
University of Reading
Department of Mathematics and Statistics

MODEL RECONSTRUCTION FOR
DYNAMICAL SYSTEMS

Abdulrafiu Babatunde Odunuga

A thesis submitted for the degree of Doctor
of Philosophy

January 2022
Revision Date: April 2023

Abstract

In numerical weather prediction (NWP), determining states and recon-
structing model parameters or the underlying structural functions of dynamical
models are essential and crucial components of the modelling and simulation
process. In addition, it is gaining prominence in emerging application areas. In
light of this, we examine the estimate of an unknown model M or the F function
that determines the rate of change of x, which represents the dynamical system
model of the type ẋ = F (x) using a high-dimensional nonlinear approach based
on Ansatz functions such as Polynomial or Gaussian functions.

The focus of this thesis is to propose specific iterative learning methods
developed for estimating a dynamical system of interest using data assimilation
(DA) techniques, as opposed to the traditional approaches typically used for
parameter estimation, reduced order model approximation and the current
approaches of machine learning (ML) and artificial intelligence (AI) techniques
in general.

This is initially evaluated using two models of dynamical systems with
increasing complexity: Lorenz ’63 and Lorenz ’96. Then, we examine the recon-
struction strategy based on a variety of basis functions, including Polynomial
and Radial Basis Functions (RBF). As generic application issues, we examine
the reconstruction of the dynamics of Lorenz ’63 with implicitly applied RBF
under the assumption that the L2 metric in coefficient space corresponds to a
Gaussian prior in coefficient space. In addition, we employ the Amari Neural
Field model for kernel reconstruction as a simulation test case for brain neural
activity.

Using the Lorenz ’96 model, we examine a Taylor series technique to
express the forcing function F (x) with regard to the state variables. This was
utilised for the rebuilding of models via ensemble data assimilation. Using
the variational data assimilation method and the Kalman filter technique, our

i

Model Reconstruction for Dynamical Systems

primary objective is to study a general method for resolving this problem with
little or some specific understanding of the underlying dynamical system.

The models are then supplemented with a reaction-diffusion system. We
demonstrate that learning a reaction-diffusion model’s fundamental partial
differential equation is doable and produces good results when the learnt model
is utilised as a propagator.

Thus, we notice that the general iterative model reconstruction is com-
petitive for the specific inverse issue under study for a broad range of initial
conditions. Included are numerical examples demonstrating the practicability
of the method.

Page ii/150

Dedication

To my late dad and mum (Alhaji & Alhaja S. A Odunuga) for their love,
care, and inspiration from the beginning to this day. I pray that the Almighty
Allah grant them Aljanat Firdaus (Aameen).

...This is a promise kept.

iii

Declaration

I declare that this thesis is my original authorial work. All sources, references,
and pieces of literature used are correctly cited and listed in complete reference.

A B Odunuga

iv

Acknowledgements

My reserved and heartfelt appreciation goes to Prof. Dr. Roland Potthast
for his painstaking efforts, guidance, and supervision throughout this PhD. I
am immensely grateful for his extensive feedback and encouragement during
challenging times. My interactions with him in the last few years have been
enriching. I have been motivated to continue seeking further knowledge because
of his unwavering interest in science, which has profoundly impacted me as I
advance in my research journey.

I also want to show my appreciation to Prof Doug Saddy, whose analogy of
a ’learner to expert driver’ interpretation of the challenges we seek to address
from the first time I met him stuck with me throughout this research. I am
deeply grateful for your contribution and helpful comments.

My appreciation also goes to Prof Amos Lawless, Dr Fazil Baksh, and
Dr Danica Greetham. I have benefited greatly from your comments during
and after the committee meetings, not forgetting Prof. Dan Crisan (external
supervisor). The feedback has proved valuable and helped reshape my views
on what I need to improve to fulfil the tasks ahead of me. Once again, I thank
you all for your support and patience during these periods.

I have had the privilege of meeting people and making new friends, all of
whom I cannot name here, including past and present PhD colleagues, staff,
and all those who have been helpful in one way or another throughout my
journey here at the University of Reading.

Lastly, to my incredibly supportive family, Ajoke, Adisa, and Ajike, for
their love, understanding, and steadfast support all the time.

v

Contents

Contents vi

1 Introduction 1
1.1 An Overview . 5
1.2 Model Reconstruction in Neuroscience 7
1.3 Parameter Estimation in Data Assimilation 10
1.4 Reduced Order Model Literature 12
1.5 Survey on Modern Learning Techniques 14
1.6 Data Assimilation Techniques 17
1.7 The Approach of Parameter Estimation 20
1.8 Thesis Outline . 22

2 Model Systems 25
2.1 Lorenz ’63 . 25

2.1.1 Simulation Setup, Techniques, and Deterministic Chaos . 26
2.2 Lorenz ’96 . 28

2.2.1 The Lorenz ’96 Model System and its Background 28
2.2.2 Simulation Setup, Techniques, and Visualization 29

2.3 Amari Neural Field Model . 32
2.3.1 The Amari Model and its Background 33

2.4 Weather Forecasting . 34
2.4.1 Setup for Reaction-Diffusion Equation 34

3 Data Assimilation for Learning Models 37
3.1 A Variational Approach to Model Reconstruction 37
3.2 Kalman Filter for Model Learning 42
3.3 Forcing Term Estimation (FTE) 44

3.3.1 Forcing Term Estimation based on Polynomials (POL) . 45

vi

Model Reconstruction for Dynamical Systems

3.3.2 Forcing Term Estimation based on Radial Basis Functions
(RBF) . 49

3.4 Neural Kernel Estimation . 50
3.4.1 Classical Kernel Estimation 52
3.4.2 A Kalman Filter for Kernel Estimation 53

4 Low and High-Dimensional Applications 55
4.1 Learning the three-dimensional Lorenz ’63 55

4.1.1 Variational Model Learning a 1d Scenario 56
4.1.2 Variational Model Learning for L63 60
4.1.3 Statistical Analysis of the Numerical Experiment Descrip-

tion: L63 . 63
4.2 Learning higher dimensional Lorenz 96 68

4.2.1 Statistical Analysis of the Numerical Experiment Descrip-
tion: L96 . 72

4.3 Neural Field Model Learning the Kernel 73
4.4 Applications to Reaction-Diffusion System 78

4.4.1 Sensitivity Analysis of the Numerical Experiment De-
scription: PDE . 81

5 Statistical Sensitivity Analysis of Model Reconstruction 87
5.1 Sensitivity Results for Lorenz Model L63 88
5.2 Sensitivity Results for Lorenz 96 Model 97
5.3 Sensitivity Results for the Amari Neural Field Equation 106

6 Conclusions and Perspectives 113
6.1 Evaluation of Results . 113
6.2 Limitations of the techniques used in the thesis 115
6.3 Perspectives on Techniques . 116
6.4 Perspectives on Applications . 117

Bibliography 117

7 Appendix 118
7.1 Learning Low Dimensional Lorenz-63 118
7.2 Learning Higher Dimensional Lorenz-96 120

7.2.1 Display Trajectories and Runge-Kutta Application 120
7.2.2 Nature Run of Lorenz-96 122
7.2.3 Learning Coefficients of Model Representation based on

the Kalman Filter . 124

Page vii/150

Model Reconstruction for Dynamical Systems

7.2.4 Implement Local Ensemble Transform Kalman Filter
(LETKF) . 128

7.3 Neuro Reconstruction for Neural Kernel Estimation 130
7.4 PDE for Weather Simulation . 137

Page viii/150

List of Figures

1.1 The figure shows a one-dimension state-space illustration of the
trajectories of the data assimilation approach used in this thesis
at each assimilation step. We consider the state-space X = Rn,
i.e., our states x ∈ Rn are real numbers. At time t1, we have
calculated xb

1 ∈ R1; Similarly, we measure y1 ∈ R1. We then
estimate x1 at time t1, the result is the analysis at xa

1 ∈ R1. The
process is repeated at each successive time step t2, t3, t4,...,tn. . 4

1.2 Depicts the model learning strategy included in a classical
data assimilation approach at each assimilation phase employed
in this thesis. The M0, M b

1 , M b
2 ,...,M b

n (model error background
at every iteration stage), while Ma

1 , Ma
2 ,...,Ma

n represents the
model analysis at each propagation stage. The variational or
Kalman filter method updates the Model at each time step tk . 4

1.3 In this figure, we show a flow field description of a typical
dynamical system trajectory estimation 20

2.1 The simulation of the Lorenz ’63 so-called butterfly equations. . 27
2.2 (a) Displays the visualization of the nodes and activity function of

Lorenz ’96 and (b) shows the final view when (time index=1001)
of the changes in the excitations for the model at each time step
around the rings. 30

2.3 Visualization of the trajectories of the Lorenz ’96 system with
N = 9 nodes and nsteps = 100 time-steps with their respective
time integrations . 31

2.4 We show the time series of the integration of equation (2.6) with
every 30th step between T = 0 and T = 20, where ht = 0.05, t
is the time taken and jt is the time index for the integration. . 36

ix

Model Reconstruction for Dynamical Systems

4.1 True and approximated model in time step k = 1 and k = 2,
where the blue curve displays the true model, the orange curve
the approximative model, the grey lines indicate the model
dynamics (describes how the variables or components of the
model change and interact with each other as time progresses),
and the magenta points are the states of the model. We also
display an example of a radial basis function around the initial
state as a grey line. The grid points as centers of the RBF
functions are shown as black dots, they coincide with the model
states x

(a)
k−1 in this example. 57

4.2 True and approximated model in time step k = 50, k = 300 and
k = 1000, where the blue curve displays the true model, the
orange curve the approximative model, the grey lines indicate
the model dynamics and the magenta points the states of the
model. We also display an example of a radial basis function
around the initial state as a grey line. The grid points as centers
of the RBF functions are shown as black dots, they coincide
with the model states x

(a)
k−1 in this example. 58

4.3 True and approximated model in time step k = 50, k = 300 and
k = 1000, where the blue curve displays the true model, the
orange curve the approximative model, the grey lines indicate the
model dynamics and the magenta points the states of the model.
We also display an example of a radial basis function around the
initial state as a grey line. The grid points as centers of the RBF
functions are shown as black dots, they do not coincide with the
model states x

(a)
k−1 shown as magenta points in this example. . . 59

4.4 (a) and (b) depict the original dynamics from different perspec-
tives, whereas (c) and (d) depict the rebuilt dynamics from the
same perspectives, where the model has been reconstructed using
equation (3.23). The blue star is the beginning state for the
dynamics and the reconstructed trajectory to the rest of the
neural patch. 60

4.5 The error evolution of the first guess during the assimilation
analysis cycle is shown in blue, in (a) we show the first 500 steps,
and in (b) the evolution over an assimilation cycle of 5000 steps.
The red curve shows the error of the constant model in each of
the steps as a reference. The x-axis shows the number of time
steps while the y-axis is the error evolution in both cases. . . . 61

Page x/150

Model Reconstruction for Dynamical Systems

4.6 Figure (a) shows the points generated to approximate the dynam-
ical model by radial basis functions chosen from some uniform
grid and taking all points where the trajectory passes through in
the enclosed cube. Figure (b) shows the first guess approximation
achieved by this within 200-time steps. 62

4.7 The error evolution of the first guess error compared with that of
the analysis error for the model reconstruction approach within
200 time steps. 63

4.8 Experimenting with model learning with Nnat=200, 300, ..., 1100
steps. We display a visualization of the true and the approximate
trajectory both run freely for Nnat steps after completing the
learning for the Lorenz 63 model, starting with the original point
x0. 66

4.9 A histogram of the first guess errors over the full trajectory
during model learning when the seed of the observation error
random number generator was changed. The standard deviation
of the noise was set to ϵ = 10−5. 67

4.10 A histogram of the first guess errors over the full trajectory
during model learning when the initial point for the training
trajectory was changed. The standard deviation of the changes
to x0 in the form x0 = x00 + σ ∗ randn(3, 1) was set to σ = 0.2. . 67

4.11 Results of the dynamics of some variables used in the simulation
of the Lorenz ’96 model in (a), (b) Displays Local Ensemble
Transform Kalman Filter (LETKF) plot of the first guess and
analysis evolution errors and the ensemble spread of the back-
ground and analysis errors (c) The nature run, first guess and
analysis mean for each variable at the end of the last cycle is
displayed with the first guess mean in observation space while
(d) shows the nature run, the first guess states and the first guess
deviation from nature run. 70

4.12 Further results of the simulation of the Lorenz ’96 showing the
first guess field from the original and model reconstruction and
its errors in (a) Line plots of the model reconstruction and first
guess errors and their corresponding means of the first guess
and reconstructed model respectively in (b) and (c) shows the
coefficients of the original and reconstructed model while (d)
displays the coefficient reconstruction error. 71

Page xi/150

Model Reconstruction for Dynamical Systems

4.13 Figure (a) shows the distribution of the reconstruction error
for N = 100 model reconstruction runs with x0 taken from the
random distribution described above. The coefficients and their
reconstruction for the last sample are shown in Figure (b). . . . 73

4.14 We show two snapshots from the prescribed (bottom), and re-
constructed dynamics based on the RBF nonlinear model recon-
struction technique. The images show the times t = 5 for (a)
and t = 10 for (b) with a simulation time-step of 0.9, where the
input was given with times steps of size 1. The approximate
dynamics can generate the movement of the pulse, though with
a slight phase error. 74

4.15 We show two snapshots from the prescribed (bottom), and re-
constructed model (top) dynamics based on the RBF nonlinear
model reconstruction technique. The images show the times
t = 15 for (c) and t = 20 for (d) and t = 25 for (e) with a
simulation time-step of 0.5, where the input was given with
times steps of size 1. We observe a growing phase shift and a
growing error in the excitation strength when we move towards
smaller time steps for the simulation. 75

4.16 In Figure 4.16 (a)-(e) above, We show the snapshots of the
different phases in the simulations of the original dynamics
(bottom left) at different time steps in comparison with the
Kalman and Kalman error reconstructed dynamics alongside
the neuro reconstruction approach using the kalman filter kernel
estimation technique. 76

4.17 Results of the iterations at different point coordinates and esti-
mated time steps with index k = 100, 115, 135, 205, 250. 80

4.18 The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differ-
ential equation, where we display iterations 0, 30, ..., 150, all for
p = [0; 1]. 82

4.19 The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differ-
ential equation, where we display iterations 0, 30, ..., 150, all for
p = [1; 0]. 83

4.20 The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differ-
ential equation, where we display iterations 0, 30, ..., 150, all for
p = [0.5; 0.86]. 84

Page xii/150

Model Reconstruction for Dynamical Systems

4.21 The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differ-
ential equation, where we display iterations 30, 90, 150, starting
with equal states taken from the original iteration 100. All simu-
lations here with p = [0.5; 0.86] with different diffusion c = 1e−4
in (a), (c) and (e) and c = 1e − 5 in (b), (c) and (f). Fields
with less diffusion are larger as expected, after 150 iterations the
two fields have started to strongly diverge due to the difference
between true PDE and approximated PDE. 86

5.1 The figures (a)-(d) show the growth of the reconstruction error
against the different noise levels, testing ranges from 0.001 to
10. As the observational noise level increases, the reconstruction
error for the coefficients values increase also in a super-linear
way. When the error increases further, the reconstruction breaks
down at an error size of about noise = 3, we show the behaviour
of the reconstructed model for noise = 10 in (e). 89

5.2 The chart shows the reconstruction error versus the noise levels
when the observations are partially observed or spaced at specific
intervals or dimensions, and this is compared with the observed
full state. 90

5.3 The chart shows the reconstruction error versus the time fre-
quency with T = 4 of observations. 91

5.4 The figure shows the behaviour of the reconstruction error mea-
sured above by the first guess forecast difference to the truth
is dependent on the length of the training period indicated by
Nnat. We observe that the reconstruction error decreases as the
number of trajectory observations and corresponding learning
steps increases. 93

5.5 Experimenting with reconstruction error with varying sigma=
4, 5, 6, 7, 8, 9 in (a) to (f). We display a visualization of the
different phases of the errors as we we increase the sigma values.
We observe that the reconstruction error converges slightly as
we increase the values of the sigma. 95

5.6 Experimenting with reconstruction error with varying sigma=
15, 16, 18, 20 in (g) to (j). We display a visualization of the
different phases of the errors as we we increase the sigma values.
We observe that the reconstruction error converges slightly as
we increase the values of the sigma. 96

Page xiii/150

Model Reconstruction for Dynamical Systems

5.7 The curves (a) and (b) show the growth of the reconstruction
error against the different noise levels for small noise and a
break-down of the reconstruction of the main constant coefficient
for large noise. As the observational noise level increases, the
reconstruction error for the coefficient values increases rapidly.
(c) shows the case where noise = 10, where the first coefficient
is no longer properly reconstructed. 98

5.8 The chart shows the reconstruction error versus the observation
spacing when the observations are partially observed. We observe
every n−th state variable, where n = 1, 2, ..., 64. 100

5.9 The chart shows the reconstruction error versus the time spac-
ing/frequency with T = 2 of observations. 102

5.10 The chart shows the reconstruction error versus the time spac-
ing/frequency with T = 0.6 of observations. 103

5.11 Figure (a) shows the model reconstruction error depending on
the length of the input trajectory used for learning in terms
of the total number of time steps Nnat used for training. The
more input data, the better the model reconstruction when all
other parameters are kept fixed. The bar char for the original
and reconstructed coefficients are shown in (b), while (c) shows
the heatmap visualization of the evolution of the coefficient
reconstruction error for the last experiment learning with 1000
time steps. 105

5.12 The line graph shows the reconstruction error versus the observa-
tion error for the different noise levels. There is a strong positive
correlation between the observation and reconstruction errors,
with growing observation error the reconstruction error increases.108

5.13 In figure 5.13 the graphics (a)-(c) show the different representa-
tions of the reconstruction study where we take an observation
at every n−th point of the neural domain. In (a), we carried
out reconstructions for the choice of the n−th point and show
the dependence of the total reconstruction for a corresponding
sequence of experiments. (b) shows the geometric setup for one
of the cases with n = 5. (c) shows one reconstruction snapshot
to provide an impression of what the errors actually mean. . . . 109

Page xiv/150

Model Reconstruction for Dynamical Systems

5.14 Display of the reconstruction error for carrying out the model
reconstruction at every n−th time step of the neural dynamics.
There are some aliasing effects visible, since the pulse rotates
several times and when the observations cover more positions,
the reconstruction is better than for the case where we observe
only at smaller selection. 110

5.15 Shows the time steps measurements at selected points of the
center coordinates c1, c2 of the neural excitation pulse. They
also display the cycle between cosines and sines for the two coor-
dinates, c1(blue) and c2(red) at different time-steps and points
as shown on the chart. 111

5.16 Shows a convergence study in the sense that the total recon-
struction error tend towards zero as the number of time steps
used for the learning increases. 112

Page xv/150

Chapter 1

Introduction

The primary objective of this study is to create novel learning methods
based on data assimilation (DA) techniques for estimating a dynamical system
of interest. The development of machine learning approaches for models with a
range of neural networks is increasing; we shall examine some of these techniques
below. The estimations of the states are often from observations using data
assimilation techniques. In this instance, these approaches were used to recreate
the model, not simply its states.

We again study dynamical system representations to construct innovative
data assimilation strategies to model learning. In the midst of accomplishing
this, we investigate:

a) the Lorenz ’63 model, which is prevalent in low-dimensional chaotic
dynamical model.

b) the Lorenz ’96 model, which is a potentially higher-dimensional chaotic
dynamical model.

c) the Amari Neural Field Model, which is a high-dimensional funda-
mental model from neuroscience; and

d) the reaction-diffusion system model as a full-grown weather model
used by the reaction-diffusion system and COSMO consortia1, where we
restrict our attention to some specific sets of atmospheric variables, in
particular, temperature over central Europe.

1http://cosmo-model.org

1

Model Reconstruction for Dynamical Systems

The algorithmic approach we investigate here starts with employing well-known
data assimilation techniques to estimate models dynamically. To our knowledge,
this has yet to be previously applied to model learning or explored in the field
of neuroscience research in this way.

(VAR) As a first generic approach, we develop and investigate variational data
assimilation to estimate or reconstruct a model. Such approaches have
already been used for adaptive or variational bias correction (VAR) in
satellite data assimilation [34], [125]. Here, we will develop the ideas into
a more generic tool that can be applied in different setups. This will be
worked out in detail in Section 3.1.

(KF) An immensely popular data assimilation method is the Kalman filter
(KF). We will formulate and investigate the Kalman filter for learning
the model in Section 3.2. It can be viewed as an extension to the above
variational approach, where in this case, the background uncertainty
covariance matrix B is updated in each assimilation step.

The dynamical system described in this research is not explicitly dependent on
time (t) for emphasis and clarity. In most instances in this study, its dependence
is on the fields, and it is an implicit dependence, and the coefficients are not
time dependent. However, the forcing term F is dependent on time for its
prediction.

Dynamical systems are usually written in the form of primitive equations

ẋ = F (x) (1.1)

with a forcing term F : Rn → Rn mapping the state space Rn of dimension
n ∈ N of the system into itself. In the case of the Amari model [5], the forcing
term has a particular form

τ
du

dt
(x, t) = −u(z, t) +

∫
D

w(z, y)f(u(y, t)) dy (1.2)

such that for the state u which is a function in L2(D) × C1([0, T]) with some
domain D ∈ Rd, d=2,3 and a time interval [0,T],

F (u)(z, t) = −u(z, t) +
∫

D
w(z, y)f(u(y, t)) dy, (1.3)

where the function w(z, y) for z, y ∈ D with some domain D in space is called
the neural kernel. In that case, the forcing term estimation can be reformulated
as a kernel reconstruction or kernel learning task.

