information from the others before they can continue processing®.
This global synchronisation limits the amount of work that can be done in parallel,
and thus affects the performance of the algorithm, thus, each transputer should

do a large amount of computation with respect to communication.

5.2.1 Alternative parallel PCG algorithm

The serial PCG algorithm (4.1) given in Section 4 has two vector inner products
(three depending on the termination condition) requiring global communication
between the processors, and they do not appear in the same position in the
algorithm. An alternative algorithm, proposed by Meurant, described in [13],
has an extra inner product and two extra vectors of storage, but all the inner

products appear at the same point, and thus they can all be calculated at the

°In SIMD or shared memory MIMD systems each processor can have access to all of the

memory, so the problems are not as serious.

67

same time.

w= Az
r=b—w
z=M""r
p==z
doe=0,1,..
}

o

IS
I

S
|

I~
Il

[
Il

IS
I

63

w'p (5.1)

o’ (ipl) — (ip3)

S

(ip3)
T+ ap
r—aw

z—av

z+ Bp

Proc 1

Proc 2

Proc 3

Figure 5.3: Sample split of A over three processors

5.3 Parallelising the Matrix Problem

The n by n matrix problem, where n = nx x ny,
Azr =10

now has to be split up so that it can be solved on p processors. It is sensible to
allocate similar size parts of the problem to each processor, to make sure that each
processor does a similar amount of work. Noting from Section 3.4.1 that the block
preconditioners require the block size, s; to be an integer multiple of nz, for the
ease of programming, we enforce these restrictions for all the preconditioners. The
matrix A is split up into p parts of s; contiguous rows of A, where: =1,2,...,p.
The same happens for all vectors on each processor. Each processor i stores its
part of A in the same way as Section 4.2.1 for the serial case, e.g. for a 18 by 18
matrix with nxz = 3 and ny = 6, with three processors, A is split as in Figure 5.3,
where, as in Section 4.2.1, processor two stores a2 to af,, at to at,, and a? to a?,.
In general, if a block starts at equation ¢, with block size s, we store a? to aj_l_s_l,
aj_y to ajy .y, and @i, to @, ;.

For a matrix-vector multiplication, Az, most of the required information is
available in the current processor. If 7 and s are defined as above, then we need

the elements of x from the ‘above’ processor z;_,,.. to x;_;, and the elements of x

69

from the ‘below’ processor 2., t0 Z; 1 ;1 pp1-

5.4 Communication Harnesses and Libraries

In order to effectively implement an algorithm on an arbitrary number of proces-
sors connected in an arbitrary communications network, it is necessary to have
an effective communications harness [3] that takes out the need for the user to
know the details of the network. This harness provides a transparent message
routing system that allows any processor to send a message to any other, irre-
spective of the network topology. The harness runs in parallel with the processes
on each transputer. The harness is implemented as a library of function calls,
which the user links in when compiling their program. The main process on each
transputer calls an initialise function which sets up all the required information
about the network, and then all communication is done via the harness library
calls. The main advantage of harnesses is that if, say, an algorithm was developed
on a pipeline transputer system, to move it to a two dimensional array network
would only require the writing of an array harness, the actual algorithm would
remain unchanged.

In a similar vein, it is a good idea to write a library of subroutines for doing
various useful things, such as matrix-vector multiplication or vector inner prod-
ucts, where the matrices or vectors are distributed over the network (See [14] for
the implementation of a complete matrix and vector package on a Hypercube).
The library is written in terms of the harness subroutine calls, so it is instantly
portable, and again independent of the underlying network topology.

It was decided, due to the lack of time, to implement a single library to do

70

the function of both of the above, tailored for a pipeline of transputers and the
problem in hand. It assumes that the configuration file for the transputers has

been set up correctly. It provides the following services

e An initialisation subroutine to assign a unique identifier to each transputer

in the pipeline.

A vector inner product subroutine to distribute local parts of the inner

product over the network, and to return with the global inner product.

e A matrix-vector multiplication support subroutine to obtain the parts of

the vector not stored in the current transputer, as in Section 5.3.

A subroutine to collect up all the partial solutions and deposit them in the

master Processor.

5.4.1 Initialisation

Although it is possible to determine the network topology of a system at run-
time [3], here it is assumed that the network is a pipeline, and that the connections
between the processors never change.