Chapter 1 Page 2/150

Model Reconstruction for Dynamical Systems

• We will describe the use of the learning methods VAR and KF to Forcing
Term Estimation in Section 3.3. It also applies to the reconstruction
of dynamics of the Lorenz models as particular cases. We will show
the results in Section 4.1 and Section 4.2. The application to some
subdynamics of the reaction-diffusion system weather model is conducted
in Section 4.4.

• We will investigate the application of VAR and KF to the Kernel Learn-
ing Problem in Section 3.4, compared to the traditional kernel recon-
struction and numerical results shown in Section 4.3.

Data assimilation combines data from several sources, such as observations
and numerical models, to estimate a complex system’s state. Specifically, it is
commonly used to estimate the state of a dynamical system, which is a system
that changes over time based on a set of rules or equations.

By merging information from observations and a mathematical model,
estimating the state of a dynamical system at a particular moment can be done
by applying the data assimilation technique. Given the available data, it requires
solving an optimisation problem to get the most accurate approximation of the
state. The estimated state can then predict the system’s future behaviour.

Several domains, including meteorology (especially for weather forecasts),
oceanography, and geophysics, utilise data assimilation to enhance weather
forecasting and climate modelling. It is also utilised in engineering and finance
to evaluate the current state of complicated systems and anticipate their future
behaviour. Data assimilation is also the method of combining observations and
models to estimate the state of a dynamic system.

A dynamical system is a mathematical model that represents the time-
dependent behaviour of a system [106]. It consists of a collection of equations
that regulate the deterministic or stochastic behaviour of the system. Usually,
the future state of a deterministic dynamical system is defined or determined
by its current state and the governing equations. Random variables impact the
future state of a stochastic dynamical system.

A diagrammatic representation of the technique in its simplest form is
presented in Figure 1.1 for the classical data assimilation approach, and Figure
1.2 depicts the simplest diagrammatic representation of the model learning
ansatz.

Chapter 1 Page 3/150

Model Reconstruction for Dynamical Systems

(a)

Figure 1.1: The figure shows a one-dimension state-space illustration of
the trajectories of the data assimilation approach used in this thesis at each
assimilation step. We consider the state-space X = Rn, i.e., our states x ∈ Rn

are real numbers. At time t1, we have calculated xb
1 ∈ R1; Similarly, we measure

y1 ∈ R1. We then estimate x1 at time t1, the result is the analysis at xa
1 ∈ R1.

The process is repeated at each successive time step t2, t3, t4,...,tn.

(b)

Figure 1.2: Depicts the model learning strategy included in a classical data
assimilation approach at each assimilation phase employed in this thesis. The
M0, M b

1 , M b
2 ,...,M b

n (model error background at every iteration stage), while
Ma

1 , Ma
2 ,...,Ma

n represents the model analysis at each propagation stage. The
variational or Kalman filter method updates the Model at each time step tk

in the model-space M ∈ Zn.

Chapter 1 Page 4/150

Section 1.1 Model Reconstruction for Dynamical Systems

By learning models in the neuroscience framework, one of this thesis’s
long-term applications is to find new mathematical and computational models
that can support and lead neuroscience research concerned with collective
neural activities and the large-scale complex processes targeted by non-invasive
brain imaging methods. The methods developed here offer a path towards
new predictive analytical approaches and could offer some solutions to the
long-standing contentious debates about using predictive models to obtain
insights from large-scale neural dynamics within the neuroscience research
communities and other fields of study.

We will start our presentation with an overview section (1.1) that examines
earlier and current research studies in this field. In addition to the description
of the mathematical approaches formulated, it lends credence in support of the
argument to establish a vital requirement for a model reconstruction approach
in neuroscience and other application areas. It emphasizes the use of data
assimilation as a method of choice for this study, provides an overview of
related approaches such as reduced order modelling, reviewed surveys on modern
learning approaches (machine learning and artificial intelligence) used in data
science and completes it with a brief introduction to parameter estimation
techniques.

1.1 An Overview
The study of dynamical systems has grown in popularity over the last century,

according to [16]. Its applications span various subjects and sub-disciplines,
including mechanics, biomedical engineering, medical physics, biology, and other
non-technical topics (like economics and social sciences). Over the previous
three decades, the rise of big data has presented significant obstacles to data
sourcing, handled, analysed, and efficient use for decision-making, diagnostics,
and forecasting.

Dynamical systems are usually classified into two phases: the phase state
or state space, which contains states that develop over a particular period and
usually contain the full description of the real-life occurrence we are attempting
to simulate. The other is system dynamics, which describes the rules guiding the
development of our dynamic system of interest with time, with time evolution
being either discrete or continuous [50]. This study’s modelling technique
considers both discrete and continuous dynamical systems.

Chapter 1 Page 5/150

Section 1.1 Model Reconstruction for Dynamical Systems

One of the primary issues for many application areas in the modelling and
simulation of dynamical systems is how to grasp the changes that have occurred
through time from real-world phenomena in estimating a system’s future state.
In their descriptions of Gaussian Process Dynamical Models (GPDM),[52],
[83] and [119] stressed the difficulties of capturing the nonlinearities of the
data without overfitting the model. This frequently leads to the additional
challenge of determining an appropriate mathematical modelling approach
or an extraction algorithm that determines the states and reconstructs the
model parameters of our dynamical system, especially when we have little
prior knowledge of the system without distorting the inherent characteristics
or properties of the system.

This could also require providing a part or the complete description of a
system with a detailed understanding of the hidden or underlying structural
functions of the dynamical model of interest. On the other hand, the goal of
this research is to examine and create a generic technique that may be utilised to
solve these issues with little or specialised knowledge of the underlying dynamical
system.

In doing this, we have developed two mathematical approaches below
describing the steps we have taken to deal with these cases.

i. (POL) We describe the model dynamics by a polynomial approximation,
which may be considered a Taylor function approach. The coefficients
of a polynomial basis function representation parametrise the unknown
model.

ii. (RBF) We investigate a radial basis function approximation with nodes
and coefficients used to estimate the forcing term or the integrated model
application M(x).

The RBF approach is similar to the reconstruction of a flow field along the
known model trajectories, where the direction or movement of the fluid can be
observed at specific locations within a state space as time passes. This is the
reference approach to be investigated for this study.

In both cases, we describe a generic variational approach based on the basic
approach of the Kalman filter to estimate the model coefficients. It follows the
idea of variational data assimilation, with updates of the covariance matrix
Bc of the coefficient,s which parametrise the model dynamics by the standard
Kalman update formula.

Chapter 1 Page 6/150

Section 1.2 Model Reconstruction for Dynamical Systems

B(a) = (I − KH)B(b) (1.4)
Where K = BHT (R + HBHT)−1 is the Kalman matrix for model coefficient
updates, H is the model’s observation operator, and B = B(b) is the model
coefficient uncertainty covariance matrix before the current update step. A
detailed explanation of this method is described in Section 3.2.

First, we describe a generic but naïve approach to model reconstruction
by variational data assimilation in model space. However, this approach
requires a model covariance matrix in this case. In the particular case where
the covariance is Gaussian, we see that the model is represented as a sum of
Gaussians around the current analysis states

x
(a)
k , k = 1, 2, 3, ... (1.5)

One major drawback of the approach described above is that, over some
time, it accumulates a considerable sum of Gaussians that will need to be stored
in each time step for cases where the dynamical system is highly nonlinear and
high-dimensional, i.e., there is the need to store a growing number of the entire
model states, and this naive application of 3D-VAR to model reconstruction
may be computationally inefficient.

To avoid adding large sums of Gaussians, we need to keep the dimension of
the model approximation space limited. The essential task for a particular sys-
tem is to design appropriate ansatz functions which can be used to approximate
the real-world model under consideration. As a result, we study two particular
approaches for this thesis, the polynomial or Taylor approach and the radial
basis function (RBF) approach to help address these challenges.

1.2 Model Reconstruction in Neuroscience
In this section, it is essential to reiterate that, to our knowledge, there is no

known model reconstruction strategy in the area of neuroscience or elsewhere
where the approaches utilised in this thesis have been previously examined or
implemented in this manner. Thus, this is a groundbreaking study for future
research in this field.

Model reconstruction is a crucial method in neuroscience that tries to com-
prehend the brain’s complicated processes by developing computational models

Chapter 1 Page 7/150

Section 1.2 Model Reconstruction for Dynamical Systems

that replicate the behaviour of neural networks. The data from neurophysi-
ological tests, such as electrophysiological recordings, imaging methods, and
behavioural research, are used to develop these models. A good example was
provided by these researchers [75] where they reconstructed a large-scale model
of the neocortical microcircuitry using anatomical and physiological data from
multiple sources.

The primary objective of model reconstruction is to increase knowledge
of the processes underlying brain function and behaviour. Researchers may
examine the impact of various changes on brain activity and behaviour by
creating computer models that represent the critical characteristics of neural
systems.

An essential advantage of model reconstruction is that it enables researchers
to test hypotheses and make experimentally testable brain function and be-
haviour predictions. For instance, researchers can use models to anticipate how
a specific medicine or intervention would impact brain activity and behaviour
and verify these predictions using animal models or people.

The human brain is an enormously complex and diverse organ, with more
than 100 billion nerves and neurons interacting with trillions of synapses. Hence,
it is challenging to generalise from a confined examination or area of the brain
to the rest of the brain [83], [87]. This analysis can only show or provide
insights into the brain region from where the data extraction occurred. As a
result, it is not always feasible to extract as much data as we may need from
the brain using an invasive extraction technique, especially when combined
with the challenge of identifying dependencies from a system that correlate to
the process that would have formed such a system.

In recent times, the vast amount of the data [37], [69] generated within
neuroinformatics has significantly been influenced by advances in informa-
tion technology (IT) and decades of expanding neuroscientific research at all
levels [66], [97]. [111] investigated constructing a neural network model for
computational neuroscience consisting of constituent neural units. This has
also led to the proliferation of multiple databases where a large amount of
neuroscience "big data" can be stored to enhance more research projects and
develop strategies for future systematic collection while analysing these data
remains a crucial challenge.

The authors [31], [81] also emphasised the need to deal with the staggering
amount of data sets produced in a field of scientific investigation such as

Chapter 1 Page 8/150

Section 1.2 Model Reconstruction for Dynamical Systems

medical imaging, including functional magnetic resonance imaging (fMRI) or
computerised tomography (CT) brain scans, Neuroimaging, and other sources
of data generated from the brain in the neurosciences. Lichtman et al. [69]
acknowledged the need for a breakthrough algorithm and new computational
framework to address the inherent difficulty in mapping synaptic network
connections within the brain and the sheer complexity of the amount of big
data generated due to the interconnectedness of the structure of the nervous
system as a result of the emergence and advancement of connectomics.

Two main big data projects are at the frontiers of these recent innovations.
The Brain Initiative and the Open Connectome Project, while the former
aims to develop advanced technological tools that can be used to deepen our
understanding of the inner workings of the neural activity in the brain [3], and
the latter aims to produce a wiring map of the brain to understand connections
between neurons better [37].There are other known research projects in the field
of Neuroscience, [91] explored the use of a mathematical model to determine
the impact of conductances by two chemical components in the nervous system
by reconstructing an electrical signal conducted along axons (or muscle fibres)
by which information is conveyed from one place to another known as the action
potential. An equally notable project is The Brainbox Initiative, designed for
non-invasive simulations and imaging of the brain [17].

Similarly, there are other comparable projects with this research; notable
amongst them is the construction of predictive neuron models through large-
scale data assimilation of electrophysiological data [82], but the direction
of this thesis follows a slightly different layer of focus dealing with simpler
systems. Again, [82] investigated the characterization of diverse neuronal
dynamics in sensory circuits by estimating the dynamical properties of neuron
networks. Furthermore, [20] and [73] used very well-known statistical methods
to make different types of statistical inferences using the Bayesian Model to
investigate some established hypotheses within the neuroscience community on
the dependences of the temporal structure of sequences of events as an essential
part of the decision-making process in the human brain.

Another equally relevant study is that provided by [74], he presented a
relatively simple mathematical approach that fits our perspective, i.e., ẋ =
f(x, t) with observations y = h(x). He estimated the model error using a
dynamical elastical net with L2 and L1 regularization on some term w, which
is added to the dynamics in the form ẋ = f(x, t) + w(x). The key point is
learning model features from the data, which could be described as a weak

Chapter 1 Page 9/150

Section 1.3 Model Reconstruction for Dynamical Systems

constraint 4D-VAR and [84] examined the delay coordinates map, which maps
the original state space into a reconstruction state space and the local inverse
of this map.

There are other well-known technical challenging areas of interest within
neuroscience, some of which includes understanding the connections or mapping
of the various cells that go on in the brain during blood flows, provision of
valuable insights on the neural activities within the brain, assimilating and
evaluating the critical stages of learning and skills acquisition processes and
other medical or diagnostic interventions beneficial for patients with debilitating
health conditions that require regular monitoring in order to manage them.
There is a big analytical challenge in this field, and current research efforts
are yet to address this seeming problem of integrating or synthesizing all the
available data into a more coherent and cohesive format for better analysis and
interpretation.

These are some of the fundamental driving forces behind this research
which is to develop a mathematical model that can be used to characterize the
data, help detect unknown signal sources, connect and track network activities
from the brain and provide adequate knowledge of the model and make the
prediction task more effective and efficient.

1.3 Parameter Estimation in Data Assimila-
tion

Parameter estimation, model order reduction, and machine learning are
three key topics in computational science and engineering. This literature
study will investigate how these domains are interrelated and how they might
be utilised together to address complicated challenges. This section examines
several works of literature on parameter estimate strategies in data assimilation.
On this issue, historical and contemporary literature outlines the numerous
methods and approaches of parameter estimation, some closely resembling
the methods utilised in this work. Parameter estimation is concerned with
estimating the values of model parameters [80].

The process of guessing the values of model parameters based on available
data is known as parameter estimation. In statistical modelling, model pa-
rameters are estimated values based on observable data. The most frequent
approach for parameter estimation is maximum likelihood estimation (MLE),

Chapter 1 Page 10/150

Section 1.3 Model Reconstruction for Dynamical Systems

which requires selecting the set of parameter values that maximises the chance
of observing the data supplied in the model. Based on the data, bayesian esti-
mation requires assigning prior distributions to the parameters and updating
them using Bayes’ theorem.

The authors [10] and [11] provided a comprehensive and detailed overview of
the theory and practice of parameter estimation techniques, including Bayesian
methods, variational methods, ensemble Kalman filter, particle filters, maximum
likelihood estimation, and least squares methods, and their application to a
variety of scientific fields, such as geophysics, weather forecasting, ecology, and
economics.

[76] outlined an equation learning strategy that aims to draw conclusions
from observation data and aid in filtering out the noise that might influence the
structure and values of the parameters learnt via uncertainty quantifications.
In their research on linking a groundwater flow model with a polluted transport
model, the authors [46] also introduced a dual-state ensemble Kalman filter
(EnKF) technique that allows them to estimate the states of flow and pollu-
tants simultaneously, provides a sequential updating scheme between models,
simplifies the implementation of the filtering system, and yields more stable
and accurate solutions than the standard approach.

The preponderance of the publications of these authors [105], [27, 104],
[65] emphasise the primacy of data assimilation for state estimation and its
utility in estimating uncertainty in model parameters inside the model state.
In their numerous research works, they have combined these data assimilation
approaches to estimate state parameters and estimation precision.

Parameter identifiability [94] is an additional important factor to consider
when determining how well given model parameters are adequately described
by the quality of available data. Parameter estimation and identifiability are
fundamental concepts in statistical modelling and data analysis. Despite their
relationship, these phrases refer to different aspects of the modelling process.

Identifiability of parameters refers to the extent to which the values of model
parameters can be uniquely derived from the data [72] without equifinality
presenting obstacles. Identifiable parameters are those for which a singular set
of parameter values can adequately explain the observed data. Even with an
infinite number of data, it is impossible to accurately predict the value of an
unknown parameter [123] and [7], and estimating unknown parameters from
data relies on statistical models.

Chapter 1 Page 11/150

Section 1.4 Model Reconstruction for Dynamical Systems

Nevertheless, it is possible that not all model parameters can be identified,
posing difficulties for parameter estimation and model interpretation. Non-
identifiability occurs when different parameter value combinations generate
similar model outputs, making it impossible to determine the parameter values
using the available data uniquely [9]. [35] presented two statistical computations
to compare the ability of some parameters to be uniquely estimated before and
after calibrations based on the changes in their datasets.

In essence, parameter identifiability investigates whether parameters can
be precisely estimated from the data. Extensive research has been conducted
on parameter identifiability in systems biology, mathematical modelling, and
statistics. Numerous techniques and methods have been developed to evaluate
and improve the identifiability of model parameters. [118], [45] and [51] are some
examples including sensitivity analysis, identifiability analysis, experimental
design, regularisation techniques, and Bayesian inference methods.

1.4 Reduced Order Model Literature
In most highly nonlinear and high-dimensional dynamical systems, for

example, the brain system, it is often tricky and computationally challenging
to use the entire brain model for simulations; this will require exceedingly high
computing power to be able to execute, and as a result, we need to adopt
the use of an equivalent or replica system on a small scale that can offer an
approximate description of the processes of the system of interest in a reduced
set up while also preserving the integrity of its internal structures in the process.

This research also acknowledges using a distinct technique called Model
Order Reduction (MOR). It is a popular statistical and mathematical strategy
for lowering the computational complexity of mathematical models that are
frequently employed in numerical simulations. Reduced Order Models (ROMs)
are miniature or reduced versions of high-dimensional and complicated models,
as their name indicates. Whilst this technique is not utilised in this thesis, we
foresee a future link or expansion of the methodology employed in this work to
the MOR. In light of this, this part introduces the general framework utilised
for the model order reduction technique compared to other methods, as well as
some of the assumptions underlying their respective selections.

MOR techniques have a long-standing history with the success of subspace
projection methods for solving large linear systems and matrix eigenvalue

Chapter 1 Page 12/150

Section 1.4 Model Reconstruction for Dynamical Systems

problems. One of the most well-known approaches was proposed by Krylov
in 1931 [99] for the explicit construction of the characteristic polynomial of a
matrix which eigenvalues can then be calculated as the roots of that polynomial.
Amsallem et al. [6] proposed a model reduction method that approximates
solutions of global basis vectors into lower-dimensional subspace generated by
the most appropriate local basis vectors. Concisely, MOR methods search for
a correlated set of governance equations in a subspace significantly lower in
dimension than the central system of interest.

Similarly, [41] Festjens et al. described using ROMs as essential catalysts for
improving the computational efficiency of simulations in processes with a high
value of the degrees of freedom (DoF), especially in an optimization framework.
[33] Corigliano et al. equally proposed a new strategy formulated as a MOR
technique; the basic idea employs an everyday use of Domain Decomposition
(DD) with a popular version of the Proper Orthogonal Decomposition tech-
niques, which are usually used to extract a reduced basis from a set of snapshots
in nonlinear problems. Other methods include the use of t-Distributed Stochas-
tic Neighbour Embedding (t-SNE) by Cieslak et al. [28] and [114], Uniform
Manifold Approximation and Projection (UMAP) [78] and Linear Discriminant
Analysis (LDA) [112].

Therefore, MOR could also be described as a pseudo or surrogate mod-
elling method. It is a widely used technique for reducing large-scale order to
low-dimensional order models, and its use in this format spans several differ-
ent science and engineering domains. They are also called metamodels and
emulators due to their use as decoys to reduce the computational burden in
many application areas [47]. Koo et al. [64] proposed a proper orthogonality
decomposition (POD) with a robust point interpolation method (RPIM) ap-
proach for predicting the temperature and sensor placement for a cylindrical
steam reformer, a similar approach was used by [117] as a parameter MOR
(pMOR) method. Another MOR technique used in [124] reducing the sizeable
computational complexity based on tensor decomposition and matrix product
was the use of an equivalent transformation of the main quadratic-bilinear (QB)
systems from their non-linear input-output systems.

In summary, reduced-order models are good enablers of rapid prediction,
inversion, and design and help in quantifying uncertainties of large-scale sci-
entific and engineering systems [120]. However, using ROMs also comes with
challenges related to finding or deciding which ROMs are the most efficient and
suitable solutions for the system of interest. In this study, we have compared

Chapter 1 Page 13/150

Section 1.5 Model Reconstruction for Dynamical Systems

the models’ errors and their convergence by investigating the error evolution of
the reconstructed model with the original dynamics.

There are several works of literature with examples of MOR applications,
one of which includes its application in Cosmology [86], where it was used to
infer or reconstruct the underlying model from observational data obtained
from gravitational waves using polynomial regression and Gaussian Process
without depending on too many highly intricate model assumptions. Another
approach is the temperature prediction and sensor placement in cylindrical
steam reformer [64], an analytical framework for control systems [14], and for
simulations in engineering sciences and modern ICT technologies [42] amongst
others. The authors [26] investigated a model which combines the Reduced
Order Model (ROM) with Data Assimilation (DA) to enhance the precision of
simulations of computational fluid dynamics.

In this thesis, the focus is on learning models, not on the construction of
appropriate MOR approaches. Our approach could be applied to any MOR
ansatz. We have based our technique on the use of a 3D-VAR data assimilation
approach or on the localized ensemble transform Kalman filter (LETKF) to
model reconstruction developing new techniques for learning the model.

1.5 Survey on Modern Learning Techniques
The goal of this thesis is to employ data assimilation techniques for model

learning or model reconstruction, respectively. Of course, today there is a
rapidly expanding field of machine learning, which usually determines neural
network connectivity to adapt the neural network as a model to given sets of
observations. Our approach is a different learning method, and we apply it to
a wide range of different approximate models.

To be able to discuss similarities and differences of our data assimilation
approach to machine learning, in this section, we present a literature survey of
the recent and modern modelling techniques used in machine learning (ML),
deep learning (DL), which is a branch of artificial intelligence (AI), and computer
science and other scientific computing community. In practice, the application
of ML (both supervised and unsupervised) has evolved over the last decade
with the proliferation of big data and increasing computing power. In addition,
data assimilation and machine learning models [19] are now being combined to
simulate and train ML-based parametrization using data with noisy and sparse

Chapter 1 Page 14/150

Section 1.5 Model Reconstruction for Dynamical Systems

observations. The link of this section with the thesis is to provide a narrative
and an exploration of some pieces of literature with recent applications of
advanced machine learning and other analytical methods to provide solutions
to issues in new or existing fields of research areas, which this thesis as well
aims to achieve in the field of neuroscience as an example.

The urge mainly drives them for the enormous demands and consumption
of new insights by consumers, governments, businesses (including social media
platforms -the likes of Google, Facebook, YouTube, Twitter, Amazon, Netflix,
Microsoft, etc.), and more recently, its use on a large scale for providing insight-
ful analysis on the Covid-19 pandemic responses across multiple disciplines,
and other emerging artificial intelligence (AI) technologies and platforms to
name a few [1, 2, 44, 54, 79, 95, 107].

Another relevant learning method is reinforcement learning (RL). In its
simplest form, it could be described as a give-and-take learning technique due
to the interactive or sequential approach of the learning method. The authors
in [116], [62], [13], have all described the concept of RL from the perspective
of their different application areas ranging from engineering, neuroscience,
and psychology, etc. However, they are all unanimous in their conclusions of
the adaptive nature of the learning method to its environment with limited
knowledge of such and uses the limited feedback provided to improve the quality
of the decisions. Supervised ML techniques are used to develop predictive
models based on the input and output data.

In contrast, unsupervised techniques on the other hand, can be used to group
and interpret data based only on input data. The formulated mathematical
approaches used in this research fall into both techniques. As a field of research,
ML primarily focuses on the theory, performance, and properties of learning
systems and the algorithms used [92].

Several recent research studies focus on the evolution and use of machine
learning that transcends many disciplines. This thesis could be developed for
further research into some of the new and emerging trends in the use of ML
and AI. Machine Learning can be described as using data and algorithms to
copy or emulate how humans learn [36], [77]. The information known by the
algorithms is then adapted by improving the performance of the knowledge
gained as additional samples or real-world data becomes more available. These
researchers presented a modern approach [23] to integrating DA and ML models
to increase prediction reliability.

Chapter 1 Page 15/150

Section 1.6 Model Reconstruction for Dynamical Systems

Recent advances in Information Technology, big data processing, and open-
source software have brought considerably new insights into how machine
learning algorithms and artificial intelligence are used in shaping our under-
standing of the world we live in today. Some of the novel machine learning
techniques include classification models, clustering and retrieval, kernel-based
learning, dimensionality reduction methods, recommender systems, and deep
learning (Mostly implemented using neural network architecture), amongst
others, which are now widely applied to provide new valuable insights including
visualisations into real-world phenomenon using data (including images, texts,
and sounds) derived from such systems.

Current ML and AI applications include advanced learning algorithms
to aid climate change research and preparedness [57]. ML algorithms have
been successfully applied to high-dimensional input data in numerous fields
for playing games, web searches, fraud detection, the spam filtering in emails,
credit score ratings, and many more. [100]. Other emerging and future uses
of ML applications are expected in the face and voice recognition, self-driving
vehicles, driver assistance systems, space technology, and many more.

However, the use of ML algorithms and their application has its challenges.
These algorithms exist as black boxes due to the lack of unique laws governing
the understanding, knowledge, and, sometimes, the interpretation of results
from their use. They can be attributed to the multidisciplinary nature of ML,
which spans computer science, statistics, mathematics, engineering, cognitive
science, and various other scientific and socioeconomic fields. It is also important
to note that other learning techniques like regression (Linear and Logistics),
Support Vector Machines (SVM), Random Forest, Classification, Bayesian
Learning, and Decision-Tree modelling are all algorithms embedded in ML
techniques.

In conclusion, parameter estimation, model order reduction, parameter
identifiability and machine learning are all interrelated topics with strong links
to data assimilation. They may be employed in tandem to tackle difficult issues.
The combination of these strategies can result in more accurate and efficient
models, as well as a substantial decrease in processing costs. Beyond data
assimilation, there are connections between these domains that can lead to
additional advancements in parameter estimation and model order reduction
in future research.

Chapter 1 Page 16/150

Section 1.6 Model Reconstruction for Dynamical Systems

1.6 Data Assimilation Techniques
Data Assimilation is a well-known mathematical modelling technique used

in numerical weather prediction (NWP) models and many other application
areas. The flexibility of data assimilation as a technique makes it adaptable
for application in various fields apart from in numerical weather predictions
(NWP), where it was first used for planetary weather analysis and more recently
in the field of biological cells [52] and many other emerging application areas.
However, weather forecasting is still predominantly the key driver of many
recent theoretical and practical applications of the algorithm due to the deluge
of available data and the short turnaround time used in dealing with such
systems [85].

The authors in [87], [30], [81], [108] described on several occasions in their
numerous publications that the basic idea of the data assimilation technique is
to enable forecasts by combining information from prior knowledge with new
observed information from the system to obtain the best description of the
system of interest [85], [52].

Data Assimilation can be seen as a recursive Bayesian inference technique.
Data assimilation combines measurements with models as its basic idea using
interpolation and filtering methods. The use of data assimilation in estimating
the true state of dynamical systems has been well documented in several
research works of literature and journals and one such by [98] was an attempt
to use data assimilation in hydrological models to improve model state and
estimate streamflow.

The traditional data assimilation approach aims to determine a state x
which is close to the background state xb containing knowledge from the past
to the observations y which also contains knowledge about the current state of
the dynamical system of study. Apart from its daily use in numerical weather
predictions (NWP), it is now also widely applied in many fields. Here, we
briefly describe the main approach of data assimilation with much emphasis on
how it was applied to the model reconstruction approach used in this thesis
within the model space M ∈ Z.

There are two basic steps in data assimilation applications:

Definition 1.6.1. (Propagation Step) Mapping x
(a)
k−1 7→ x

(b)
k := M(x(a)

k),
with time index k = 0, 1, 2, 3,

Chapter 1 Page 17/150

Section 1.6 Model Reconstruction for Dynamical Systems

This step involves the application of a defined or known model M which
maps a state x

(a)
k−1 at time tk−1 (previous time or period) into the current state

x
(b)
k = M(x(a)

k−1) at time tk (current period).

Definition 1.6.2. (Estimation Step) Mapping (yk, x
(b)
k) → x

(a)
k , where yk

denote observations at time tk and k = 0, 1, 2, 3,

The estimation step uses the measurement yk at the current time tk. The
first guess or background x

(b)
k derived from the propagation step above to

calculate an analysis xk(a), which is the solution to the minimisation problem
for some cost functions and can be used to calculate the difference between the
observed and predicted values in a model, which will be described below.

The recurrence of these two phases is known as the data assimilation cycle or
cycling. This technique is especially significant for variational data assimilation
approaches in which the algorithms iteratively alter the model parameters to
minimise the cost function until a satisfying solution is reached, as demonstrated
in the following parts of the thesis.

The state space x, background state x(b) and the observations y are employed
to define the cost function:

J(x) = 1
2(x − x(b))T B−1(x − x(b)) + 1

2(H(x) − y)T R−1(H(x) − y), (1.6)

where
x = State space, x ∈ Rn, i.e., x is in the state space Rn

xb = Background state, xb ∈ Rn,
B = Background error covariance matrix, B ∈ Rn×n,
R = Observation error covariance matrix, R ∈ Rm×m,
H = Observation Operator,
y = Observation, y ∈ Rm

If H is linear, we have H ∈ Rm×n but in general,

H := Rn → Rm, x 7→ H(x),

The minimizer of the functional (1.6) is called the analysis xa. For linear H,
the minimizer can be explicitly calculated, it is given by

x(a) = xb + BHT (HBHT + R)−1(y − H(xb)), (1.7)

Chapter 1 Page 18/150

Section 1.7 Model Reconstruction for Dynamical Systems

where the so-called analysis is a state xa ∈ Rn. Using functional analytic
notation, the cost functional can also be written in the form

J(x) = ∥x − xb∥2
B−1 + ∥y − Hx∥2

R−1 . (1.8)

In this case, and for H linear, the normal equations can be written as

xa = xb + H∗(I + HH∗)−1(y − Hxb), (1.9)

where H∗ denotes the adjoint operator in the space X with some scalar product
⟨·, ·⟩ which defines the norm || · || by ||x||2 = ⟨x, x⟩, where

|| · ||A =
√

(xT Ax) (1.10)

It is used to access the size or magnitude of the vector as shown in 1.8.

In the classical data assimilation approach, the equation in (1.9) above can
be written as:

x(a) = x(b) + BHT (HBHT + R)−1︸ ︷︷ ︸
=:K

(y − Hx(b))

= x(b) + K(y − Hx(b)), (1.11)

where K = BHT (HBHT + R)−1 is known as the Kalman gain matrix. This
matrix is a central tool for data assimilation, and it will be the main tool for
all of our model reconstruction algorithms.

In investigating this technique for model reconstruction, we consider a
dynamical system of the form ẋ = F (x) by a high-dimensional nonlinear
approach based on Gaussian basis function.

Therefore, we propose two generic approaches for reconstructing the model
dynamics of a dynamical system by estimating the model given by the forcing
term F using a radial basis function approximation to estimate the forcing term
which is the trajectory or path of the dynamical system. The technique used
in this approach is analogous to the reconstruction of a flow field, where the
path or movement of the fluid can be observed at specific locations or points
within a state space as time passes.

Chapter 1 Page 19/150

Section 1.7 Model Reconstruction for Dynamical Systems

Figure 1.3: In this figure, we show a flow field description of a typical dynamical
system trajectory estimation

1.7 The Approach of Parameter Estimation
This section highlights the role of parameter estimation as a key component

used in the making of statistical inference. There are many different parameter
estimation techniques usually called estimators, which are often applied to data
to obtain an estimate. An estimator is a rule that is followed to estimate a
parameter while the numerical value that is derived from a particular sample is
known as the estimate. In this study, however, the definitions of the attributes
or qualities of a good estimator are not covered.

Also in this section, we highlight under which side conditions should a
generic inverse approach be undertaken, when is parameter estimation a good
choice, and what more generic model reconstruction method which we will
develop in the upcoming chapters is, and what are its advantages.

As a description, suppose we have variables X1, X2,...,Xn which are random
samples drawn from a population with a parameter θ, then θ̂ is a statistic that
can be used as an estimator of θ if

θ̂ = θ̂(X1, X2, ..., Xn) (1.12)
As a result, for an equation of the form ẋ = F (x) described in this study,
we assume that we have measurements of the dynamics at points in time

Chapter 1 Page 20/150

Section 1.7 Model Reconstruction for Dynamical Systems

t1, t2, ..., tn. Now, assume that the F is given as a system of polynomials in the
variable of the state space, as shown in the example for the Lorenz ’63 system
where

�
x = σ(y − x) (1.13)
�
y = x(ρ − z) − y (1.14)
�
z = xy − βz, (1.15)

we obtain

F (x) =

 σy − σx
ρx − xz − y

xy − βz

 . (1.16)

for a state space with variables (x, y, z) ∈ R3. The classical idea [52], [39] and
[40, 68] is to use an Ansatz of the form

cFi(x) = ci +
3∑

j=1
ai,jxj +

3∑
j,ℓ=1

bi,j,ℓxjxℓ (1.17)

for i = 1, ..., 3. where (x, y, andz) are the system’s state variables and (σ, ρ, andβ)
are the parameters that govern the system’s behaviour, and

1) σ(sigma): The Prandtl number quantifies the ratio between momentum
and heat diffusivity. This parameter determines the rate at which fluid
motion smooths out temperature differences.

2) ρ(rho): The Rayleigh number quantifies the proportion of buoyant forces
to viscous forces. This parameter controls whether or not the system will
experience convection.

3) β(beta): A parameter that affects the rate of heat transfer between the
system’s top and bottom. This parameter influences the pace at which
the system’s temperature gradient will equilibrate.

Therefore, the method to find F by estimating the coefficients in (1.17) is a
parameter estimation problem, which now has much fewer degrees of freedom
and all the standard data assimilation methods such as the Kalman filter, and
parameter identifiability techniques in 1.3 can all be employed to solve this
parameter estimation problem.

For the neural field equation or other very large-scale problems as well, the
approach of trying to find unknown parameters or parameter functions leads

Chapter 1 Page 21/150

Section 1.8 Model Reconstruction for Dynamical Systems

us to an example of the neural kernel reconstruction problem, which is also a
reference point for our investigation.

Equally, parameter estimation and pattern recognition or classification
approach are similar since they both use measurements to describe an object
or system but the former use real-valued scalar or vector to describe an object
while the latter description is based on a selected class or category from a finite
number of attributes.

In general, [12], [113] described the process of attributing a parametric
description to an object, a physical process, or an event based on measurements
obtained from the same object or system as parameter estimation. In contrast to
kernel estimation which is more generic in approach since we do not prescribe a
special form of the kernel, but just look for the connectivity between two points.
We could, however, transform kernel estimation into parameter estimation
when we base it on some form as in (3.40).

1.8 Thesis Outline
The thesis is structured into five chapters except for the appendix part.

The introductory Chapter 1 provides a well-rounded view of the main ideas
underpinning this research, and the detailed outline of the dynamical systems
representations including the mathematical expressions used to denote them
in the thesis are in Chapters 2 and 3. Chapter 4 provide the mathematical
details and outputs of the model reconstruction approaches. The results of
the statistical analysis of the sensitivity analysis of the models used in this
thesis were presented in Chapter 5, while the conclusions and summary of the
findings and perspectives for future research on the thesis were highlighted in
Chapter 6.

We developed two model reconstruction approaches using variational data
assimilation and Kalman filter methods using a radial basis function to efficiently
approximate nonlinear models.

1. Chapter 1 is the introduction to the applications and techniques of this
thesis, including an overview of the history of related pieces of research
in the field of neuroscience 1.2, its biological and mathematical aspects,
followed by a brief overview of existing pieces of literature on reduced order
models and their applications in Section 1.4, a survey on machine learning

Chapter 1 Page 22/150

Section 1.8 Model Reconstruction for Dynamical Systems

in Section 1.5, and other modern algorithms used in the data science
and scientific computing communities. In addition, a brief description
of parameter estimation and parameter identification in Sections 1.3. It
also contains a review of the past and current works of literature on the
fundamental data assimilation techniques used in the thesis 1.6, coupled
with a brief explanation of the parameter estimation approach in the
concluding section 1.7.

2. In Chapter 2, we highlight the model systems used as a testbed for this
research - Lorenz ’63 and Lorenz ’96 model equations, particularly in
Sections 2.1 and 2.2 respectively. The background, simulation setup for
both models and a brief overview of the Amari Neural Field model 2.3.1.
A complimentary weather forecasting model using data from the reaction-
diffusion system Atmospheric model and its background in Section 2.4
and 2.4.1 respectively completes this chapter.

3. In Chapter 3, we show an efficient approach for model reconstruction.
First, we describe a variational approach to data assimilation in a model
reconstruction setup, which is essentially a three-dimensional variational
assimilation 3D-VAR equipped with a Gaussian covariance matrix. A
brief introduction to the Kalman filter method for model learning and its
applications is in Section 3.2; the expansion coefficients described here
have the potential to achieve full model reconstruction, the forcing term
estimation, and polynomial estimations in Sections 3.3 and 3.3.1. This is
then completed with the radial basis function in Section 3.3.2 and kernel
estimations in Subsections 3.4.1 and 3.4.2.

4. Chapter 4 provides a detailed description of the algorithm developed for
large-scale and highly nonlinear dynamical systems using the variational
data assimilation approach. We show our learning results in numerical
examples developed for Lorenz ’63 and ’96 equations, its state estimation,
and the kernel reconstruction problem and carry out an application to
weather forecasting. The statistical analysis of the numerical examples in
the following Subsections 4.1.3, 4.2.1 and 4.4.1 describes the sensitivity
analysis and error evolution of the models used in the study. Those
examples were built on the theoretical discussions from the main Chapters
in 1, 2 and 3, and 4.

5. In Chapter 5, we present the results of the statistical analysis of the
evaluations for the L63 model in Section 5.1, for the L96 model in Section

Chapter 1 Page 23/150

Section 1.8 Model Reconstruction for Dynamical Systems

5.2 and for the Amari Neural field model in Section 5.3. The evaluations
highlighted the analysis of the error evolution considering changes to the
input parameters, while documenting the learning performances of the
models mentioned above at varying time steps or experiences.

6. In Chapter 6, we provide our conclusions and further possible studies
building on our work and results. In Section 6.1, we provide an evaluation
of results and summarise our thesis and provide the conclusion and further
possible studies building on the knowledge and understanding gained
from this research. In addition, a new Section 6.2 has been added to
discuss the limitations of the thesis with a further concluding overview
on the perspective of the thesis in Section 6.3.

7. Finally, the concluding chapter of this thesis contains a detailed de-
scription of all the codes (model learning) used in this research as an
attachment in the appendix 7.1 and list of figures.

Chapter 1 Page 24/150

Chapter 2

Model Systems

This chapter highlights the dynamical system’s representatives of all the
models used as test beds for the model reconstruction techniques developed in
this thesis.

The technique developed in [88] and [15] serves as a point of reference for our
method, which in the case of the neural field equation is an innovative sequential
kernel reconstruction approach, whose goal is to determine the strength or
shape of the connectivity between the various types of neurons and collections
of neurons in the brain.

First, we study the popular Lorenz 63 and 96 dynamical systems. Section
2.1 highlights the use of the Lorenz ’63 model in dealing with chaotic systems.
Similarly, Section 2.2 describes the use of the Lorenz ’96 equation as a testbed
for systems with an independent external driving force and a damping term.
Then, we treat the neural field equation of computational neuroscience in
Section 2.3.

The technique developed in [88] and [15] serves as a point of reference for our
method, which in the case of the neural field equation is an innovative sequential
kernel reconstruction approach, whose goal is to determine the strength or
shape of the connectivity between the various types of neurons and collections
of neurons in the brain. Finally, we investigate a reaction-diffusion system
model in Subsection 2.4.

2.1 Lorenz ’63
We have chosen to employ some popular basic model systems to test our

model reconstruction approach. This section describes the systems which we

25

Section 2.1 Model Reconstruction for Dynamical Systems

use for evaluating the theoretical and practical applications of our algorithm in
real-life scenarios.

The reference to both theory and applications in dealing with nonlinear
dynamical systems stem largely from its use in Numerical Weather Prediction
(NWP) to Neuroscience including other well-known and emerging application
areas. Sections 2.3 and then further in Section 3.4 discusses the use of the Amari
Neural Field equation and a kernel reconstruction approach by regularized
inversion as a reference point for our method in the case of the Amari model
setup.

2.1.1 Simulation Setup, Techniques, and Deterministic
Chaos

Over five decades ago, Lorenz [70], a meteorologist, published in the Journal
of the Atmospheric Sciences [Vol 20] his findings that certain nonconservative
hydrodynamical systems (with both viscous and thermal dissipations) exhibited
varying patterns when subjected to different initial conditions while studying the
behaviours of natural systems. In his work, Lorenz showed that the properties
of nonperiodic solutions of finite systems are deterministic in nature and are
designed to represent the forced dissipative hydrodynamical systems.

In his conclusion, he also posed pertinent questions to researchers regarding
how long a forecast for numerical weather predictions should be. As a solution,
he suggested that this could evolve either through a comparison of pairs
of numerical solutions with identically initialised conditions or through the
existence of an analogue if the former approach does not produce the desired
result while also acknowledging the fact that significantly modified initial
conditions coexist with identical numerical solutions.

The Lorenz ’63 equations as displayed in Figure 2.1 are a widely used
scientific and mathematical model for simulating and differentiating dynamical
systems and it is also mostly acknowledged as a case study prototype for data
assimilation techniques even when the available measurement data is limited,
[81]. [121] described the model as a significant breakthrough in the study of
chaoticity, which was considered one of the groundbreaking discoveries of the
20th century after relativity, quantum mechanics and cosmology in the field of
theoretical physics.

It is a system of three coupled non-linear ordinary differential equations now
known as the Lorenz equation as shown in the previous chapter above: (1.13),

Chapter 2 Page 26/150

Section 2.1 Model Reconstruction for Dynamical Systems

Figure 2.1: The simulation of the Lorenz ’63 so-called butterfly equations.

(1.14) and (1.15), where x(t) = (x1(t), x2(t), x3(t))T ∈ R3 are the dynamical
states. The constants σ, ρ, β are the model parameters known as Prandtl
number, the Rayleigh number and a non-dimensional wave number respectively
and τ is a temporal scaling factor.

Gianfelice [48] also examined similar variations of the Lorenz ’63 models
which they mapped to an Ordinary Differential Equation (ODE) system through
the change of variables using the original Lorenz ’63 equations. There are an
appreciable amount of different kinds of literature on Lorenz ’63 and one such
is a more recent look at the new and emerging uses of the model explored by
[115].

We also note that in the above equations (1.13)-(1.15), we have a steady-
state solution when τ dx1

dt
= τ dx2

dt
= τ dx3

dt
= 0, i.e., there is no convection in the

state.
In general, for certain choices of the parameters σ, ρ and β we obtain chaotic

behaviour of the model dynamics. For the goal of this study, we use the
standard numerical values for the constants σ = 10, ρ = 28, and β = 8/3.

The use of this model for this study may be justified by the arguments men-
tioned above. As a result, we have found its usage beneficial in reconstructing
the forcing term of an interesting dynamical system. The Lorenz 63 model

Chapter 2 Page 27/150

Section 2.2 Model Reconstruction for Dynamical Systems

and the synapses and neuronal activity within the brain comprise complicated,
non-linear designs.