The master processor calls the initialisation subroutine with details of the
number of processors, p, required to use and the dimensions of the matrix system,
nx and ny. The slave processors just call the routine and wait for the return value.
The subroutine returns to each processor a unique identifier, the block size s; it
has been assigned and the index of the first equation assigned. From these the
processor can work out what entries of the matrix A and the right hand side b to

generate.

71

Transfer 1: 1 142 |3+4+ 4

Transfer 2: 1 IP = IP 4

Transfer 3: | [P | IP IP —~ IP

Figure 5.4: Inner Product transfers for four processors

Transfer 1: 1 H=1+2 3 4454+ 5

Transfer 2: 1 142+ IP 445 5

Transfer 3: 1 IP =~ IP = IP 5

Transfer 4: | [P | IP 1P 1P =~ IP

Figure 5.5: Inner Product transfers for five processors

5.4.2 Inner Product

Each processor works out the local inner product using the partial vectors stored
locally, then all processors call the inner product subroutine. This subroutine
calculates the global inner product IP in p — 1 communications, e.g. with four
processors the sequence of transfers is shown in Figure 5.4, and that for five
processors in Figure 5.5. and similarly for any other number of processors.

This method of passing the partial inner product from the outside to the
centre and back again is the most efficient way to calculate an inner product on
a pipeline, but it is not the best way over all networks. The fastest requires a

binary tree network, where the number of communications required is O(logp),

72

as opposed to O(p) for the pipeline [14].

5.4.3 Matrix-vector Multiplication

This subroutine is called before the transputer does its local matrix-vector mul-
tiplication to obtain the parts of the vector that are stored in the ‘above’ and

‘below’ transputers (See Section 5.3).

5.4.4 Solution Collection

This subroutine collects all of the partial solutions z; and assembles them into

the solution, x, on the master transputer.

5.5 Parallel Preconditioner Implementation

The preconditioners investigated in parallel are the same ones that were looked at
in Section 4. All of those, except the [CCG algorithm and the POLCG algorithm,
are inherently parallel, that is the work involved in putting the problem on a set
of processors and the implementation of the harness suffices to allow the parallel

implementation to be done.

5.5.1 POLCG Preconditioner

The POLCG algorithm, can be easily implemented in parallel if the storage of A
on each processor (Section 5.3) is modified slightly. The diagonal of A, a?, has to
extend nz positions above the first equation in the block, i.e. as in Section 5.3
» to a? ;. This modification

d d 1 1 2
we need @i, to @iy, 4, ¢;_y to a;, 4, and ai_

T T

73

allows the storage of the equivalent part of the A= approximation as that of A
in each processor, thus the Az and the approximate A~'z multiplications have

the same form.

5.5.2 ICCG Preconditioner

There are two problems involved in parallelising ICCG, one is doing a parallel
Incomplete Cholesky factorising of the matrix A, and the other is the solution
of the LL™Tz = r equation, which involves a forward and backward substitution
across the network of processors. Unfortunately, the detailed study of these two

problems could not be performed, due to a lack of time.

Parallel Cholesky Decomposition

The sparse Cholesky Decomposition in parallel is investigated in [6], and this

notices that the Cholesky algorithm (3.16) can be written as the following

do:=1,2,...,n
doj=12.. . i—1
cmod(4, 7)

cdiv(z)

where task cmod(z,) modifies column ¢ by column j where j < ¢, and task cdiv(z)
divides column ¢ by a scalar. The task tcol(:) computes the ith column of the
Cholesky factor. Note that the first cdiv(¢) cannot start until cmod(é, 7) has been
completed for all ¢+ < j, and column ¢ can only be used to modify subsequent

columns after cdiv(z) has been completed. However, there is no restriction on the

74

order of the cmod tasks. When A is sparse, the order restrictions become less,
and, by constructing an elimination tree [6], the order of possible execution can
be determined.

In the serial case, with the A generated from the discretisation in Chapter 2, it
was possible to drastically simplify the incomplete Cholesky algorithm. A similar

feat should also be possible in parallel.

Parallel Solution of LLYz =r

The standard way of solving a triangular system Lz = r is to use forward (or
backward) substitution. The problem with this, is that it is inherently serial,
since the value of one unknown depends on the value of the previous one. This
problem is compounded with the fact that [CCG requires a forward and a back-
ward substitution pass for the solution of LLTz = r. Several parallel methods

have been proposed in [8],

e Fan-in and Fan-out algorithms

o Wavefront algorithms

o Cyclic algorithms

but these all require a ring network topology, and a different mapping of the
matrices and vectors onto the processors, both of which conflict with the hardware

available and the parallel decomposition proposed in Section 5.3.