In addition, the simplified nature of Lorenz ’63 equations has been one of
the major attractions for its use by many researchers. The results of further
simulations carried out using this model for the reconstruction of the forcing
term and the data assimilation techniques used in this study are discussed and
displayed in subsequent sections of the thesis below.

2.2 Lorenz ’96
The Lorenz ’96 model was suggested by E. Lorenz in a seminar on pre-

dictability at ECMWF in late 1995. It has since been used as a case study for
simulating non-linear and high-dimensional chaotic systems. It is continuous
in time and discrete in space model for dynamical systems used in numerical
weather prediction to study the key aspects related to forecasting of spatially
extended chaotic systems. It is commonly used as a testbed example system to
assess basic ideas of data assimilation and forecasting in a high-dimensional
set-up [61].

2.2.1 The Lorenz ’96 Model System and its Background
The use of the Lorenz ’96 equation as a case study has been well documented

in many research areas for parametrizing highly nonlinear dynamical systems.
[18] used it to implement the convergence of a novel method using numerical ex-
periments by combining data assimilation and machine learning techniques.[25]
used the prism of Lyapunov analysis to investigate the geometrical structure of
instabilities in the two-scale (2.2) and ([8]) used the model as a testbed for a
stochastic parametrization scheme in numerical weather simulations.

The Lorenz ’96 model in its simplest form can be mathematically represented
by the following linear equation below where the dynamics of the kth variable
is given by:

dXk

dt
= −Xk−1(Xk−2 − Xk+1)︸ ︷︷ ︸

Advection

− Xk︸︷︷︸
Diffusion

+ F︸︷︷︸
Forcing

(2.1)

where X = (X1, ..., Xn)T ∈ Rn and time index k = 1, ..., N , with constant
F which represents the magnitude of an external driving force, and it is

Chapter 2 Page 28/150

Section 2.2 Model Reconstruction for Dynamical Systems

independent of k, n is the dimension or size of the system and −Xk is a
damping term.

The equation described in (2.1) above, can be extended to use the two-scale
version of the Lorenz ’96 model. In this case, we introduce another periodic
variable Y with its own set of ODEs. Both X and Y ODEs are correlated or
linked through the process called coupling.

dXk

dt
= −Xk−1(Xk−2 − Xk+1)︸ ︷︷ ︸

Advection

− Xk︸︷︷︸
Diffusion

+ F︸︷︷︸
Forcing

− hcȲk︸ ︷︷ ︸
Coupling

, (2.2)

dYj,k

dt
= −cbYj+1,k(Yj−1,k − Yj+2,k)︸ ︷︷ ︸

Advection

− cYj,k︸ ︷︷ ︸
Diffusion

+ hc

b
Yk︸ ︷︷ ︸

Coupling

, (2.3)

where Xk and Yj,k are assumed to be periodic variables denoting atmospheric
quantities discretized into K and K ∗ J sectors respectively along the latitude
circle [102]. The main driver for the two model variables (2.2) and (2.3) is the
quadratic nonlinear modeling advection, constant forcing, linear damping and
coupling between both models in each of the sectors where they operate, while
the b, c, and h are constant parameters representing the spatial and temporal
scale ratios and coefficients of the coupling respectively.

However, for the purpose of this thesis, the use of the extended version of
this model in 2.2 and 2.3 above is beyond the scope of what is being used in
this research, but it has been referenced for completeness in the description of
the 2.2 model.

2.2.2 Simulation Setup, Techniques, and Visualization
The Lorenz ’96 model is a simplified model for studying atmospheric dynam-

ics (a dynamical system used to research meteorological and oceanic processes).
[71], [58] and [122]. In the subsection above 2.2.1, the Lorenz ’96 described by
equation 2.1 gives a simple mathematical representation of the model showing
its key components. The Lorenz ’96 model has been extensively researched,
and it has been demonstrated to display a range of complicated dynamical
behaviours, including chaos, turbulence, and pattern generation. The authors
[93] in their review paper, analysed links between the L96 model and specific
features of brain dynamics but cautions that the L96 model is not intended
to emulate neural dynamics, and its applicability to the neural world is more
metaphorical than literal.

Chapter 2 Page 29/150

Section 2.2 Model Reconstruction for Dynamical Systems

As a first example in the setup for the Lorenz ’96 system, let us consider that
there are N nodes located on a circle. At each node, we have some excitation
modelled by x(j), j = 1,...,N and the setup code is defined in the Matlab code
in the Appendix Section 7.2.1. As a result, we then visualize the location of
the nodes and the values of the excitation given by the code above. This is
just the initial value of the excitation for N = 9 nodes.

(a) (b)

Figure 2.2: (a) Displays the visualization of the nodes and activity function of
Lorenz ’96 and (b) shows the final view when (time index=1001) of the changes
in the excitations for the model at each time step around the rings.

Furthermore, we display the trajectories for all nodes individually with the
time shift and integration step size in Runge-Kutta which are generated by the
code defined in 7.2.1.
This leads us to the image shown below in Figure 2.3.

Chapter 2 Page 30/150

Section 2.2 Model Reconstruction for Dynamical Systems

Figure 2.3: Visualization of the trajectories of the Lorenz ’96 system with N = 9
nodes and nsteps = 100 time-steps with their respective time integrations

.

Chapter 2 Page 31/150

Section 2.3 Model Reconstruction for Dynamical Systems

Lastly, we investigated the model time-integration using the 4th order
Runge-Kutta method in more detail by displaying the result of the change of
excitation equations of the Lorenz ’96 system defined below in the Appendix
Section 7.2.1.

In this case, we define a jth time index for all the number of time steps
(1,000) and monitor the changes or evolution of the excitations x′s for our
Lorenz ’96 at each time step around the defined nodal points around the circle,
see 2.2 (b) above.

In Figures 2.2 and 2.3 we see the forward evolution of the model for the
excitations at 1000 timesteps as shown in the setup above. The descriptions of
these steps are highlighted below:

• We construct a set of nodes located on a circle, as shown above, these
are the grey points and each grey dot is likened to a neuron, now placed
on a circle.

• At each node, we have an excitation, given by a value x(j) where j is the
number of the node and x(j) ∈ R is the set of all excitation values in the
state, a vector x ∈ Rn, with n nodes (or neurons).

• Also, the excitation can be positive or negative, this is generally more of
an oscillator model.

• We then display the excitation values by plotting the black curve as shown
in both figures above.

• The neuron is fixed in space. The excitation value changes at every time
index, this excitation might oscillate, i.e., it tends to go up and down.

2.3 Amari Neural Field Model
Unlike the Lorenz models, which are standard dynamical systems used in

both neuroscience and meteorology as a simple test case for innovative ideas,
the neural field model is more complicated and more specific towards particular
applications of neuroscience. The neural field equation is also high-dimensional
and has a completely different forcing term compared to the Lorenz models,
where we can evaluate different approaches.

Chapter 2 Page 32/150

Section 2.3 Model Reconstruction for Dynamical Systems

2.3.1 The Amari Model and its Background
The brain is a complex system. The Neural field theory [29] is a population-

level approach to modelling the non-linear dynamics of a large population of
neurons while maintaining a degree of mathematical tractability. Coombes [32]
described the Neural field models as the coarse-grained activity of populations of
interacting neurons. In large neural networks with complex topology, analysing
and simulating networks of such high magnitude and complexity is often
challenging and this is due to the nonlinearity of the activation functions of
the substantial number of synaptic weights, [15].

The Amari neural field equation (NFE) or the Cowan-Wilson neural field
models are used as a generic tool of study for more complex neural mass
approaches in cognitive neurodynamics. In this study, we have used the Amari
equation to reconstruct a connectivity kernel described in the inverse neural
problem below:

Definition 2.3.1 (Inverse Neural Problem). Given the dynamics u(x, t), cal-
culate a connectivity kernel w(x, y) for x, y ∈ D such that u satisfies the
corresponding Amari equation, i.e.

τ
du

dt
(x, t) = −u(x, t) +

∫
D

w(x, y)f(u(y, t)) dy, (2.4)

for x ∈ D, t > 0 with initial condition

u(x, 0) = u0(x), x ∈ D, (2.5)

where D (D ∈ Rd, d=2,3 and a time interval [0,T]) is assumed to be a brain
area with some neuronal activity, τ is the membrane’s time constant, u(x, t)
represents the activation of neurons at position x and time t, w(x, y) is the
connectivity kernel that determines the strength of connections between neurons.
f(u) depicts the connection between the input current and output firing rate
of a neuron, whereas f(y, t) is the external input. The citations are [22], [21],
[53] and [110].

The Amari neural field equation is a simple model used for simulating neural
activities in the brain. The basic idea that connects the use of this study object
with our research is that it builds on our knowledge and understanding of the
network or wiring connecting one neuron or a group of neurons within the
brain.

Chapter 2 Page 33/150

Section 2.4 Model Reconstruction for Dynamical Systems

Apart from building on our knowledge and understanding of this wiring
connecting a neuron or group of neurons, the Amari NFE can be used to
simulate the strength and or shape of the connectivity between the various
types and collections of neurons in the brain.

The Amari neural field equation was used as a basis for the neural kernel
reconstruction technique in this study. The inverse techniques introduced in
[15] serve as a reference point for the model reconstruction approach used in
the thesis.

2.4 Weather Forecasting
Weather forecasting is an age-long practice, with activities ranging from its

early beginnings in the early 20th century, its first successful attempts after
the second world war to modern weather models, e.g. [90].

2.4.1 Setup for Reaction-Diffusion Equation
Weather forecasting is based on partial differential equations, which control

the evolution of some fields in three-dimensional space. The dynamical core of
such models simulate the fluid-dimensional parts of field dynamics. Here, we
use a simple two-dimensional reaction-diffusion model as a learning space for
model reconstruction. The equation is given by

du

dt
(x, t) = p(x) · ∇u(x, t) + cDiff△u(x, t), (2.6)

for x ∈ [0, a1] × [0, a2], t ∈ [0, T] and a1, a2, T ∈ R. Initial conditions are
prescribed by

u(x, 0) = u0(x), x ∈ [0, a1] × [0, a2] (2.7)
with some function u0. The parameter field p is chosen to be

p(x) := 1
∥ptmp(x)∥ptmp(x), x ∈ [0, a1] × [0, a2] (2.8)

based on
ptmp(x) := (x

∥x∥
)⊥ + 0.2 ∗ (x

∥x∥
) (2.9)

for x ∈ [0, a1] × [0, a2].

Chapter 2 Page 34/150

Section 2.4 Model Reconstruction for Dynamical Systems

We employ a fourth-order Runge-Kutta scheme for integrating (2.6). To
enhance stability, we use a filter F which removes high-order noise. The filter
is based on a 2d Fourier transform F and its inverse F −1 in the form

F(u) := F −1(cf · F (u)) (2.10)

with function cf defined by

cr(x) :=
{

1, ∥x∥ ≤ r
0, ∥x∥ > r.

(2.11)

An example with T = 20, a1 = a2 = 5 is shown in Figure 2.4.

The discretized version of equation (2.6) can be written in the form

uk+1,j =
∑

ξ

cjξuk,ξ, j = 1, ..., n (2.12)

with time index k = 1, 2, 3, ... and spatial index j = 1, ..., n, where n is the
total number of spatial grid points. The constants cjξ depend on the vector
field p(xj) and constants given by the finite approximation of the operators

∇ :=
(

∂
∂x1
∂

∂x2

)
(2.13)

and
△ = ∂2

∂x2
1

+ ∂2

∂x2
1
. (2.14)

In a discretized setting, learning the model can be accomplished by learning
the coefficients cjξ for j, ξ = 1, ..., n. The Kalman Filter (KF) gives an estimate
of the system’s status based on measurements, which may be used to alter
the system’s output and ensure it remains within acceptable limits. However,
a mismatch between the system’s input and output can lead to instability,
which might manifest as oscillation, overshoot, or loss of control, and a detailed
description the Kalman filter approach to this task is given in Section 4.4.

Chapter 2 Page 35/150

Section 2.4 Model Reconstruction for Dynamical Systems

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 2.4: We show the time series of the integration of equation (2.6) with
every 30th step between T = 0 and T = 20, where ht = 0.05, t is the time
taken and jt is the time index for the integration.

Chapter 2 Page 36/150

Chapter 3

Data Assimilation for Learning
Models

This chapter describes two approaches to model reconstruction. First, in
Section 3.1 a generic variational data assimilation approach for model learning
is developed. In Section 3.2 a Kalman Filter for model construction is described,
which can be understood as an extension of the variational method, where the
covariance matrix is updated in each step.

We describe the general mathematical approach, which is then worked out
for different low and high-dimensional dynamical systems in the upcoming
sections. In particular, when applied to forcing term estimation in Section
3.3 we also provide some basic convergence results. Comparison to traditional
kernel reconstruction for the neural field equation is carried out in Section 3.4.

Numerical results for Lorenz 63 (L63), Lorenz 96 (L96), Amari Neural
Field Equation (NFE) and the reaction-diffusion system NWP model will be
presented in the subsequent Chapter 4.

3.1 A Variational Approach to Model Recon-
struction

The goal of this section is to develop an iterative variational approach to
model reconstruction. Variational methods have a long tradition for the solution
of inverse problems [38, 49, 60, 67, 81] and in data assimilation [59, 81, 101].

In addition, we have formulated a variational method for model reconstruc-
tion by employing the ideas of both inverse problems and data assimilation

37

Section 3.1 Model Reconstruction for Dynamical Systems

as presented in [24]. This is done by using the 3D-VAR approach to estimate
nonlinear model dynamics M which is then tested for the case of the systems
L63, L96, NFE and the reaction-diffusion system. In contrast to classical data
assimilation where the method is used for state estimation, in this thesis, we
apply it on the second level of abstraction to reconstruct the model instead 3.9
in the model space M ∈ Z.

Following the notation of [81], the variational approach aims to determine
some quantity x ∈ X in a state space X from measurements y ∈ Y in some
observation space Y by minimizing the functional

J(x) := α||x − x(b)||2 + ||y − Hx||2, (3.1)

where H : X → Y is the observation operator which maps a state x onto the
simulated observation Hx ∈ Y , α > 0 is known as the regularization parameter
and where x(b) is a so-called first guess or background for the solution and the
minimization of (3.1) contains both a fit to the data y and tries to keep the
distance to the background x(b) as small as possible. It is well-known in the
description by [43, 49] that the background term ||x − x(b)|| corresponds to the
Tikhonov regularization around the first guess x(b).

In the examples described from the various publications by [49, 67, 81] (see
also (1.7)), the minimizer of the quadratic functional (3.1) is given by

x(a) = x(b) + H∗(αI + HH∗)−1(y − Hx(b)). (3.2)

Here, H∗ denotes the adjoint operator in the space X with some scalar product
⟨·, ·⟩ which defines the norm || · || by ||x||2 = ⟨x, x⟩.

We now apply the variational approach to state estimation to the task of
model reconstruction in the framework of the data-based model reconstruction
problem. The task is to find the model M or its model dynamics F such that
the solution xk at times tk = k · ht with

ht = T

nt

(3.3)

for k = 0, 1, 2, ..., nt with the number of time steps nt in the time interval [0, T],
T > 0, to

ẋ = F (x) (3.4)
with H taken to be a linear operator, and initial state x(0) = x0 satisfies

H(xk) = yk, k = 0, 1, 2, ... (3.5)

Chapter 3 Page 38/150

Section 3.1 Model Reconstruction for Dynamical Systems

In the presence of observation error, however, the measurement yk may
not accurately reflect the actual state of the system. To take care of this, the
observation equation above 3.5 can be adjusted to add an observation error
term, e:

H(xk) = yk + e, k = 0, 1, 2, ... (3.6)
where, e accounts for the uncertainty of the measured data and the increase
in the true estimation of the state using the equation of the kalman filter. In
summary, it is the difference between the measured value,yk, and the true value
of the system’s state.

However, we need to take care of two layers of our problem.

(L1) The first layer is the original state space which we use for the system and
its dynamics. This is the space X on which model M acts.

(L2) The second layer is the space of possible models. We call it Z and assume
that Z describes some adequate framework for the model M or its forcing
function F .

Here, we assume that Z is a Hilbert space of model M under consideration,
where the models M : X → X are non-linear functions describing the state
evolution on layer L1 of our problem.

We can now define some dynamics on our model space, i.e. the model Mk

at time tk is mapped into the model Mk+1 at time tk+1 by

Mk+1 = M(Mk), k = 1, 2, 3, ... (3.7)

We choose M to be the constant dynamics, i.e. we define

M(M) = M, M ∈ Z, (3.8)

i.e. we only treat the case where the model under consideration is not dependent
on time t. We are now prepared to define the observation operator acting on
the model space by

Hk(M) := HM(xk−1), k = 1, 2, 3, ... (3.9)

with H : Z → Y . In this study, we have assumed that H is a linear observation
operator (which contains observation error of variance epsilon taken into account
in all parts of our theory and numerical simulations), then Hk is linear on Z

Chapter 3 Page 39/150

Section 3.1 Model Reconstruction for Dynamical Systems

as well. In addition, M is assumed to be any model or vector valued function,
and its linearity is not a requirement, since we have

Hk(M1 + M2) = H(M1 + M2)(xk−1)
= HM1(xk−1) + HM2(xk−1)
= Hk(M1) + Hk(M2) (3.10)

and for s ∈ R we calculate

Hk(sM) = H(sM)(xk−1)
= H(sM(xk−1))
= sHk(M). (3.11)

The adjoint of the operator Hk is the operator H∗
k which satisfies

⟨Hk(M), y⟩Y = ⟨M, H∗
ky⟩Z . (3.12)

Using (3.9) we transform the left-hand side to obtain

⟨HM(xk−1), y⟩Y = ⟨M(xk−1), H∗y⟩X (3.13)

leading to

⟨M, H∗
ky⟩Z = ⟨M(xk−1), H∗y⟩X . (3.14)

Now assume that we are given some first guess M (b) for the model. For
clarity, if basis functions represent the model in equation 3.15 below, it can be a
function depending on its coefficient vector. We give a one-dimensional example
in Section 4.1.2 below. Then, we can apply the variational state estimation to
the model space Z at each time step tk by

M
(a)
k = M

(b)
k + Kk(yk − H(M (b)

k)), (3.15)
M

(b)
k+1 := M(M (a)

k) = M
(a)
k (3.16)

for k = 1, 2, 3, ... with the model Kalman operator

Kk := H∗(αI + H∗H)−1, k = 1, 2, 3, ... (3.17)

with some regularization parameter α > 0. Here, we remark that we have
argued in a general Hilbert space environment. When we choose classical

Chapter 3 Page 40/150

Section 3.2 Model Reconstruction for Dynamical Systems

ℓ2-spaces with weights given by the covariance B on Z and the error covariance
R on Y , as worked out in [24] or in [81], equations (5.2.11) and (5.2.14), the
Kalman operator (3.17) takes the form

Kk := BH′(αR + HBH′)−1, k = 1, 2, 3, ..., (3.18)

where now the adjoints H∗ have been replaced by H∗ = BH′R−1. Equations
(3.15), (3.16) and (3.18) describe the use of 3D-variational data assimilation to
the determination of the model M .

The following sections will apply this rather generic abstract setup to the
estimation of a general nonlinear model on a low or high-dimensional state
space. Here, as a first step (we call it the naïve step), we remark that R is
an operator or matrix on observation space Y . The operator H′ maps the
observation space Rm into the model space Z and B is an operator or a matrix
on Z. We further note that

• The observation operator is evaluated by

H(M b) = HM (b)(x(a)
k−1) = Hx

(b)
k , (3.19)

which corresponds to H = Hδxk−1 , using xk−1 as a short notation for x
(a)
k−1,

where the δ is the delta function, i.e., the mapping of a function onto its
value at a given point. δx in model space is defined by δx (M) := M(x),
therefore, Hδx(M) = HM(x).

• In the simplest case, using H′ = δxk−1H ′, we can derive (see [83])

H′(R + HBH′)−1(yk − H(M (b)
k))

= δxk−1H ′(R + B(xk−1, xk−1)HH ′)−1(yk − Hx
(b)
k)

= δxk−1H ′(R + HH ′)−1(yk − Hx
(b)
k)

= δxk−1x
(a)
k . (3.20)

Finally, the increment is given by

BH′(R + HBH′)−1(yk − H(M (b)
k)) = Bδxk−1x

(a)
k

= B(x, xk−1)x(a)
k . (3.21)

If B(x, x̃) is a Gaussian function of x with centre x̃, then the model increment
in each step is a Gaussian RBF function centred at x

(a)
k , compare Odunuga et

al. [83].

Chapter 3 Page 41/150

Section 3.2 Model Reconstruction for Dynamical Systems

3.2 Kalman Filter for Model Learning
The Kalman filter (KF) is an important method in geosciences, for numerical

weather prediction (NWP) and other related fields of study. It has a very
strong background in optimal estimation field theory [63]. Particle filtering
is particularly a useful technique for inference in state-space dynamic models
[109].

Here, we describe the Kalman filter in the above generic framework for
model reconstruction. As an application, it can be used for estimating unknown
parameters (i.e., finding the right parameter updates) from known measurements
observed over a given period.