75

5.5.3 TRICG Preconditioner

Although this preconditioner was not considered in serial due to the structure of
the matrix A from the problem discretisation, an efficient tridiagonal solver for a
pipeline network was discovered in [19]. It used the technique of cyclic reduction
of the tridiagonal system followed by a backward unfolding scheme. See [19] for

the details.

5.6 Performance Metrics

As for the serial case, the timing metrics (Section 4.3) preconditioning time,
iteration time, and total time are recorded, but in this case only for the master
processor. Since no extra preconditioners have been considered in this Chapter,
the iteration matrix metrics (Section 4.3) remain the same as those in Chapter 4.

here.

5.6.1 Serial/Parallel Comparisons

It is natural, after parallelising an algorithm, to measure its performance related
to the serial algorithm in some way. The most commonly accepted measure is

speedup [18], S,, where

execution time on one processor

Sy =

execution time on p processors

This definition includes any overheads involved in the parallel algorithm, such as
communication, but one flaw is that one is usually more interested in how much

faster a problem can be solved with p processors. Thus a modified definition

76

exists,

execution time on one processor with best serial algorithm

S, =

execution time on p processors with parallel algorithm

The best serial algorithm in this case is the ICCG algorithm. There are other
modifications that can be done (See [18]) which model the work done in the
parallel algorithm more accurately, but for the purposes of this dissertation, the
above two are sufficient. Once the speedup has been determined, it is natural to
ask how efficiently the parallel system is being used. The efficiency of a parallel
algorithm is defined as

For the perfect parallel algorithm, S, = p and £, = 1, but as this is very unlikely,

a parallel algorithm is usually considered efficient if £, > 0.9, i.e. 90% efficient.

5.7 Parallel Implementation Results

Unfortunately, due to unforeseen problems with programming the transputer sys-
tem, only the CG and DCG methods were programmed in parallel. The other
preconditioners were implemented, but either they did not converge, or gave
errors during execution. Luckily, since most of the preconditioners are readily
divisible into independent subproblems, the speedups obtained for CG and DCG
are applicable to the rest.

Tables 5.2, 5.3, 5.4, and 5.5 show the time taken for the CG and DCG pre-
conditioners for one, two, three, four, and five processors, the speedup 5,, and
the parallel efficiency E, (as a percentage). Since only the two preconditioners

were implemented, and their performance is no where near that of the best serial

77

ICCG algorithm, the S7 speedup is not calculated. The number of iterations is

obviously the same as for the serial case. The times given when one processor is

being used are not the same as those obtained when using the serial algorithm,

they are slightly larger. This is due to the fact that the modified PCG algorithm

is being used, not the basic PCG algorithm.

All the results show a decrease in iteration time for increasing the processors
from one to five. As the results for the 5x5 systems show, this decrease may

not last for much longer after five processors.

The rate of decline of the parallel efficiency drops as the problem size gets

larger.

The smaller the problem size and the larger the number of processors, the
less efficient the method will be, due to the increase in communication traffic

compared to computation.

Parallel efficiencies of over 90% are obtained when the problem size is greater

than or equal to 20 by 20.

Some of the entries in the E, column are greater than 100% due to the un-
equal splitting of the problem over the transputers. As shown in Table 5.1,
not all the transputers are the same speed, and, for example, a 20 by 20
problem on 3 processors will put 120 equations on the first, and 140 each
on the second and third, and since transputers 2 and 3 are faster than the

first, the equations get solved in the time that it should take for 360.

78

Problem Size | Processors | Time | S, | E,
1 553 1.00 | 100

2 298 1.85 | 92.8

5xH 3 240 | 2.30 | 76.8
4 237 | 2.33 | 58.3

5 206 | 2.68 | 53.7

1 6128 | 1.00 | 100

2 3257 | 1.88 | 94.1

10x10 3 2092 | 2.93 | 97.6
4 1628 | 3.76 | 94.1

5 1542 | 3.97 | 79.5

1 50172 | 1.00 | 100

2 25487 | 1.97 | 98.4

20x20 3 15658 | 3.20 | 107
4 13237 | 3.79 | 94.8

5 10816 | 4.63 | 92.8

1 175373 | 1.00 | 100

2 88135 | 1.99 | 99.5

30x30 3 59045 | 2.97 | 99.0
4 41870 | 4.18 | 104

5 36191 | 4.84 | 97.0

Table 5.2: CG for problem 1 with increasing number of processors

79

Problem Size | Processors | Time | S, | E,
1 999 1.00 | 100

2 514 1.94 | 97.2

5xH 3 431 2.32 | 77.3
4 424 | 2.36 | 58.9

5 355 | 2.81 | 56.3

1 12330 | 1.00 | 100

2 6384 | 1.93 | 96.6

10x10 3 4093 | 3.01 | 100
4 3149 | 3.92 | 97.9

5 3003 | 4.11 | 82.1

1 103638 | 1.00 | 100

2 52344 | 1.98 | 98.9

20x20 3 32136 | 3.22 | 107
4 27132 | 3.82 | 95.5

5 22146 | 4.67 | 93.6

1 372720 | 1.00 | 100

2 187323 | 1.99 | 99.5

30x30 3 125432 | 2.97 | 99.0
4 88924 | 4.19 | 105

5 76854 | 4.84 | 97.0

Table 5.3: CG for problem 2 with increasing number of processors

80

Problem Size | Processors | Time | S, | E,
1 534 1.00 | 100

2 283 1.89 | 94.3

5xH 3 229 | 233|717
4 224 | 2.38 | 59.6

5 196 | 2.72 | 54.5

1 6119 | 1.00 | 100

2 3309 | 1.85 | 92.5

10x10 3 2114 | 2.89 | 96.5
4 1631 | 3.75 | 93.8

5 1552 | 3.94 | 78.9

1 51429 | 1.00 | 100

2 26129 | 1.97 | 98.4

20x20 3 16031 | 3.21 | 107
4 13537 | 3.80 | 95.0

5 11041 | 4.66 | 93.2

1 177309 | 1.00 | 100

2 89224 | 1.98 | 99.4

30x30 3 59843 | 2.96 | 98.8
4 42423 | 4.17 | 104

5 36661 | 4.84 | 96.7

Table 5.4: DCG for problem 1 with increasing number of processors

81

Problem Size | Processors | Time | S, | E,
1 874 1.00 | 100

2 465 1.88 | 94.0

5xH 3 314 1234|779
4 369 | 2.37 | 59.2

5 318 | 2.75 | 55.0

1 8118 | 1.00 | 100

2 4290 | 1.89 | 94.6

10x10 3 2742 | 2.96 | 98.7
4 2114 | 3.84 | 96.0

5 2010 | 4.03 | 80.8

1 67727 | 1.00 | 100

2 34124 | 1.98 | 99.2

20x20 3 20934 | 3.24 | 108
4 17677 | 3.83 | 95.8

5 11423 | 4.68 | 93.9

1 231713 | 1.00 | 100

2 116610 | 1.99 | 99.3

30x30 3 78211 | 2.96 | 98.8
4 55433 | 4.18 | 104

5 47902 | 4.84 | 96.7

Table 5.5: DCG for problem 2 with increasing number of processors

82

Chapter 6

Conclusions

Of all the serial preconditioning strategies investigated in Chapter 4, the ICCG
method was found to outperform all the rest, and on the larger problem sizes,
outperformed a direct Cholesky Decomposition of the matrix A. For problem 1,
a surprising number of the preconditioning strategies were outperformed by the
standard CG method, although for problem 2, most did outperform CG. The
only other methods, apart from ICCG, that performed well over both the sample
problems were the DBICCG methods, although some success was had with the
POLCG methods used on problem 1. The overall performance of the POLCG
methods was not as good as expected, especially on problem 2. The same applied
to the DBTCG method, although this was better on problem 2. Since most
physical problems would be far closer to problem 2 than problem 1, we would
want to investigate further the methods which work well on problem 2.

No concrete evidence was obtained for direct links between condition num-
ber of the iteration matrix and the CG convergence, or spectral radius and CG

convergence, although the results in Chapter 4 did seem to indicate a fair corre-

83

lation. The clustering of eigenvalues appears to have a greater effect, although no
quantitative measure of eigenvalue clustering could be found in order to examine
the effect in detail.