The algorithmic approach follows the basic ideas of Section 3.1, but the
Kalman Filter adapts the covariance matrix in each assimilation step. This
means we complement equation (3.15) with the updated equation

B(a) = (I − KH)B(b) (3.22)

where the first guess covariance matrix B(b) is employed at time step tk, and
B(a) is the analysis covariance matrix which reflects the posterior uncertainty in
model space after the assimilation of the observations based on the observation
operator H. Altogether, we obtain the Kalman equations

M
(a)
k = M

(b)
k + Kk(yk − H(M (b)

k)), (3.23)
M

(b)
k+1 := M(M (a)

k) = M
(a)
k (3.24)

Bk+1 = (I − KH)Bk (3.25)

for k = 1, 2, 3, ... with the model Kalman operator

Kk := BkH′(αR + HBkH′)−1, k = 1, 2, 3, ... (3.26)

To gain a deeper understanding, let us describe the above equations in a
concrete setting. Using an expansion of the model M with respect to some
basis functions

φξ : X → X (3.27)
for ξ = 1, ..., N acting on the state space, we describe M = M [c] with some
coefficient vector c ∈ Z = RN of dimension N ∈ N. We can now formulate the
Kalman filter approach with respect to the expansion coefficients. We note

Chapter 3 Page 42/150

Section 3.2 Model Reconstruction for Dynamical Systems

that the functions can be non-linear, but the expansion depends linearly on
the coefficients c. In the case where X = Rn, this leads to a linear form

M [c] = Ac (3.28)

with a matrix
A :=

(
φξ(x(a)

k−1)
)

ξ=1,...,N
∈ Rn×N (3.29)

which consists of the basis functions φξ(x) evaluated at the current background
state. With more detail this reads

M [c](x(a)
k−1) =

N∑
ξ=1

φξ(x(a)
k−1)cξ, (3.30)

We now obtain the observation operator H applied to M [c] to be given by

Hc · c = H
N∑

ξ=1
φξ(x(a)

k−1)cξ

= HAc. (3.31)

Clearly, from (3.30), (3.31) and (3.29) we see that Hc is given by

Hc := HA ∈ Rm×N . (3.32)

Here, we use the notation Hc in general and Hc in Octave or Matlab code.

We are now prepared to carry out the data assimilation step for model
learning with the Kalman filter. Let Bc be the covariance matrix in coefficient
space, i.e. Bc ∈ Rz×z. Then, we solve

Hc · c = Hx
(a)
k (3.33)

by standard data assimilation to calculate an update of the model coefficient c,
i.e. we calculate

c
(a)
k = c

(b)
k + BcH

T
c (R + HcBcH

T
c)−1(yk − Hcc

(b)
k) (3.34)

for k = 1, 2, 3, Further, we update the covariance matrix Bc based on the
Kalman filter equations, i.e.

B(a)
c = (I − KcHc)B(b)

c (3.35)

Chapter 3 Page 43/150

Section 3.3 Model Reconstruction for Dynamical Systems

in each step of the filtering, where

Kc = B(b)
c HT

c (R + HcB
(b)
c HT

c)−1. (3.36)

In equation 3.31 above, the c coefficient indicates the connection between
the input and output variables in the model, i.e., it quantifies the effect of a
certain input variable on its corresponding output variable. Thus, the reliance
of the linear operator H on c is vital for comprehending and evaluating the
model’s outcomes, and it underscores the need of selecting and estimating
the proper coefficient c for a specific model to ensure correct and dependable
results. Therefore, any changes in the value of the coefficients can drastically
impact the model’s behaviour and performance.

3.3 Forcing Term Estimation (FTE)
In general, models for dynamical systems are complex codes based on partial

differential and integral equations modeling the underlying dynamics, physics,
biology or chemistry. Usually, the time derivative ẋ of the state variables x is
given by a forcing term F (x) in the form

ẋ = F (x), (3.37)

where F : X 7→ X with state space X is a function of the state variables.

In this section, we focus on the formulated technique used for estimating
the forcing term F which controls the dynamical system. For small time steps,
we can employ Euler’s method for integration, leading to

x(tk+1) ≈ x(tk) + ẋ(tk) · τ = x(tk) + F (x(tk)) · τ (3.38)

with some small time interval τ and tk+1 = tk + τ . We rearrange the terms into

F (x(tk)) ≈ 1
τ

(
x(tk+1) − x(tk)

)
. (3.39)

We approximate F at x(tk) based on the trajectory of our dynamical systems
at the point in time tk and tk+1. Now, using expansions of the forcing term
F (x) in the form

F (x) =
N∑

ξ=1
φξ(x)cξ (3.40)

Chapter 3 Page 44/150

Section 3.3 Model Reconstruction for Dynamical Systems

with basis functions φξ and coefficients cξ ∈ R for ξ = 1, ..., N , we can work
out reconstructions of F based on the variational algorithm (VAR) of Section
3.1 or the Kalman Filter (KF) of Section 3.2, reconstructing the coefficient
vector c ∈ RN .

The above task is, of course, a very broad and generic problem. We will see
that in the simplest possible case of X = R it leads to classical interpolation or
splines. In the subsequent Section 3.3.1, we will employ polynomial expansions
for the forcing term. The approach of radial basis functions will be described
in Section 3.3.2.

Giles et al. [55] in their conclusion, reiterated the importance of the esti-
mation of forcing functions as a diagnostic tool for nonlinear dynamics. He
also posited that the lack of fit of models is adversely affected when they
contain unmeasured components and further recommended developing tests
for independence to evaluate the synergy between forcing functions and model
trajectory. This approach is relevant to the methods formulated in this thesis.

3.3.1 Forcing Term Estimation based on Polynomials
(POL)

Here, we approach the reconstruction of the dynamical model propagation
from tk−1 to tk based on the Taylor series approximation of the forcing function
F (x) with respect to the state variables xj, j = 1, ..., n. The

• convergence of Taylor’s expansion or its polynomial approximation to
approximate the forcing term F together with

• the convergence of Euler’s method when time steps are chosen smaller
and smaller

will lead to the convergence of model reconstruction on the manifold covered
by the dynamical system trajectories. Here, we work out these arguments in
adequate detail.

We assume that we work in state space X = Rn, such that F maps Rn into
itself. In a first step, we approximate F by its Taylor series around x = 0 ∈ Rn,

Chapter 3 Page 45/150

Section 3.3 Model Reconstruction for Dynamical Systems

which using the standard definitions for vectors x, β ∈ Rn

|β| := β1 + ... + βn,

β! := β1!β2! · · · βn!
xβ := xβ1

1 xβ2
2 · · · xβn

n

dβ = dβ1
1 dβ2

2 · · · dβn
n = ∂|β|

∂xβ1
1 · · · ∂xβn

n

. (3.41)

can be written in the form

(F (x))j =
∑

|β|≤ℓ

dβF

β!

∣∣∣∣
x=0

xβ + Rℓ+1,j(x), j = 1, ..., n, (3.42)

with remainder terms Rℓ+1,j(x), x ∈ Rn, j = 1, ..., n. The polynomial forcing
term is then given by

Fℓ(x) =
∑

|β|≤ℓ

a
(j)
β xβ


j=1,...,n

(3.43)

for x ∈ Rn. It can be used to approximate the general term F (x). We note
that in (3.43) the model for each component (Fℓ(x))j, j = 1, ..., n, of Fℓ(x) is
given by the coefficients a

(j)
β for all |β| ≤ ℓ. The number of these terms is given

by the sum of the partition functions p(ξ) for ξ = 0, 1, 2, ..., ℓ.

Here, we simply estimate the total number of degrees of freedom dfree to
be bounded by

dfree = n · (ℓ + 1)n (3.44)
degrees of freedom when we employ the above equation, counting less than
ℓ + 1 choices for each power of the n variables, multiplied by n components of
the function with values in Rn. For a model in R3 with a polynomial degree
for each variable x1, ..., xn up to ℓ = 1, this would lead to dfree = 3 · 23 = 24
possible degrees of freedom. So, if we know that the approximate model falls
into the class given by (3.43), we know that we have to reconstruct at most 24
coefficients. Also, using further symmetries and constraints will restrict the
number of degrees of freedom significantly.

As described in Section 1.6, the standard model of data assimilation is to
receive measurements at times tk, k = 1, 2, 3, These are the times when we
can use data to update our knowledge of the dynamical model as well. However,

Chapter 3 Page 46/150

Section 3.3 Model Reconstruction for Dynamical Systems

the forcing term equation (3.37) describes the change of x at time t. The model
dynamics M(x) from tk−1 to tk is obtained from the full integration of the
equation (3.37). We will assume that the trajectory x(t) remains in the ball
Br for all t > 0, i.e., that we have ||x(t)|| < r, t ≥ 0. If F (x) is Lipschitz
continuous on Br with Lipschitz constant CL, we can estimate

||F (x) − F (xk−1)|| ≤ CL||x − xk−1|| (3.45)

for the integration of x(t) from tk−1 to tk. Also, if F depends continuously on
x, we can estimate

||x(t) − xk−1|| = ||
∫ t

tk−1

.
x dt ||

= ||
∫ t

tk−1
F (x(t)) dt ||

≤ C0|t − tk−1| (3.46)

with
C0 := sup

x∈Br

||F (x)||. (3.47)

Now, we calculate

x(t) − xk−1 =
∫ t

tk−1

.
x dt

=
∫ t

tk−1
F (x(t)) dt

=
∫ t

tk−1

[
F (xk−1) +

(
F (x(t)) − F (xk−1)

)]
dt

= F (xk−1) · (t − tk−1) +
∫ t

tk−1

(
F (x(t)) − F (xk−1)

)
dt.(3.48)

Using (3.45) and (3.46) we estimate the last term in (3.48) by∣∣∣∣∣∣∣∣ ∫ t

tk−1

(
F (x(t)) − F (xk−1)

)
dt

∣∣∣∣∣∣∣∣ ≤
∫ t

tk−1
||F (x(t)) − F (xk−1)|| dt

≤ CL

∫ t

tk−1
||x(t) − xk−1|| dt

≤ CL (3.49)

to write (3.48) for time t = tk in the form

xk − xk−1 = F (xk−1) · (tk − tk−1) + O(|tk − tk−1|2). (3.50)

Chapter 3 Page 47/150

Section 3.3 Model Reconstruction for Dynamical Systems

The estimate (3.50) means that we can approximate the full model dynamics
in the form

xk − xk−1 = M(xk−1)) − xk−1

= (M − I)(xk−1)
= F (xk−1) · (tk − tk−1) + O(|tk − tk−1|2) (3.51)

with the components of F given by (3.42). Using standard convergence results
for polynomial approximation of Cℓ-functions (e.g. [96]), i.e., the estimates on
the remainder Rℓ of (3.42), we now obtain the following result.

Lemma 3.3.1. Assume that for a ball Br ⊂ Rn of radius r > 0 and ℓ ∈ N the
forcing term F (x), x ∈ Rn, of a dynamical system (3.37) satisfies F ∈ Cℓ(Br)
and that the trajectory x(t) remains in Br for all times t > 0. Then, the model
propagation M : x(tk−1) 7→ x(tk) satisfies∣∣∣∣∣∣∣∣x(tk) − x(tk−1) − Fℓ(x(tk−1)) · (tk − tk−1)

∣∣∣∣∣∣∣∣
≤ CLCℓ(tk − tk−1)2 |xk − xk−1|ℓ

ℓ! (3.52)

for k = 1, 2, 3, ... with Lipschitz constant CL of F and Cℓ given by the supremum
of the ℓ-st derivative

Cℓ := sup
x∈B2r

∑
|β|=ℓ+1

∣∣∣∣ dℓF (x)
dxℓ1

1 · · · dxℓn
n

∣∣∣∣ (3.53)

of the forcing term F .

Proof. The result is a consequence of equation (3.51) derived above. 2

We use the notation xk = x(tk) and xk−1 = x(tk−1) and assume that the
true model M is mapping xk−1 into xk, i.e.,

xk = M(xk−1), k = 1, 2, 3, ... (3.54)

Then, the above theorem estimates the difference between the true model M
applied to xk−1 and its approximation

M [a](xk−1) = xk−1 + Fℓ(x(tk−1)) · (tk − tk−1) (3.55)

based on the polynomial forcing term F , i.e.,∣∣∣∣∣∣∣∣M(xk) − M [a](xk)
∣∣∣∣∣∣∣∣ ≤ CLCℓ(tk − tk−1)2 |xk − xk−1|ℓ

ℓ! (3.56)

Chapter 3 Page 48/150

Section 3.3 Model Reconstruction for Dynamical Systems

The algorithmic approach now follows the basic ideas of Section 3.1 and
Section 3.2, see equations (3.15) and (3.16) as well as (3.34) and (3.35). For
the case of a polynomial expansion, it provides an estimate for M [a] with some
coefficient vector a.

We also note that any knowledge about the true polynomial representation
of the model can be used here to limit the number of terms needed to represent
the forcing term and make the whole approach efficient and sufficiently stable.
We will apply this for example to the Lorenz 96 system in Section 4.2.

3.3.2 Forcing Term Estimation based on Radial Basis
Functions (RBF)

We have studied a polynomial approximation of the forcing term in our
previous Section 3.3.1. Of course, other sets of basis functions or splines can
be tried and might be adequate depending on the particular dynamical system
under consideration.

A natural approach is to search for an approximation of the function F by
high-dimensional Gaussian basis functions, i.e., basis functions of the form

φ[µ, q](x) := q · e−(x−µ)T B−1(x−µ), x ∈ X, (3.57)

where µ ∈ X is the centre of the radial basis function, q ∈ X is its target and
B is its covariance. Here, we will study the case where we keep B constant
and employ sets of basis functions defined by their nodes µ and expansion
coefficients.

Let us assume we are given N ∈ N points pξ, ξ = 1, ..., N close to the
manifold covered by the system dynamics, target vectors qξ, ξ = 1, ..., N and
that we want to approximate F by N ∈ N radial basis functions with centre
given by points p1, ..., pN and target vectors qξ. We employ the notation

φξ := φ[pξ, qξ]. (3.58)

Then, solving equation (3.39) with the above basis functions, the classical RBF
interpolation system leads to the equations

N∑
ξ=1

φξ(xk)cξ = ρk, k = 1, ..., K (3.59)

Chapter 3 Page 49/150

Section 3.4 Model Reconstruction for Dynamical Systems

for the unknown coefficients cξ ∈ X, ξ = 1, ..., N and the vectors

ρk := 1
τ

(xk+1 − xk) ∈ X, k = 1, 2, 3, ... (3.60)

In the case where X = Rn we can write (3.59) in matrix equation form

ρk = Akc (3.61)

where ρk ∈ Rn and A ∈ Rn×N is the matrix with entries

Ak =
(

φ[pξ, qξ](xk)
)

ξ=1,...,N
(3.62)

for k = 1, ..., K. When solving the matrix equations (3.61) for k = 1, ..., K
based on the algorithms (VAR) and (KF), the dynamics F is approximated by

Fappr(x) =
N∑

ξ=1
φξ(x)cξ, x ∈ X. (3.63)

3.4 Neural Kernel Estimation
We have introduced the neural field model in Section 2.3. Neural activity

is described by some activity function u on a domain D modelling the brain,
where u satisfies an equation of the form (3.37) with F given by

F (u, x) = −u(x, t) +
∫

D
w(x, y)f(u(y, t)) dy, (3.64)

where in traditional notation x, y ∈ D are points in space Rd for d = 2, 3.
The area of kernel reconstruction, compare [4, 15, 89], estimates the neural
connectivity w(x, y) from the given measurements. Usually, it is based on
reconstructing the activity function u(x, t) for x ∈ D and t ∈ [0, T] first and
then determining the neural dynamics from the states, i.e., the underlying
parameter functions as e.g. the neural kernel w driving these dynamics given
some initial condition using the Amari neural field equation (2.4).

Our goal in the following sections is to compare sequential model reconstruc-
tion with classical kernel estimation. To this end, we briefly describe kernel
estimation in Section 3.4.1. We will then describe how the variational algorithm
(VAR) defined in (3.15) and (3.16) or Kalman Filter (KF) given by (3.34) and
(3.35) can be used for sequential kernel estimation in Section 3.4.2. We will see

Chapter 3 Page 50/150

Section 3.4 Model Reconstruction for Dynamical Systems

that the sequential methods can be equivalent to classical kernel estimation,
but they are computationally much more efficient and exhibit further very
useful properties.

In practice, computational efficiency is the capacity of a computer method
or programme to do a particular job with minimal computing resources, such
as memory, processing power, and time. An algorithm is deemed efficient if it
uses fewer computational resources to solve a problem than other algorithms in
a similar capacity. Efficiency is essential to software development since it may
affect the user experience and overall system performance. When programmes
are inefficient, they might take longer to execute, consume more memory, and
need more processing power, resulting in decreased performance, higher energy
usage, and higher expenses.

The algorithmic complexity of a programme, which refers to the number of
processes it must complete to solve a problem, is one of the most important
criteria affecting its computing efficiency. In general, algorithms with a lower
computational complexity are more effective than those with a larger one.
Other approaches to increase computational efficiency include optimising the
algorithms used in the programme, decreasing the number of memory accesses,
and lowering the quantity of data that must be processed. Moreover, techniques
like caching, parallel processing, and data compression can increase productivity.

Computational efficiency is essential to the software development life cycle.
Algorithms and programmes that are efficient can give faster, more depend-
able, robust and more cost-effective solutions to issues, whereas inefficient
programmes can lead to sluggish performance, excessive energy consumption,
and increased expenditures.

For our case, we compare the calculation of the full matrix W over a full
collection of time steps, which needs to solve a problem of size N = nd ∗nd with
n being the number of neural variables in one space direction, d being the space
dimension (for our example d = 2). The inverse problem is a minimization
problem with N unknowns and m ∗ nk observations, with nk being the number
of time steps (measurement times) under consideration and m the number of
measurements per time step. Using a model approximation with Np degrees
of freedom and the Kalman filter for learning a coefficient vector c ∈ RNp, we
solve a problem with Np unknowns at each time step.

As a small example, with n = 100, d = 2 and m = 100 and nk = 100 the
inversion problem solves for n4 = 108 unknowns solving an equation system of

Chapter 3 Page 51/150

Section 3.4 Model Reconstruction for Dynamical Systems

dimension 104 × 108. With an approximation of dimension Np = 50, Kalman
filter needs to solve 100 problems of size 50 × 100 iteratively. The second task is
fast on a standard PC, the first task is slow. When moving to dimension d = 3,
the first task would be a system of size 104 × 1012, not feasible on standard
PCs at the moment.

3.4.1 Classical Kernel Estimation
The neural fields model is more complicated and specific towards a particular

application area e.g., Neuroscience, unlike the Lorenz which is a standard
dynamical system used in both neuroscience and meteorology as a simple test
case for new ideas.

Under the condition that the forcing function f() is known, the task to
learn the neural model can be reduced to learning the connectivity kernel w.
We test the technique by carrying out the following steps.

• We first choose some reconstructed (or prescribed) dynamical field v(p, t).
Here, one example is to employ some Gaussian-shaped pulse with a centre
travelling along some parabolic curve through a rectangular domain D.

• We pick matching times tk = 1, 2, 3, ..., 25 for which we fed the corre-
sponding function v(·, tk), k = 1, ..., 25 into the model reconstruction
algorithms.

• For testing the result of the model reconstruction, we simulate the neural
field equation according to equation (4.4) with initial state v(·, t1) and
function f based on the Eulerian finite difference method.

In more detail, given some dynamical field u(p, t) for p ∈ D and t ∈ [0, T],
we can rewrite equation (4.4) in the form

τ
·
u (p, t) + u(p, t) =

∫
D

w(p, q)f(u(q, t)) dq, (3.65)

for p ∈ D and t ∈ [0, T]. In discretized form based on a quadrature formula for
the integration, we obtain an equation of the form

Ψ = WΦ (3.66)

with matrices

Ψjk := τ
·
u (pj, tk) + u(pj, tk), (3.67)

Φξk := f(u(qξ, tk))sξ (3.68)

Chapter 3 Page 52/150

Section 3.4 Model Reconstruction for Dynamical Systems

with quadrature weights sξ and

Wjξ := w(pj, qξ), (3.69)

for j, ξ = 1, ..., n and k = 1, ..., nt. In the case of a rectangular rule, the
quadrature weights sξ are given by sξ = a1/n1 · a2/n2 on a domain D =
[0, a1] × [0, a2] with n1 discretization points in e1 direction and n2 discretization
points in e2 direction.

Equation (3.66) includes the knowledge about the field u(p, t) at all time
steps tk for k = 1, ..., nt. With this knowledge, we solve the equation for W by
rewriting it into

ΨT = ΦT W T . (3.70)
The regularized solution of (3.70) based on Tikhonov regularization is given by

W (α) := (αI + ΦΦT)−1ΦΨT (3.71)

3.4.2 A Kalman Filter for Kernel Estimation
As a follow-up from 3.4 and 3.4.1 above, in this subsection, we discuss

the setup, field simulations and the model reconstruction approach used in
the kernel estimation methods described above. We then compare it with the
reconstructed dynamics generated. Here, we carry out learning of the model
itself for the neural field dynamics based on the Kalman filter. Finally, we then
display the results of the error for Kalman reconstruction in comparison with
the full four-dimensional neural field reconstruction method of Section 3.4.1.

In more detail, we start as in the previous section with the equation

τ
·
u (p, t) + u(p, t) =

∫
D

w(p, q)f(u(q, t)) dq, (3.72)

for p ∈ D and t ∈ [0, T]. But now, we sequentially treat the times t. In
discretized form based on a quadrature formula for the integration, we obtain
an equation of the form

Ψk = WΦk (3.73)
with column vectors

Ψk :=
(

τ
·
u (pj, tk) + u(pj, tk)

)
j=1,...,n

, (3.74)

Φk :=
(

f(u(qξ, tk))
)

ξ=1,...,n
(3.75)

Chapter 3 Page 53/150

Section 3.4 Model Reconstruction for Dynamical Systems

and W defined as in (3.69).

The equation (3.73) below, represents a linear transformation or mapping
between two vectors, ΨT

k and ΦT
k , using the transpose of a matrix W

ΨT
k = ΦT

k W T (3.76)

where ΨT
k indicates the transposition of the row vector Ψk, ΦT

k indicates the
transposition of the row vector Φk, which also has k components, and W T

represents the transpose of the matrix W .

Clearly, one single equation is not sufficient for the reconstruction of W .
But with the Kalman filter solving equations described in Section 3.2 for
k = 1, 2, ..., nt we can iteratively obtain a reconstruction of W . To use (3.34) -
(3.35) we need to bring (3.76) into the form

r = Hc · c (3.77)

with c being either a reordered version of W or the constants of an appropriate
approximation Ansatz for W , r = Ψk and Hc being the observation operator
mapping c onto (ΦT

k W T)T .

We will describe a high-dimensional and a low-dimensional version of this
type of Kalman learning of the neural kernel in Section 4.3.

Chapter 3 Page 54/150

Chapter 4

Low and High-Dimensional
Applications

This chapter works out the applications of the algorithms introduced in
Section 3 for sequential model reconstruction developed based on standard
ensemble data assimilation. The aim is to provide an approach which takes care
of the limitations of the algorithm in dealing with large-scale data assimilation
frameworks for model reconstruction.

We will apply the variational scheme (3.15) and (3.16) to reconstruct the
Lorenz 63 model in Section 4.1. For reconstructing the model in the case of
Lorenz 96 we work out the Kalman filter approach (3.34) and (3.35) in Section
4.2. Reconstructions of the neural connectivity kernel from dynamics of the
neural field equation based on the Kalman filter model reconstruction are
shown in Section 4.3. Finally, we study reconstructions of a simplified version
of temperature dynamics for the reaction-diffusion system numerical NWP
model in Section 4.4.

4.1 Learning the three-dimensional Lorenz ’63
In this section, our goal here is to present the result of the scheme for a

low-dimensional model using the Lorenz ’63 model, which is widely used as a
study object for dynamical systems, compare for example [81]. It is a system of
three non-linear ordinary differential equations (see 1.13, 1.14 and 1.15 above,
with constants σ, ρ, β known as Prandtl number, the Rayleigh number and a
nondimensional wave number. Here, for the constants we take the classical

55

Section 4.1 Model Reconstruction for Dynamical Systems

values σ = 10, β = 8/3 and ρ = 28. The implementation of the system is
straightforward.

As a first test case for model reconstruction, we test the reconstruction of
its dynamics from a sequence of measurements yk of the full state.

We use a straightforward implementation of equations (3.20) and (3.21). We
first generate the measurement data by running a Lorenz 63 model, calculating
the measurements y(:, k) for k = 1, 2, 3, ..., Nnat. The true curve is stored in
xv(:, k) for k = 1, 2, 3, ..., Nnat.

In sub-section 4.1.2 below, we display the results of the convergence of
Lorenz ’63 model learning reconstruction technique in figure (4.1). Similar
displays were shown in figures (4.2) and (4.3) for true and approximated model
with different time steps.

A display of the original and reconstructed trajectory is found in Figure
4.6(b). The error evolution is shown in Figure 4.6(c). The Matlab/Octave
codes used in both cases are in Appendix Section 7.1.

• In particular, the learning equations (3.15) - (3.17) are realized by line
14 of the first code example of Section 7.1.

• The approximate model is a sum of Gaussians with centres xk and learned
coefficients, shown by the second code example in Section 7.1.

• The data assimilation cycle in which the model learning is integrated is
shown by the third code example of Section 7.1.

4.1.1 Variational Model Learning a 1d Scenario
In this subsection, we demonstrate the convergence of the model learning

technique described above using a one-dimensional case, in addition, we show
the results of the findings and their corresponding errors. We describe on an
interval I = [a, b], we then define a scalar function M : x 7→ M(x) with values
M(x) ∈ I for all x ∈ I. Then, M defines a dynamics with initial state x0 ∈ I
by

xk := M(xk−1) (4.1)
for k = 1, 2, 3, Here, for our first example we have chosen

M(x) = π · sin(x) + π.

Chapter 4 Page 56/150

Section 4.1 Model Reconstruction for Dynamical Systems

With a starting value of x0 = 3 and interval [a, b] = [0, 2π], we display the
dynamics and first two steps of model reconstruction in Figure (4.1). Further-
more, we first show the natural approach where a radial basis function around
each analysis state is constructed in each learning step.

To explain the grey lines in Figure (4.1), starting with the value xk−1 we
draw a grey line first to the function value M(xk−1), which is a vertical line
from the point (xk−1, 0) up from the x-axis to the point (xk−1, M(xk−1)). Then,
the value xk = M(xk−1) is the next value, which can be read from the y-axis.
We draw a grey line from this point (xk−1, M(xk−1)) to the point (0, M(xk−1))
on the y axis, and then to the point (M(xk−1), 0) = (xk, 0) on the x-axis. This
is the third grey line which terminates at the new state xk−1 on the x-axis.

Figure (4.2) shows the result after time step k = 50 in (a), k = 300 in
(b) and k = 1000 in (c). We observe good convergence of the reconstruction
toward an L2 error of 0.062155. The grid points used (Ng = 150) for the
approximation is indicated by the black dots. We display the dynamics in grey
lines up to the first 100 time steps.

(a) (b)

Figure 4.1: True and approximated model in time step k = 1 and k = 2, where
the blue curve displays the true model, the orange curve the approximative
model, the grey lines indicate the model dynamics (describes how the variables
or components of the model change and interact with each other as time
progresses), and the magenta points are the states of the model. We also
display an example of a radial basis function around the initial state as a grey
line. The grid points as centers of the RBF functions are shown as black dots,
they coincide with the model states x

(a)
k−1 in this example.

Chapter 4 Page 57/150

Section 4.1 Model Reconstruction for Dynamical Systems

(a) (b)

(c)

Figure 4.2: True and approximated model in time step k = 50, k = 300 and
k = 1000, where the blue curve displays the true model, the orange curve
the approximative model, the grey lines indicate the model dynamics and the
magenta points the states of the model. We also display an example of a radial
basis function around the initial state as a grey line. The grid points as centers
of the RBF functions are shown as black dots, they coincide with the model
states x

(a)
k−1 in this example.

Chapter 4 Page 58/150

Section 4.1 Model Reconstruction for Dynamical Systems

In a second stage, we demonstrate the outcomes of using a Ng = 150 point
grid throughout the model-learning operation. Figure (4.3) depicts the findings
and errors. As a result, the centres of the radial basis functions no longer
correspond with the model trajectories, but are instead represented by the
whole collection of Ng = 150 black dots seen in the figure. Currently, the
approximation of the model has a fixed dimension specified by Ng; during the
data assimilation cycle, the coefficients are estimated repeatedly.

(a) (b)

(c)

Figure 4.3: True and approximated model in time step k = 50, k = 300 and
k = 1000, where the blue curve displays the true model, the orange curve
the approximative model, the grey lines indicate the model dynamics and the
magenta points the states of the model. We also display an example of a radial
basis function around the initial state as a grey line. The grid points as centers
of the RBF functions are shown as black dots, they do not coincide with the
model states x

(a)
k−1 shown as magenta points in this example.

Chapter 4 Page 59/150

Section 4.1 Model Reconstruction for Dynamical Systems

4.1.2 Variational Model Learning for L63
We now come to the Lorenz 63 model. In figure 4.4 below, we first select

some true dynamics and generate observations yk at points tk for k ∈ N. Next,
we carry out the Lorenz ’63 model reconstruction according to equations (3.15)
and (3.16). Now, in the first step, we assume that we have perfect observations.
Observations with some error R = rI with r > 0 are treated in a second test
scenario.

(a) (b)

(c) (d)

Figure 4.4: (a) and (b) depict the original dynamics from different perspectives,
whereas (c) and (d) depict the rebuilt dynamics from the same perspectives,
where the model has been reconstructed using equation (3.23). The blue star
is the beginning state for the dynamics and the reconstructed trajectory to the
rest of the neural patch.

Chapter 4 Page 60/150

Section 4.1 Model Reconstruction for Dynamical Systems

(a) (b)

Figure 4.5: The error evolution of the first guess during the assimilation
analysis cycle is shown in blue, in (a) we show the first 500 steps, and in (b)
the evolution over an assimilation cycle of 5000 steps. The red curve shows
the error of the constant model in each of the steps as a reference. The x-axis
shows the number of time steps while the y-axis is the error evolution in both
cases.

When we carry out the assimilation, the error of the current model can be
estimated by calculating the difference between the measurement yk and the
first guess error shown below in figure 4.5, and given by the norm of

ek := yk − M
(b)
k (xk−1)

= M (true)(x(true)
k) − M

(b)
k (xk−1). (4.2)

for k ∈ N. This is not only reflecting the model error M
(true)
k − M

(b)
k , but it is

also the sum

M (true)(x(true)
k−1) − M

(b)
k (xk−1) = M (true)(x(true)

k−1) − M
(b)
k (x(true)

k−1)
+M

(b)
k (x(true)

k−1) − M
(b)
k (xk−1). (4.3)

of the model error on the true state plus the propagation of the error of the
current state estimate. However, if the model M

(b)
k becomes better, also the

state estimate will become better. The norm ||ek|| of ek is a reasonable score
to measure the convergence of the model estimation.

In Figure 4.6 we see the model trajectory, the approximation points are
chosen by a selection algorithm around the actual model trajectory and also
the first guess and analysis errors when a data assimilation plus model recon-
struction algorithm is run. Similarly, figure 4.7 below, show the evolution of

Chapter 4 Page 61/150

Section 4.1 Model Reconstruction for Dynamical Systems

the first guess and analysis error for the model reconstruction approach at 200
time steps.

For comparison, the first guess error with a constant model approximation,
i.e., with M(x) = x for all points, is shown in Figure 4.6 (c). Here, the
total dimension of the model approximation was N = 429. The number N is
fundamentally influenced by

1. the grid size of the underlying regular grid. This grid size will also
determine the approximation quality of the model. When the grid size is
made smaller, the approximation will become better based on standard
approximation results for radial basis function approximation.

2. The model dimension N is influenced by the area the trajectory of the
underlying system covers. In the case of Lorenz ’63, the trace of the
trajectory is profoundly two-dimensional, such that only a part of the
full state space is touched by the trajectory and needs to be taken into
consideration.

(a) (b)

Figure 4.6: Figure (a) shows the points generated to approximate the dynamical
model by radial basis functions chosen from some uniform grid and taking all
points where the trajectory passes through in the enclosed cube. Figure (b)
shows the first guess approximation achieved by this within 200-time steps.

Chapter 4 Page 62/150

Section 4.1 Model Reconstruction for Dynamical Systems

(c)

Figure 4.7: The error evolution of the first guess error compared with that of
the analysis error for the model reconstruction approach within 200 time steps.

4.1.3 Statistical Analysis of the Numerical Experiment
Description: L63

In this section, we emphasise and describe the processes required to under-
take a statistical analysis of the numerical experiment using the Lorenz ’63
model learning approach. We do a sensitivity analysis to demonstrate how
variable input changes affect the model’s output. After finishing the Lorenz
63 model learning, this was accomplished by modifying the time steps and
visualising the accurate and approximation trajectories at each stage.

For the Lorenz 63 system we test the reconstruction of the model dynamics
based on the Kalman Filter for the Ansatz of a superposition of exponential
functions on a grid. We will conduct experiments where

1. We let the exponential nodes be given by the list of analysis states x
(a)
k ,

k = 1, 2, ... growing over time.

2. Limit the nodes of the exponentials to a fixed grid covering the area of
the trajectory.

Further, we can learn the coefficients based on

1. A three-dimensional approach with fixed covariance matrix in coefficient
space.

2. The Kalman Filter approach with covariance matrix in coefficient space
changed in each step of the learning procedure.

Chapter 4 Page 63/150

Section 4.1 Model Reconstruction for Dynamical Systems

3. A four-dimensional approach where the coefficients are calculated based
on an interval of points.

By theory, for a linear observation operator the Kalman Filter is equivalent to
the 4D approach [103], [56]. We have tested this on a limited interval.

Sensitivity Analysis: L63 Model Reconstruction

A sensitivity analysis is carried out for the following approaches below:

1. Testing the result of the model reconstruction for different parameter
settings, displaying the resulting model trajectories in comparison for
selected cases.

2. Testing a range of parameters and studying the histogram of resulting
model errors.

For the model errors we can employ various metrics.

1. First guess error in the analysis cycle where the approximate model is
growing step by step based on the model learning procedure.

2. Analysing the forecasting error for some fixed lead time.

3. Testing the length of a model trajectory which stays within some error
bounds around the true model trajectory.

Sensitivity Experiment #1. We carried out experiments with different
number of time step Nnat, ranging from 400 to 1150. Depending on the
number of time steps, the original trajectory will cover more or less area in
state space. This leads to a varying number of base points for the model
approximation. When the approximate trajectory leaves the area where the
model training worked well, it can happen that the increments tend to zero
and the approximate trajectory is stuck somewhere. In the cases where the
approximate model trajectory stays within the area where approximations
work sufficiently well, the approximate trajectory follows the original trajectory
oscillating between the two wings of the butterfly.

Choices of parameters for this experiment are:

Chapter 4 Page 64/150

Section 4.1 Model Reconstruction for Dynamical Systems

x0 = [0;-12;21] % initial point for trajectory
Nnat = 300; % steps for nature run
x = x0; % initial state for iteration
noise = 0.00001; % noise factor on measurements
dtime = 0.03; % time interval between measurements
sigmaO = 10; % standard parameter in the Lorenz system
rhoO = 28; % ~
betaO = 8/3; % ~

The result of these runs is reflected in Figure 4.8. We show the model
learning outcome by carrying out a free run starting with x0 based on a varying
number of time steps of the nature run and corresponding training period. The
results compares the true and approximate trajectory after learning the Lorenz
’63 model. Even if the exact trajectory is met only for 200 or 300 time steps,
in most tests there is a clear correlation in the patterns noticeable between the
trajectories. In (f) and (g), though, the free run started tobe stuck in a local
fixed point after about 100 time steps.

Sensitivity Experiment #2. We tested the whole model reconstruction
with different seeds for the random error generator of the observation errors.
Learning was based on a trajectory starting with some state x0 given above.

The result of these runs is reflected in the histogram below in Figure 4.9
showing the distribution of the first guess errors over the full model trajectory.
The experiments have been carried out with noise at ϵ = 10−5. The standard
deviation of the distribution is quite small with values of 0.0002.

Sensitivity Experiment #3. We tested the whole model reconstruction
with different initial conditions for the trajectory employed for training. We
show a histogram of the first guess errors over the full trajectory during model
learning.

The result of these runs is reflected in the histogram shown below in Figure
4.10, which shows the distribution of the first guess errors over the whole model
trajectory when the initial point for the training trajectory was changed. In
this case, we notice a negative or left-skewed distributed error. It suggests a
clear indication of extremely low values in the standard deviation of the noise
clustered towards the left.

Chapter 4 Page 65/150

Section 4.1 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.8: Experimenting with model learning with Nnat=200, 300, ..., 1100
steps. We display a visualization of the true and the approximate trajectory
both run freely for Nnat steps after completing the learning for the Lorenz 63
model, starting with the original point x0.
Chapter 4 Page 66/150

Section 4.1 Model Reconstruction for Dynamical Systems

Figure 4.9: A histogram of the first guess errors over the full trajectory during
model learning when the seed of the observation error random number generator
was changed. The standard deviation of the noise was set to ϵ = 10−5.

Figure 4.10: A histogram of the first guess errors over the full trajectory during
model learning when the initial point for the training trajectory was changed.
The standard deviation of the changes to x0 in the form x0 = x00+σ∗randn(3, 1)
was set to σ = 0.2.

Chapter 4 Page 67/150

Section 4.2 Model Reconstruction for Dynamical Systems

4.2 Learning higher dimensional Lorenz 96
This section displays the results of the learning obtained through the

application of Lorenz 96. This was applied in a higher dimensional environment
to show its feasibility as a dimension reduction approach.

We follow through with the simulation of the Lorenz 96 model as described
in Section 2.2, in particular equation (2.1). To set up our learning framework,
we model the forcing term F at each node j ∈ {1, .., n} as a polynomial function
of the variables in an environment j −dj, ..., j +dj with dj ∈ N. The polynomial
ansatz for the forcing term as given by (3.40) provides a framework for learning
the L96 model. We can explicitly compare the ’true’ coefficients cξ as given by
the explicit F (x) for L96 with the reconstructed coefficients cξ.

The coefficients cξ are successively reconstructed based on either a three-
dimensional approach as described in Section 3.1 or the Kalman filter of Section
3.2 when the coefficient covariance matrix is updated in each step of the
iteration.

Figure 4.11 displays the results of a nature run where we carry out a
classical data assimilation cycle for L96. We then carry out the same data
assimilation cycle without the knowledge of the L96 system, but with the model
reconstruction for the coefficients cξ of the ODE system.

The iterative results of the coefficient reconstructions are shown in Figure
4.12 (d) over 40 steps, where we observe that most coefficients are readily recon-
structed after about 10 steps. The first guess error of the model reconstruction
is shown in Figure 4.12 (a) and (b). At the end of the 40 steps the original and
reconstructed coefficients cξ are shown in Figure 4.12 (c). The algorithm was
able to recover the coefficients of the system of ODEs in a quite reasonable
way.

A targeted selection of the reconstruction code carrying out the reconstruc-
tion of the coefficients based on the observation operator Hc is shown in line 6
of the Matlab code No. 1 in Part B in Appendix 7.2.3 below. In particular,

• The operator Hc is defined in code example No. 3 of Section 7.2.3.

• The Kalman filter based learning of the coefficients is carried out on line
16 of the Matlab code No. 2 of Section 7.2.3 with an update of the model
Bc matrix on line No. 17 of the Matlab code below.

Chapter 4 Page 68/150

Section 4.2 Model Reconstruction for Dynamical Systems

Here we employed the Localized Ensemble Transform Kalman Filter (LETKF)
following [56] for the data assimilation parts of the Lorenz 96 model. In this
study, we have used the LETKF for our Lorenz ’96 system as a data assimilation
(DA) method, which is a well-known approach for incorporating observations
into numerical models, and can be used with the Lorenz ’96 system to estimate
the system’s state. In this case, we have used it for the reconstructing the
model’s state instead by using observations included in an ensemble to compare
model reconstructed or predicted to true observations.

The numerical example from the following codes by Potthast and Schenk1.
The basic cycling code is shown in Section 7.2.4, code No. 1.

1Taken from the Data Assimilation Coding Environment DACE of Deutscher Wetterdienst
(DWD), specifically, the explorative coding parts dace_play/octave.

Chapter 4 Page 69/150

Section 4.2 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

Figure 4.11: Results of the dynamics of some variables used in the simulation
of the Lorenz ’96 model in (a), (b) Displays Local Ensemble Transform Kalman
Filter (LETKF) plot of the first guess and analysis evolution errors and the
ensemble spread of the background and analysis errors (c) The nature run,
first guess and analysis mean for each variable at the end of the last cycle is
displayed with the first guess mean in observation space while (d) shows the
nature run, the first guess states and the first guess deviation from nature run.

Chapter 4 Page 70/150

Section 4.2 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

Figure 4.12: Further results of the simulation of the Lorenz ’96 showing the
first guess field from the original and model reconstruction and its errors in
(a) Line plots of the model reconstruction and first guess errors and their
corresponding means of the first guess and reconstructed model respectively in
(b) and (c) shows the coefficients of the original and reconstructed model while
(d) displays the coefficient reconstruction error.

Chapter 4 Page 71/150

Section 4.2 Model Reconstruction for Dynamical Systems

4.2.1 Statistical Analysis of the Numerical Experiment
Description: L96

This section shows the methods used to analyse the numerical experiment
and their corresponding explanations for the Lorenz ’96 model reconstruction
approach. We conduct a sensitivity analysis to demonstrate the effect of
variable input modifications on the model’s output. We display the results
of the learning process for the Lorenz 96 model, this was accomplished by
modifying the time steps and, afterwards, visualising the true and approximated
trajectories at each stage.

We carry out a run of the Lorenz ’96 system with parameters described as
follows:

Nnat = 40; % number of cycles
N = 50; % model state dimension 50
J = 2; % neighbors needed for Lorenz 96
F1 = 8; % forcing term for the true state
% Parameters for the numerical solution of the model
dtime = 0.05; % steps of integration
h = 0.05;
% Parameters for generating observations and in
noise = 0.02; % noise factor on measurements % standard deviation of observations
hH = 2; % every hH-th variable is observed
rho = 4*pi/N; % localization radius with respect to differences of nodes

with some initial state x0. Then, we run the model reconstruction scheme
reconstructing the coefficients in the forcing term.

Sensitivity Analysis: L96 Model Reconstruction

Sensitivity Experiment #1. With different initial states of L96 defined by

x0 = 5*sin(2*pi*3*(1:N)’/N) + 1*randn(N,1);

The dimension of the local coefficients of Lorenz ’96 for reconstruction has been
chosen to be nc = 21.

Chapter 4 Page 72/150

Section 4.3 Model Reconstruction for Dynamical Systems

(a) (b)

Figure 4.13: Figure (a) shows the distribution of the reconstruction error for
N = 100 model reconstruction runs with x0 taken from the random distribution
described above. The coefficients and their reconstruction for the last sample
are shown in Figure (b).

4.3 Neural Field Model Learning the Kernel
Here, we develop the model reconstruction techniques described in 3.4, i.e.,

the four-dimensional neural kernel reconstruction and the neural Kalman filter
in Section 3.4.2 by applying it to the reconstruction of the dynamics of a neural
field as described by the Amari neural field equation in equation 2.4

τ
·
u (p, t) = −u(p, t) +

∫
D

w(p, q)f(u(q, t)) dq, (4.4)

for p ∈ D with some domain D ∈ R2 and t ∈ [0, T] with T > 0.