A transputer library for the Reading transputer system was successfully im-
plemented for the pipeline of processors, but, unfortunately, only the CG and
DCG methods could be implemented in parallel, and further work is required to
debug the remaining preconditioners. This has not stopped the investigation of
the parallelisation of the CG and DCG methods, and Chapter 5 has shown that
where problem size was far greater than number of processors, parallel efficiencies
of over 90% can be achieved. Since most of the remaining preconditioners are
all of a similar structure to CG and DCG (they are all inherently ‘blocked’ into
independent subproblems), the high efficiencies should also be obtainable. The
ease of obtaining these high parallel efficiencies was surprising considering that
the communication network was a pipeline, but the possible overheads involved
with a pipeline probably would not appear until a far larger number of processors
were used. Further work is required on the parallelisation of the ICCG method,
although, as shown in the serial case, the DBICCG methods can perform well
over both sample problems (and, in theory, they are easy methods to parallelise).

Overall, there is a lot more work that can be done on the parallel PCG meth-
ods. More specifically, different communication networks should be investigated,
and a more complex communication harness and a library of frequently used

mathematical functions should be implemented.

84

Appendix A

Basic Matrix Theory

This appendix describes some of the basic matrix theory associated with this
dissertation. Unless otherwise stated, the theory applies to n by n real, square
matrices. The elements of the matrix A are denoted «a;;, where 2 and j range from
1 to n.
Symmetry
The matrix A is symmetric if

A= A"
Positive Definite

The matrix A is positive definite if

Ve #0, z'Az >0

89

Diagonal Dominance

The matrix A is diagonally dominant if

i—1 n
Vi, aal 2 lagl+ D il
7=1

j=it1
It is strictly diagonally dominant if the inequality > is a strict inequality >.

Irreducible

The matrix A is irreducible if

Ay A,
AP such that PTAP =

0 A;

i.e. the matrix A cannot be partitioned so that there are two or more independent
groups of equations.
Irreducible Diagonal Dominance
The matrix A is irreducibly diagonally dominant if it is diagonally dominant,
with a strict inequality for at least one 7, and it is irreducible.
Existence of A~}
If A is irreducibly diagonally dominant, a;; > 0, and a;; < 0 for ¢ # j, then A is
positive definite and A™! exists.
Eigenvalues
The n eigenvalues, A;, of the matrix A are the solutions of
det(A— A1) =0

They are all real if A is symmetric, and all positive if A is positive definite.

86

Spectrum

The spectrum of the matrix A, A(A), is the set of all the eigenvalues of A

MA = {\]i=1.2,....n}

Spectral Radius

The spectral radius, p(A), of the matrix A is defined by

p(A) = max (|A])

1<i<n

Vector Norms

A vector norm on IR" is a function f: R" — R, denoted f(z) = ||z||, such that

ze R, fla)=0if 2 =0

=
&
\Y
<o

fle+y) < flo)+fly) 2 yelR"

flaz) = la|f(z) a€R, z€R
Some useful norms are the p-norms, where

zll, = 34D |zl7, p>1
=1

of which the 1, 2, and 0o norms are the most important
lzlly = |z
=1
lzll: = \|D[zil? = /2T
=1

llloo = max |z

Another useful norm is the A-norm

l|lz||a = /2T Az

87

Matrix Norms

Similar to the vector norms, matrix norms are a function f : R™*" — IR, denoted

f(A) =|]|A]|, such that

=
=
W
o

Ae R™" f(A)=0if A=0
f(A+B) < f(A)+f(B) A BeR™"

flad) = lalf(4) a€R, Ac R

The frequently used norms are the Frobenius norm

Al = | D2 lag?
=1 j5=1
and the p-norms
Az
[—
w0 |[2]]p

The 1, 2, and oo matrix norms have alternative expressions

m
1Al = lrgjfg;ml
1Al = /p(ATA)

n
1A]o = 1rgg>;zgla¢jl

<i<m &

Condition Number

The condition number of a matrix A, x(A), is defined as

K(A) = [|A[[IA7Y]

with the convention that x(A) = oo if A is singular. It is a measure of how
sensitive the Az = b problem is to numerical solution, the larger the condition
number the more sensitive the problem is to rounding errors. Note that x(A)

88

depends on the underlying matrix norm, and when this norm is to be stressed,

subscripts are used, e.g.

ra(A) = [[A[l2[]A7H];

The k3(A) norm can also be expressed as

where A, and A,,;, are the maximum and minimum eigenvalues of A.

p-cyclic Matrix

The matrix A is weakly cyclic index k (> 1) if there exists a permutation matrix

P such that PAPT is of the form

[0 o 0 A]
Aw 0 0 0
papr—| 0
0
0 0 oo 0 Ak,k—l 0

If the Jacobi matrix, J = D~'(L + U), where D is the diagonal of A, L is the
lower triangular part of A, and U is the upper triangular part of A, is weakly
cyclic index p (> 2), then A is a p-cyclic matrix. It can be shown that a block

tridiagonal matrix is a 2-cyclic matrix [22].

89

Bibliography

1]

3L Ltd. Parallel FORTRAN User Guide, December 1990. Software version

2.1.3.

Khalid Aziz and Antonin Settari. Petroleum Reservoir Simulation. Applied

Science Publishers Ltd., London, 1979.

M.A. Baker, K.C. Bowler, and R.D. Kenway. MIMD implementations of
linear solvers for oil reservoir simulation. Parallel Computing, 16:313-334,

1990.

Paul Concus, Gene H. Golub, and G. Meurant. Block preconditioning for

the Conjugate Gradient method, July 1982. LBL-14856.

Paul Concus, Gene H. Golub, and Dianne P. O’Leary. A generalized Conju-
gate Gradient method for the numerical solution of elliptic partial differential
equations. In J.R. Bunch and D.J. Rose, editors, Sparse Matriz Computa-

tions, pages 309-332. Academic Press, New York, 1976.

Alan George, Michael T. Heath, Joseph Liu, and Esmond Ng. Sparse
Cholesky factorization on a local-memory multiprocessor. SIAM Journal

of Scientific and Statistical Computing, 9(2):327-340, March 1988.

90

7]

[10]

[11]

[12]

Gene H. Golub and Charles F. van Loan. Matriz Computations. Johns

Hopkins University Press, 2nd edition, 1989.

Michael T. Heath and Charles H. Romine. Parallel solution of triangular
systems on distributed-memory multiprocessors. SIAM Journal of Scientific

and Statistical Computing, 9(3):558-588, May 1988.

R.W. Hockney and C.R. Jesshope. Parallel Computers 2: Architecture, Pro-
gramming and Algorithms. Adam Hilger, Bristol and Philadelphia, 2nd edi-

tion, 1988.

D.A.H. Jacobs. Preconditioned Conjugate Gradient methods for solving sys-
tems of algebraic equations. Technical Report RD/L/N 193/80, Central

Electricity Research Laboratories, October 1981.

Olin G. Johnson, Charles A. Micchelli, and George Paul. Polynomial precon-
ditioners for Conjugate Gradient calculations. SIAM Journal of Numerical

Analysis, 20(2):362-376, April 1983.

David S. Kershaw. The Incomplete Cholesky—Conjugate Gradient method
for the iterative solution of systems of linear equations. Journal of Compu-

tational Physics, 26:43-65, 1978.

P. Lockey and R.W. Thatcher. Efficient implementation of preconditioned
Conjugate Gradients on a transputer network. Technical Report Numerical
Analysis Report No. 217, Department of Mathematics, University of Manch-

ester, June 1992.

91

[14]

[15]

[16]

[18]

[19]

[20]

[21]

Oliver A. McBryan and Eric F. van de Velde. Hypercube algorithms and
implementations. SIAM Journal of Scientific and Statistical Computing,

8:227-287, 1987.

J.A. Meijerink and H.A. van der Vorst. An iterative solution method for lin-
ear systems of which the coefficient matrix is a symmetric M-matrix. Math-

ematics of Computation, 31(137):148-162, 1977.

Keiran J. Neylon. Guide to using the transputer system. Department of

Mathematics, University of Reading, November 1991.

Kieran J. Neylon. Block iterative methods for three-dimensional groundwater
flow models. Master’s thesis, Department of Mathematics, University of

Reading, September 1991.

James M. Ortega and Robert G. Voigt. Solution of partial differential equa-

tions on vector and parallel computers. STAM Review, 27(2):149-240, 1985.

Fabio Reale. A tridiagonal solver for massively parallel computer systems.

Parallel Computing, 16:361-368, 1990.

J.K. Reid. On the method of Conjugate Gradients for the solution of large
sparse systems of linear equations. In J.K. Reid, editor, Proceedings of the

Conference on Large Sparse Systems of Linear Fquations, pages 231-254.

Academic Press, New York, 1971.

B.T. Smith, Y. Ikebe Boyle, V.C. Klema, and C.B. Moler. Matriz Figen-
system Routines: FISPACK Guide. Springer Verlag, New York, 2nd edition

edition, 1970.

92

[22] R.S. Varga. Matriz Iterative Analysis. Prentice Hall, 1962.

93