With the definition of Ψ and Φ given by (3.74) and (3.75), our observations
of the model in each step are given by

r = Ψk. (4.5)

We define our set of parameters to reconstruct to be

c
(b)
ℓ := Wjξ, ℓ = n(j − 1) + ξ (4.6)

for j, ξ = 1, ..., n. In this case, the Kalman filter equations (3.34) - (3.35) are
based on the operator Hc = H(k)

c defined by

(H(k)
c)j,n∗(j−1)+ξ = (ΦT

k)ξ, j, ξ = 1, ..., , n, (4.7)

Chapter 4 Page 73/150

Section 4.3 Model Reconstruction for Dynamical Systems

(a) (b)

Figure 4.14: We show two snapshots from the prescribed (bottom), and
reconstructed dynamics based on the RBF nonlinear model reconstruction
technique. The images show the times t = 5 for (a) and t = 10 for (b) with a
simulation time-step of 0.9, where the input was given with times steps of size
1. The approximate dynamics can generate the movement of the pulse, though
with a slight phase error.

and zero otherwise, such that we have

(H(k)
c c(b))j = rj (4.8)

= (ΦT
k W T)j (4.9)

=
∑

ξ

Φk,ξWjξ (4.10)

for j = 1, ..., n. This Kalman approach is, at the end of any given time window
[0, T], equivalent to the full reconstruction for the window [0, T]. Results are
shown in Figure 4.16 as "Neuro Reconstruction".

The advantage of the Kalman approach for reconstructing W is that it
iteratively solves an equation and does not need to take into account all time
steps in one step. The disadvantage here is that the number of elements to
reconstruct is n, and the covariance matrix Bc is of dimension n2, and it needs
an update of this matrix in each step of the algorithm.

Reducing the dimension of the model parameter space is an option to
provide more efficient and stable reconstructions. Here, we might take the
Ansatz to represent W as a superposition of Gaussian basis functions, i.e. in

Chapter 4 Page 74/150

Section 4.3 Model Reconstruction for Dynamical Systems

(c) (d)

(e)

Figure 4.15: We show two snapshots from the prescribed (bottom), and
reconstructed model (top) dynamics based on the RBF nonlinear model re-
construction technique. The images show the times t = 15 for (c) and t = 20
for (d) and t = 25 for (e) with a simulation time-step of 0.5, where the input
was given with times steps of size 1. We observe a growing phase shift and a
growing error in the excitation strength when we move towards smaller time
steps for the simulation.

Chapter 4 Page 75/150

Section 4.3 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: In Figure 4.16 (a)-(e) above, We show the snapshots of the different
phases in the simulations of the original dynamics (bottom left) at different
time steps in comparison with the Kalman and Kalman error reconstructed
dynamics alongside the neuro reconstruction approach using the kalman filter
kernel estimation technique.

Chapter 4 Page 76/150

Section 4.3 Model Reconstruction for Dynamical Systems

the form
W =

Nc∑
η=1

cηG
(η)
1 (G(η)

2)T (4.11)

where for ℓ = 1, 2 we employ

G
(η)
ℓ,ξ = exp(−σℓ∥pξ − p(η,ℓ)∥2), ξ = 1, ..., n (4.12)

with constants σℓ with some set of points

M =
{

p(η,ℓ), η = 1, ..., Nc, ℓ = 1, 2
}

. (4.13)

We note
G

(η)
ℓ ∈ Rn. (4.14)

If σℓ is sufficiently large, and the set of points covers the domain D, the ansatz
(4.11) will be an approximation to the full matrix W . Equation (4.10) can now
be written as

(H(k)
c c(b))j = rj (4.15)

= (ΦT
k W T)j (4.16)

=
∑

ξ

Φk,ξWjξ (4.17)

=
∑

ξ

∑
η

∑
ρ

Φk,ξcη(G(η)
1)jρ(G(η)

2)ξρ (4.18)

=
∑

η

(G(η)
1 (G(η)

s)T Φk)jcη (4.19)

for j = 1, ..., n. This leads to

H(k)
c =

(
G

(η)
1 (G(η)

s)T Φk

)
η=1,...,Nc

. (4.20)

Results for model reconstruction or model learning, respectively, with the above
RBF ansatz, are shown in Figure 4.16 as "Kalman Reconstruction". Here, we
chose a selection of points p(η,ℓ) along the path of the neural pulse propagation.
Practically, such a choice could be made by an algorithm testing activity in
space and putting the basis function into the area of activity for a given time
slice.

For the kernel reconstruction by the Kalman filter with full matrix W , we
obtain identical reconstruction kernels Wapprox at the end of the time window

Chapter 4 Page 77/150

Section 4.4 Model Reconstruction for Dynamical Systems

T to the original four-dimensional method. Results are shown in Figures 4.14
and 4.15.

In Figure 4.14 below, we show the original states and the states based on
the reconstructed kernel at times t = 5 and t = 10. Time steps t = 15, 20
and t = 25 are shown in Figure 4.15. For all cases, we obtain reasonable
approximations of the prescribed dynamical evolution of the travelling pulse,
though with smaller time steps here we observed a growing phase shift, i.e. the
pulse speed increased.

The second example with the Kalman is shown in Figure 4.16, where
this time, the pulse is rotating around the centre of the neural tissue. Here,
the strongly reduced dimensionality of the RBF approximation still yields
reasonable dynamical reconstruction, but a larger error than the much higher
dimensional full W reconstruction.

We remark that with the discretization of n1 = 28 and n2 = 29 points for
the domain D, we have a dimension n = 812 of the neural states u at each
point in time t ∈ [0, T]. The dimension of W is then n2 = 659344. In contrast,
for the RBF Ansatz, we only needed a dimension nc = 58 of c(b), putting radial
basis functions along the path of the neural pulse.

A selection of the core code for reconstructing the coefficients with a
Gaussian RBF Ansatz for the neural field equation is shown in Section 7.3. In
particular

• The reconstruction based on the Kalman filter with Gaussian basis func-
tions as displayed in Figure 4.16 as "Kalman Reconstruction" is shown in
code No. 1 of Section 7.3.

• The original neural reconstruction as displayed in Figure 4.16 as "Neuro
Reconstruction" is shown in code No. 2 of Section 7.3.

4.4 Applications to Reaction-Diffusion System
This section displays the results in the framework of the reaction-diffusion

system atmospheric model described in 2.4, and 2.4.1 above.

We start our reconstruction with the discretized version (2.12) of equation
(2.6), i.e. with

uk+1,j =
∑

ξ

cjξuk,ξ, j = 1, ..., n (4.21)

Chapter 4 Page 78/150

Section 4.4 Model Reconstruction for Dynamical Systems

with time index k = 1, 2, 3, ... and spatial index j = 1, ..., n. Given the field
values uk+1,j for a point pj with index j and values uk,ξ located at points
pξ in a neighbourhood of pj. The model learning can take place locally and
independently of each other for each j. This also means that we can work
independently with the coefficient covariance matrices B(j)

c .

Let Mj be the set of neighbourhood indices for pj. Then we solve a family
of equations

uk+1,j =
∑

ξ∈Mj

cjξuk,ξ, j = 1, ..., n. (4.22)

The operator Hc is given by the collection of field values uk,ξ, such that

H(j)
c cj =

∑
ξ∈Mj

cjξuk,ξ, (4.23)

with a column vector of coefficients

cj :=
(

cj,ξ

)
ξ∈Mj

, (4.24)

which means that with the correct ordering H(j)
c consists of the values of uk,ξ

in the neighbourhood of pj.

We carried out a simulation of the partial differential equation (2.6) with
the initial condition (2.7). We then applied the Kalman learning (3.34) -
(3.35) to the sequence of values uk,j for time steps tk, k = 1, ..., nt and for
each point j = 1, ..., n. For testing the result of the model reconstruction, we
then simulated the reconstructed model, with the identical setup including the
filtering (2.10).

An example, where we start with u(·, tk) at time tk for k = 100 is displayed
in Figure 4.17. The models show a good coincidence of the original and
reconstructed field dynamics for about 150-time steps, k = 100 to k = 250.

The core code for reconstructing the coefficients of a reaction-diffusion partial
differential equation is shown in Section 7.4. The update of the coefficient is
done on line 41 of the code, and the update of the Bc matrix is in lines 42-46.

Chapter 4 Page 79/150

Section 4.4 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Results of the iterations at different point coordinates and
estimated time steps with index k = 100, 115, 135, 205, 250.

Chapter 4 Page 80/150

Section 4.4 Model Reconstruction for Dynamical Systems

4.4.1 Sensitivity Analysis of the Numerical Experiment
Description: PDE

This section presents the findings of the numerical experiment for the
reaction-diffusion system weather equation shown in the preceding section(4.4).
We demonstrate that it is possible to learn the integral partial differential
equation of the known model when utilised as a propagator. As a learning
space, we employ a basic two-dimensional reaction-diffusion model for the
model reconstruction method given below.

We carry out a run of the simulation with the reaction-diffusion system
with parameters described as follows:

% two-dimensional domain given by [0 a1]x[0 a2]
xv1 = [0:h1:a1-h1];
xv2 = [0:h2:a2-h2];
% calculate points
[X1,X2] = meshgrid(xv1,xv2);
X1v = reshape(X1,n,1);
X2v = reshape(X2,n,1);
u0 = exp(-2*((X1v-4.5).^2 + (X2v-2).^2)); % initial field

with some initial state u0. Then, we run the model reconstruction scheme
reconstructing the coefficients in the forcing term.

Sensitivity Analysis dependent on Gradient Direction

Sensitivity Experiment #1. With different directions of the gradient we
test the reconstruction with different values of p ∈ R2, ∥p∥ = 1 and c = 1−12.

du

dt
= p · ∇u − c△u = p1

∂u

∂x1
+ p2

∂u

∂x2
− c(∂2u

∂x2
1

+ ∂2u

∂x2
2
). (4.25)

a = pi/3; % angle for calculating p; parameter choices for the PDE
ptmp = [cos(a)*ones(n1*n2,1) sin(a)*ones(n1*n2,1)];
p = ptmp./sqrt(ptmp(:,1).^2+ptmp(:,2).^2);
c = 1e-12;

See Figures 4.18 - 4.20 for three different choices and the corresponding
comparision of reconstructions with the original trajectory.

Chapter 4 Page 81/150

Section 4.4 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.18: The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differential equation,
where we display iterations 0, 30, ..., 150, all for p = [0; 1].

Chapter 4 Page 82/150

Section 4.4 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.19: The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differential equation,
where we display iterations 0, 30, ..., 150, all for p = [1; 0].

Chapter 4 Page 83/150

Section 4.4 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.20: The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differential equation,
where we display iterations 0, 30, ..., 150, all for p = [0.5; 0.86].

Chapter 4 Page 84/150

Section 4.4 Model Reconstruction for Dynamical Systems

Sensitivity Experiment #2. We show a comparison of the results for two
different choices of the diffusion coefficient c. For c = 1e − 4 and c = 1e − 5
we have carried out the same reconstruction, studying the trajectory for the
true and approximated (learned) PDE starting from the same initial field u0 in
Figure 4.21.

Chapter 4 Page 85/150

Section 4.4 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.21: The Figures (a)-(f) show different times steps comparing the
original dynamics with the field generated by the learned differential equation,
where we display iterations 30, 90, 150, starting with equal states taken from the
original iteration 100. All simulations here with p = [0.5; 0.86] with different
diffusion c = 1e − 4 in (a), (c) and (e) and c = 1e − 5 in (b), (c) and (f). Fields
with less diffusion are larger as expected, after 150 iterations the two fields
have started to strongly diverge due to the difference between true PDE and
approximated PDE.
Chapter 4 Page 86/150

Chapter 5

Statistical Sensitivity Analysis of
Model Reconstruction

This chapter aims to investigate the sensitivity of the model reconstruction,
i.e., to understand how variations in the noise level affect the accuracy of the
model reconstructions or the performance of the data assimilation techniques
developed in this thesis. It helps assess the robustness, identify weaknesses,
and make informed decisions to enhance the model reconstruction algorithm’s
capabilities.

In particular, we investigate the

1. Sensitivity of the results to different levels of observational noise.

2. Sensitivity of the results to partial observations of the state.

3. Sensitivity of the results to time frequency of observations.

4. Convergence behaviour as the approximation of the model is improved.

We will present statistical evaluations for the Lorenz 63 model in Section
5.1, for the Lorenz 96 model in Section 5.2 and for the Amari Neural field
model in Section 5.3. The evaluations aim to show the changes in the learn-
ing performances of the models mentioned above at varying time steps or
experiences.

In the case of Lorenz 96 and Amari, we were using approximations which
contain the true model. Then, it does not make sense to study the convergence
of the approximation, but the convergence will be obtained when more and

87

Section 5.1 Model Reconstruction for Dynamical Systems

more input data are used for learning. We will show this by running a sequence
of experiments with more and more steps.

In addition, we also present the results of the cycled experiments carried
out with some setups. We run a data assimilation cycle for each choice of
the different noise levels added to these simulated experiments in this chapter.
The average first guess error measures how well the assimilation works. We
now do this ten times with different observation errors, leading to a curve we
can display (as shown in the figures below). In general, sensitivity analysis
helps quantify how these uncertainties propagate through the model and helps
understand the impact on its predictive capabilities.

5.1 Sensitivity Results for Lorenz Model L63
Sensitivity analysis with respect to observational noise. In this

section, we discuss the simulations for the different levels of observational noise
using the Lorenz 63 model.

We carry out the 3D-VAR based model reconstruction with a growing
number of nodes for 5000 time steps and study the dependency of the model
reconstruction error on the observation error. For each observational noise
level, we carry out an experiment. This means

• We carry out the full assimilation cycle.

• In each assimilation step we update the model coefficients c

• When the learning phase is completed, we test the reconstructed model
against the true model.

Model reconstruction error is measured based on the Frobenius norm (also
known as the Euclidean norm) for calculating the error of the difference between
the true first guess and the reconstructed model-based first guess for all time
steps of the full original trajectory.

In the chart below in Figure 5.1, we present the results of the model
reconstruction error against the noise levels. It is noticeable that the noise level
increase is having an impact on the model’s reconstruction error, there is a clear
indication that the model is sensitive to noise, even though the rate of a unit
change in the axis of the noise levels is higher than that of the reconstruction
error axis.

Chapter 5 Page 88/150

Section 5.1 Model Reconstruction for Dynamical Systems

(a) (b) (c)

(d) (e)

Figure 5.1: The figures (a)-(d) show the growth of the reconstruction error
against the different noise levels, testing ranges from 0.001 to 10. As the
observational noise level increases, the reconstruction error for the coefficients
values increase also in a super-linear way. When the error increases further,
the reconstruction breaks down at an error size of about noise = 3, we show
the behaviour of the reconstructed model for noise = 10 in (e).

Sensitivity analysis with respect to partial observations of the
state for Lorenz 63 model. We carry out reconstructions based on the
Kalman Filter (KF) and a fixed number of degrees of freedom by observing
one, two, or all three of the Lorenz 63 dimensions and studying different noise
levels.

We have carried out experiments in the same way as above, now studying
the reconstruction error when modifications of the observation operator are
carried out.

In Figure 5.2 below, we present a diagram displaying the reconstruction error
against the noise level at three different choices of the observation operator. We
set up an observation operator of different dimensions where we first observed
only the first component of the state (in blue); we then proceeded to observe
both the first and second components (in red) and finally, we observed the
complete state components (in yellow). It can be seen that observing more
components of the state lead to better model reconstruction.

Chapter 5 Page 89/150

Section 5.1 Model Reconstruction for Dynamical Systems

Figure 5.2: The chart shows the reconstruction error versus the noise levels
when the observations are partially observed or spaced at specific intervals or
dimensions, and this is compared with the observed full state.

Chapter 5 Page 90/150

Section 5.1 Model Reconstruction for Dynamical Systems

Sensitivity analysis with respect to time frequency of observations
Lorenz 63 model. Analyzing the reconstruction behaviour for the time
frequency of observations is non-trivial. We could keep the total number of
time steps investigated fixed or the total covered interval fixed to [0, T] and
adapt the number of time steps accordingly.

In both cases, the reconstruction quality is better with a larger time fre-
quency of observations (i.e. smaller time spacing) and corresponding assimila-
tion and model learning steps. The error, though, increases strongly if we have
less number of time steps used for learning, i.e. in the second case, the error
increase is much stronger for dtime increasing (and then the nature run (Nnat)
becoming smaller since Nnat = ceil(T/dtime)).

Figure 5.3: The chart shows the reconstruction error versus the time frequency
with T = 4 of observations.

Sensitivity analysis with respect to convergence behaviour as the
approximation of the model is improved Lorenz 63 model. We will
study the convergence behaviour exploring two dimensions of the reconstruction
procedure. The first dimension is the amount of training data, i.e. the total

Chapter 5 Page 91/150

Section 5.1 Model Reconstruction for Dynamical Systems

number of time steps used for training. The second dimension is the model
approximation quality, i.e. the dimension of the model space employed for
approximating the true model by an approximate model.

First, we test the convergence of the reconstruction error when the number
of simulation and learning steps for the nature run Nnat is increased step by
step. At the same time, the number of degrees of freedom for the learning
coefficients and the testing trajectory is kept fixed.

The simulation result is shown in Figure 5.4 below, showing the reconstruc-
tion error against the number of time steps in the nature run (Nnat) used for
training. The nature run represents our dynamic system’s (actual) behaviour;

• a data assimilation cycle has been carried out for each fixed Nnat.

• Then, a testing cycle with the trained model has been equally calculated.

• The error has been evaluated for a fixed cycle for all tests, with a
j_norm_max=99. This can be interpreted as a fixed evaluation period for
all cases of training length.

As the nature run increases, we also see a gradual decline in the reconstruction
error. We can infer that the accuracy of the model or simulation is improving as
it approaches the system’s actual behaviour. This behaviour suggests that the
model’s error predictions are getting closer (converging) to the actual outcomes
represented by the nature run.

Chapter 5 Page 92/150

Section 5.1 Model Reconstruction for Dynamical Systems

Figure 5.4: The figure shows the behaviour of the reconstruction error measured
above by the first guess forecast difference to the truth is dependent on the length
of the training period indicated by Nnat. We observe that the reconstruction
error decreases as the number of trajectory observations and corresponding
learning steps increases.

Chapter 5 Page 93/150

Section 5.1 Model Reconstruction for Dynamical Systems

Second, we did a test for evaluating the reconstruction error and the
convergence for better and better model approximations for Lorenz 63. In this
instance, the situation depends on two parameters: the density (or number)
of nodes of the radial basis functions and their variance sigma. The variance
must be adapted to the nodes’ density to achieve better approximations when
the number of nodes changes.

We have carried out several experiments of reconstructions with increasing
the node density but keeping sigma fixed and visualising the observation error.
In particular, with sigma chosen large enough, we observe that with more
nodes, i.e., with more degrees of freedom for the model approximation, the
model error decays, and we can achieve better reconstructions. This behaviour
also occurs where we could get minimal reconstruction errors for the model
reconstruction task.

For different fixed σ, the result of these runs is reflected in Figures 5.5 and
5.6. The results of Figure 5.5 (d)-(f) and Figure 5.6 (g)-(j) show a decrease of
the reconstruction error over the full trajectory when the number of degrees of
freedom for the model approximation is increased.

We need to briefly discuss the results (a)-(d). For sigma = 4, 5, 6, when we
increase the number of nodes we observe an increase in error. We note that we
have strong ill-posedness of the Radial Basis Function (RBF) approximation
when we have very wide ranging RBF, where increasing the number of nodes
might increase the error. We need to study the ill-posedness of this particular
approximation, and its consequences. However, this type of investigation is
beyond the current focus of our work and needs to be part of future research.

Chapter 5 Page 94/150

Section 5.1 Model Reconstruction for Dynamical Systems

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Experimenting with reconstruction error with varying sigma=
4, 5, 6, 7, 8, 9 in (a) to (f). We display a visualization of the different phases of the
errors as we we increase the sigma values. We observe that the reconstruction
error converges slightly as we increase the values of the sigma.

Chapter 5 Page 95/150

Section 5.1 Model Reconstruction for Dynamical Systems

(g) (h)

(i) (j)

Figure 5.6: Experimenting with reconstruction error with varying sigma=
15, 16, 18, 20 in (g) to (j). We display a visualization of the different phases of the
errors as we we increase the sigma values. We observe that the reconstruction
error converges slightly as we increase the values of the sigma.

Chapter 5 Page 96/150

Section 5.2 Model Reconstruction for Dynamical Systems

5.2 Sensitivity Results for Lorenz 96 Model
Sensitivity analysis with respect to observational noise. Different

levels of observational noise for Lorenz 96. In the sensitivity analysis concerning
observational noise, we chose a scenario for testing, where we observed all the
nodes of the L96 system as shown below in figure 5.7. The size of the fields
is between -10 and 10, such that we studied ranges of random errors ranging
from 1 to 10.

We have carried out the same type of experiments as described in the
framework of Lorenz 63. This means

• we carry out an assimilation cycle where we learn the model step by step
during cycling.

• We then test the quality of the learned model with some appropriate
metric.

Since our model approximation approach for Lorenz 96 is different, here we can
actually measure the reconstruction quality by comparing the reconstructed
coefficients with the true coefficients of the Lorenz 96 model, compare Figure
4.12. The reconstruction error for coefficients is L2-norm of the differences of
the reconstructed coefficient vector to the true coefficient vector.

The chart below in Figure 5.7, exhibits a similar pattern to the observational
noise for the reconstruction error shown above in Figure 5.1 for Lorenz ’63.
A similar super-linear relationship exists in the change in unit growth rate
between the noise level and the reconstruction error for the coefficients.

Chapter 5 Page 97/150

Section 5.2 Model Reconstruction for Dynamical Systems

(a) (b)

(c)

Figure 5.7: The curves (a) and (b) show the growth of the reconstruction
error against the different noise levels for small noise and a break-down of
the reconstruction of the main constant coefficient for large noise. As the
observational noise level increases, the reconstruction error for the coefficient
values increases rapidly. (c) shows the case where noise = 10, where the first
coefficient is no longer properly reconstructed.

Chapter 5 Page 98/150

Section 5.2 Model Reconstruction for Dynamical Systems

Sensitivity analysis with respect to partial observations of the
state for Lorenz 96 model. We next study how the reconstruction error
depends on the number of nodes of the L96 state observed in each assimilation
step. The sensitivity analysis is shown in Figure 5.8. It shows an increase in
the reconstruction error of the coefficients as the spacing of the observations
increases. In more detail,

• we have chosen a case of N = 64 nodes for Lorenz 96 and

• observe the nodes 1 : hH : N with spacing hH = [1, 2, 4, 8, 16, 32, 64].

• For each choice we have carried out a full reconstruction experiment and
calculate the reconstruction error of the coefficients at the end.

This setup guarantees that the observations are always at the same points,
but taking away observations step by step.

We observe that the reconstruction is still quite stable since it relies on the
ability of the LETKF to synchronize the dynamics, which works even with
limited observations as long as the observation error is within a reasonable
range.

The setup covers the full range of options from observing all nodes to
observing one node only.

Chapter 5 Page 99/150

Section 5.2 Model Reconstruction for Dynamical Systems

Figure 5.8: The chart shows the reconstruction error versus the observation
spacing when the observations are partially observed. We observe every n−th
state variable, where n = 1, 2, ..., 64.

Chapter 5 Page 100/150

Section 5.2 Model Reconstruction for Dynamical Systems

Sensitivity analysis with respect to time frequency of observations
for Lorenz 96 model. The sensitivity analysis of the time frequency for the
Lorenz 96 model as shown below in 5.9 and 5.10, shows that for every unit (in
terms of absolute units) increase in the time spacing for learning or assimilation,
we see a corresponding increase in the reconstruction error for the coefficients.

To test the dependence on the time frequency of observations, we adapt
the parameter dtime, which controls the times when assimilation and learning
steps are carried out. To still cover the same dynamical range over an interval
[0,T], we had to adapt the total number of time steps we ran the system against.
We show two different images below, one with T = 2 and one with T = 0.6,
but with more frequent time steps being a multiple of dtime_0=0.001.

We present two scenarios shown below with varying time frequencies. In
both cases in Figures 5.9 and 5.10, we observe similar trends in the charts as
we have seen using Lorenz ’63 above.

• Again, the reconstruction quality improves with a more significant time
frequency of observations (i.e. smaller time spacing) and corresponding
assimilation and model learning steps.

• Similarly, the error increases strongly if we have less number of time
steps used for learning, i.e. in the second case, the error increase is much
stronger for dtime growing (and then the nature run (Nnat) becoming
smaller since Nnat = ceil(T/dtime)).

Chapter 5 Page 101/150

Section 5.2 Model Reconstruction for Dynamical Systems

Figure 5.9: The chart shows the reconstruction error versus the time spac-
ing/frequency with T = 2 of observations.

Chapter 5 Page 102/150

Section 5.2 Model Reconstruction for Dynamical Systems

Figure 5.10: The chart shows the reconstruction error versus the time spac-
ing/frequency with T = 0.6 of observations.

Chapter 5 Page 103/150

Section 5.2 Model Reconstruction for Dynamical Systems

Sensitivity analysis with respect to convergence behaviour as the
approximation of the model is improved. For the case of L96, we were
using approximations which contain the true model. Then, it does not make
sense to study the convergence of better and better approximations, but the
convergence will be obtained when more and more input data are used for
learning. We will show this by running a sequence of experiments with more
and more steps.

The convergence for the reconstruction of the parameters is visualized in
Figures 5.11 below. We tested convergence by choosing a small parameter
dtime and then, step by step studying the reconstruction error for longer time
intervals [0, T], where T = dtime ∗ Nnat with the number of time steps Nnat.

• For each choice of the total number of time steps Nnat, we carry out
a full reconstruction and then calculate the reconstruction error of the
coefficients. The corresponding curve is shown in Figure 5.11(a).

• A result for 1000 time steps, noise = 0.01 and dtime = 0.001, is shown
in Figure 5.11(b) comparing the original and reconstructed coefficients.

• The evolution of the error for each coefficient for 1000 time steps of
learning is shown in Figure 5.11(c).

The result in Figure 5.11(a) shows the gradual decay of the reconstruction
error to zero as the total number of assimilation or learning steps for the nature
run increases with other parameters kept constant.

Similarly, the bar chart in Figure 5.11(b) shows the high quality of the
reconstruction in comparing the original and reconstructed coefficients. We note
that the reconstruction finds all the nonzero coefficients and their corresponding
sizes as well as identifies all zero coefficients for which the reconstruction is
also very small.

In addition, the heatmap in Figure 5.11(c) helps to visualise the coefficient
reconstruction error outcome with the time steps.

Chapter 5 Page 104/150

Section 5.2 Model Reconstruction for Dynamical Systems

(a) (b)

(c)

Figure 5.11: Figure (a) shows the model reconstruction error depending on the
length of the input trajectory used for learning in terms of the total number of
time steps Nnat used for training. The more input data, the better the model
reconstruction when all other parameters are kept fixed. The bar char for the
original and reconstructed coefficients are shown in (b), while (c) shows the
heatmap visualization of the evolution of the coefficient reconstruction error
for the last experiment learning with 1000 time steps.

Chapter 5 Page 105/150

Section 5.3 Model Reconstruction for Dynamical Systems

5.3 Sensitivity Results for the Amari Neural
Field Equation

Sensitivity analysis with respect to observational noise. Different
levels of observational noise for neuro kalman filter

We begin simulations for the Amari neural field model with predetermined
neural dynamics. The neural kernel can then be computed using an inverse
problems approach or a Kalman filter-based model learning method, as described
in Section 3.34, and equation (3.35). We incorporate observational error into
the simulated neural dynamics and then examine the reconstruction results
depending on this error.

It is essential to remember that we do not begin with a true model for the
neural field, but rather with a true or prescribed neural dynamics. Consequently,
the model reconstruction error will be measured in terms of the error of the
simulated dynamics following neural kernel learning.

Alternately, we could examine the kernel reconstruction error; however,
because we use an approximative space with limited dimensions for the approx-
imation, the reconstruction error in terms of the kernel will be constrained by
the best possible approximation within this kernel space to whatever reference
kernel is selected.

The experimental setup to carry out reconstruction runs for different levels
of observational noise for the neuro Kalman filter is described next. The Matlab
codes numbered (1-5) are shown in the Appendix 7.3.

1. First, we calculate a dynamical neural field u, which is prescribed and
provided as a generic input 7.3. In this instance, it is an excitation moving
in a circle as a test case.

2. For reference, we then calculate a neural kernel by inverse methods based
on the equation

du

dt
= −u + Wf(u) (5.1)

in the third Matlab code attached to the Appendix 7.3.

3. Gaussian kernel functions Gξ and G2,ξ with two different variance param-
eters σ and σ2 are setup in the file #6 of Section 7.3. They consist of
Gaussians around base points counted by ξ = 1, 2, ..., which for efficiency
reasons here we have restricted to the true trajectory.

Chapter 5 Page 106/150

Section 5.3 Model Reconstruction for Dynamical Systems

4. The full model observation operator Hc is then composed in the file #7 of
Section 7.3, where for each location an excitation or inhibition in forward
direction along the trajectory or in backward direction is setup, where
the strength and sign is to be learned by the Kalman filter.

5. Now, for different sensitivity scenarios as described above, we carry out
a Kalman filter model reconstruction in 7.3. In the code, there are
various versions of reconstruction methods which can be tested, but we
have focused on the Kalman Filter method with a particular Gaussian
representation of W as given by the parameter represent1 = 3 for this
test case, i.e. the Kalman filter is based on the form 5.1, where W is
written as a sum of all the Gaussians in the form

W = sumξGξ ∗ G2′
ξcξ (5.2)

with coefficients cxi to be determined by the Kalman filter successively.

Our observations come from the simulated neural fields u (in the code
named uv). We add random observation error to our truth in the form

uv_e = uv + obs_err*randn(size(uv));

such that observations with observation errors are given by uve. Clearly, this
error is part of the Kalman filter equation in the form,

Rc = obs_err^2*eye(nn,nn);

with the number of points nn where the neural field is defined.

The reconstruction error is measured by the differences between the pre-
scribed dynamics uv and the reconstructed dynamics urec. The error in the
L2 norm over space and time is given by

e_ba3(:,j) = urec(:,j+1) - uv(:,j+1);

calculated in the script #8 of Section 7.3 shown below.

Finally, we carry out reconstructions for different levels of observation
errors in the 7.3 file, storing the input observation error and the resulting
reconstruction error into vectors

obs_err_v(joe) = obs_err;
rec_err_v(joe) = e_ba3_norm;

Chapter 5 Page 107/150

Section 5.3 Model Reconstruction for Dynamical Systems

with e_ba3_norm given by the Eucledean norm of the full space-time trajectory
of the simulated field normalized by the square root of the total number of
points in space and time.

The dependency of the reconstruction error on the observation error is
displayed in Figure 5.12. The reconstruction error grows with observation error.

Figure 5.12: The line graph shows the reconstruction error versus the observa-
tion error for the different noise levels. There is a strong positive correlation
between the observation and reconstruction errors, with growing observation
error the reconstruction error increases.

Sensitivity analysis with respect to partial observations of the
state. In case 1 (different levels of observational noise for neuro Kalman filter)
as described above, we have chosen to observe all points of the neural domain.
Here, the objective is to partially observe the neural domain by taking every
n-th point of the neural excitation field when arranged as one long vector line
by line.

In Figures 5.13(a)-(b) below, we show a study with partial observations
in the approach for a strong constraint learning problem (which we have due

Chapter 5 Page 108/150

Section 5.3 Model Reconstruction for Dynamical Systems

to our choice of the Gaussian Ansatz functions learning Gaussian pulses).
The reconstruction is relatively stable as long as some observations cover the
trajectory.

The visualization of the observation points is given by the diagram below
in Figures 5.13(b) for the case when neural tissue is observed at every 5th
successive interval. The Neuro reconstruction is capturing the original pulse
well. The Kalman reconstruction captures the main features of this pulse as
well. The error is displayed in the Figure (c) top left, being below 20% of the
pulse.

(a) (b)

(c)

Figure 5.13: In figure 5.13 the graphics (a)-(c) show the different representations
of the reconstruction study where we take an observation at every n−th point
of the neural domain. In (a), we carried out reconstructions for the choice
of the n−th point and show the dependence of the total reconstruction for a
corresponding sequence of experiments. (b) shows the geometric setup for one
of the cases with n = 5. (c) shows one reconstruction snapshot to provide an
impression of what the errors actually mean.

Sensitivity analysis with respect to time frequency of observations.

Chapter 5 Page 109/150

Section 5.3 Model Reconstruction for Dynamical Systems

We test reconstructions with observations taken at different time-frequency.
The graphics show the reconstruction error in dependence on the number
time difference where dtime = 2 means that the observation is taken at every
2nd-time step, dtime = 3 means it is taken at every 3rd-time step, etc.

The graphics in Figure 5.14 shows the dependencies of the reconstruction
error on the choice of the time steps where observations take place. There is an
upward trend, but there seems to be an overlay with some oscillating function,
which is a typical phenomenon if oscillators are observed with increasing time
frequency.

To argue that we indeed run into this phenomenon, we show the x1 − x2
location of the observed pulse centers of the neural pulse under consideration
in the case dtime = 6 in Figure 5.15. Observing these now with increasing time
frequency will result in the standard aliasing phenomena of signal processing.

Figure 5.14: Display of the reconstruction error for carrying out the model
reconstruction at every n−th time step of the neural dynamics. There are
some aliasing effects visible, since the pulse rotates several times and when
the observations cover more positions, the reconstruction is better than for the
case where we observe only at smaller selection.

Chapter 5 Page 110/150

Section 5.3 Model Reconstruction for Dynamical Systems

Figure 5.15: Shows the time steps measurements at selected points of the
center coordinates c1, c2 of the neural excitation pulse. They also display the
cycle between cosines and sines for the two coordinates, c1(blue) and c2(red)
at different time-steps and points as shown on the chart.

Chapter 5 Page 111/150

Section 5.3 Model Reconstruction for Dynamical Systems

Sensitivity analysis with respect to convergence behaviour as the
approximation of the model is improved. For the case of Amari, we were
using approximations which contain the true model dynamics. Then, it is not
meaningful to study the convergence of better and better approximations, but
the convergence will be obtained when more and more input data are used for
learning. We will show this by running a sequence of experiments with more
and more steps.

To demonstrate the convergence behaviour of the model, we observe the
performance of the sum of the reconstruction error with increasing iteration in
the number of time steps used in the learning process, as shown in Figure 5.16.
It is noticeable that as expected for the setup with the true model within the
approximational range, the total reconstruction error converges towards zero
as we increase the number of time steps used for assimilation or learning the
model.

Figure 5.16: Shows a convergence study in the sense that the total recon-
struction error tend towards zero as the number of time steps used for the
learning increases.

Chapter 5 Page 112/150

Chapter 6

Conclusions and Perspectives

In the previous chapters of this thesis, we stated the challenging and
often difficult situation of predicting the forcing term of a dynamic system
where little or some specific knowledge is known of the underlying structure
or parameters of the model. We investigate the estimation of the forcing term
F of a mechanistic dynamical system model of the form ẋ = F (x) by a high-
dimensional nonlinear approach based on Polynomial or Gaussian functions.
We have used the 3 model systems - Lorenz models (Lorenz ’63 and ’96) and the
Amari Neural Field equation as representations of our dynamical systems to test
the formulated algorithms. The reconstruction algorithm is then finally tested
with supplementary data from a simplified version of the full reaction-diffusion
system weather model as a test case.

In this chapter, we present a detailed summary of the main findings and
evaluation of the results from this work. We also provide our perspectives on
the future development or improvement of the techniques formulated in this
thesis, in addition, we present our views on other high-impact applications
where the techniques could potentially be applied for future research purposes.

6.1 Evaluation of Results
The role of data assimilation and the Kalman filter techniques are quite

pivotal to the formulated model learning approaches used in this thesis. As
we may recall, data assimilation is mainly concerned with the combination of
observations amid random and zero-mean errors with optimal model predictions.
Therefore, achieving an optimal model prediction is often very challenging since

113

Section 6.1 Model Reconstruction for Dynamical Systems

there are systematic errors including the model suitability for making such
predictions to contend with.

Broadly speaking, model reconstruction is learning models of dynamical
systems and determining their accuracy and precision for predicting the future
states of that system. In this thesis, we have introduced 2 different methods in
Sections 3.1 and 3.2 which explain the model reconstruction approach used in
the thesis. The main results are as follows:

a) Lorenz ’63 in Section 4.1, we present the results of Lorenz ’63 with the
model reconstruction approach as implemented in equations (3.20) and
(3.21), see Section 4.1 for more details on the steps and codes respectively.
We can see clearly from Figure 4.4, that the images in (a) and (b) show
a close resemblance between the original and reconstructed kernels of
the two-dimensional neural delay dynamics while the images in (c) and
(d) follows a similar pattern displaying a column of the original and
reconstructed kernel from the point indicated by the blue star to the
trajectories followed by the rest of the neural patch.

In Figure 4.5, we show the error evolution of the first guess error at
different assimilation cycles, first when it was 500 and 5,000 steps. We
witnessed a reduction in the errors when the time steps increased, this is
obviously due to the improvement in the error approximation as more
points are reached multiple times as the assimilation cycle increases.

b) Lorenz ’96 in Section 4.2, we present the results of the model learning
method with Lorenz ’96 using the Kalman filter approach. In Figure
4.11, we present the application of the algorithm in a higher dimensional
environment which is also an alternative method to a dimension reduction
approach. We displayed the results of the dynamics of the simulated vari-
ables together with the local ensemble transform kalman filter (LETKF)
plots of the first guess and analysis error evolution. We also showed how
the first guess and analysis mean estimates of the observation are closely
matched with the nature run in addition to their deviation as well.

In Figure 4.12, here we show the reconstruction of the model errors. First,
we compared similarities in the results of the first guess field with that
of the reconstructed model. We also show the same comparison in the
variations for the original and reconstructed coefficients as well as the
heat map for the reconstructed coefficient error which is very low.

Chapter 6 Page 114/150

Section 6.2 Model Reconstruction for Dynamical Systems

c) the Amari Neural Field Model in Section 4.3, we displayed the
comparative results of the prescribed model dynamics and that of the
reconstructed model dynamics at different times t = 5, 10, 15, 20, 25. The
approximate dynamics can generate the movement of the pulse, though
with a slight phase error, see Figures 4.14 and 4.15 for more descriptions.

d) the reaction-diffusion system model in Section 4.4, we showed the
competitive nature of the proposed algorithm with data of a proxy system
for the full reaction-diffusion system weather model by estimating the
function term of the measurement of the temperature taken.

Overall, this research has demonstrated the use of the formulated algorithms
in this thesis as viable methods of reconstructing models of unknown dynamical
systems with little specific structural knowledge of the system.

6.2 Limitations of the techniques used in the
thesis

This section outlines the study’s shortcomings, some of the potential re-
strictions are described below:

The nervous system is a highly complicated system with several intercon-
nected components. Developing mathematical models that accurately represent
this complexity might be time-consuming, and including all critical biological
processes into a single model could be challenging.

In this thesis, we investigate a method to learn models from observations.
The method is rather generic, and it works for general non-linear models. We
used the classical approach to learn either the coefficients of some partial
differential equation or the coefficients of the model itself represented in the
form of basis functions.

Today, data science has developed further model representations based
on neural networks or random forests, which are learned by minimisation
techniques. Further model representation approaches are based on image
segmentation and neural architectures known as auto-encoder or Unet. We
do not consider such techniques in this work. However, the iterative learning
techniques developed here can also be applied to the new AI architectures with
neural networks.

Chapter 6 Page 115/150

Section 6.4 Model Reconstruction for Dynamical Systems

We have treated several academic systems which are very popular in studying
data assimilation approaches, including low and high dimensions. However, we
did not try the techniques in real-world applications yet. It would be desirable
to try the methods, e.g. on operational weather forecasting or climate science.

This work has provided important insights into how mathematical models
may be utilised to idealise complex biological processes. Nonetheless, the
strategies used in this study can be extended to other fields of research outside
of neuroscience.

6.3 Perspectives on Techniques
One of the key perspectives on the techniques proposed in this research would

be to see how competitive they will perform when comparing with or extending
other well-known models or dimension reduction algorithms commonly used in
the analytical and data science fields. This aspect of the techniques has not
been fully explored in this research against other commonly used methods, like
K-Means clustering and other classification methods, Neural Network methods,
and other dimension-reduction techniques using the same datasets for effective
measurement.

However, there is still much room for improvement. This research can further
be extended to test with other real-time data from other physics-based systems
as a means of comparison with the reaction-diffusion system weather model.
Another important aspect that is well-recognized is the issue of convergence.
Its realization is not the primary focus of this thesis. However, the techniques
formulated in this thesis are a step towards realizing convergence, and it is an
area that can be further explored.

Nevertheless, there are still some pertinent questions that could be raised
about observability, i.e., do we have enough information to achieve the true
forcing term? Which, in general terms, we do not have. In essence, since we
have an ansatz formulated as we have done in this case, then we might still, in
some sense, achieve convergence if it can be used to approximate the forcing
term.

Chapter 6 Page 116/150

Section 6.4 Model Reconstruction for Dynamical Systems

6.4 Perspectives on Applications
Our perspectives on the other high impact that this technique could be

applied to are pretty broad. The technique could be adapted to other machine
learning techniques where the data is unlabelled, for example, in unsupervised
learning for classification and even other supervised learning techniques where
data on the dynamical system is scantily available.

Another important aspect will be to apply them to other areas of engi-
neering, fluid dynamics and on a full-scale weather forecast project where the
preponderance of the pieces of literature examined on some of the relevant
techniques formulated in this thesis have also been applied.

Chapter 6 Page 117/150

Chapter 7

Appendix

Attached below are compilations of some selected parts of the core script
files used for generating and simulating data and visualizations used in this
thesis including those used for testing of the algorithms formulated in the
previous chapters above.

MATLAB was the main software used for the codes and visualizations
presented in this thesis with occasional use of OCTAVE (a version of MATLAB
freely available for download) and PYTHON for comparison and experimental
testing. It is also important to note that, there may be differences in syntax
between the two (MATLAB and OCTAVE) for some aspects of the codes but
we expect most parts to run in both software.

7.1 Learning Low Dimensional Lorenz-63
1. Matlab Code for Lorenz ’63 Model Approximation Implementation

1 B = 0.3*eye(3,3); % background error covariance matrix
2 m = size(H,1); % number of observations
3 R = 0.00001*eye(m,m); % data error covariance matrix
4 Ac = 0.04; % coefficient controlling the decal of the covariance

5 xa = xv(:,1);
6 coeff_list = [];
7 xk_list = [];
8 for j=1:Nnat
9 xbt = sim_06_2_1_Lorenz63(xa,dtime,sigmaO);

10 xb = M_approx(xa,coeff_list,xk_list,Ac); % state background
11 et(j)=norm(xa-xv(:,j)); % calculate the error
12 xbv(:,j) = xb; % save it for display
13 xk_list = [xk_list, xa]; % base point list, Model analysis!

118

Section 7.1 Model Reconstruction for Dynamical Systems

14 coeff = H’*inv(R+ H*H’)*(y(:,j)-H*xb); % the analysis step
15 coeff_list = [coeff_list, coeff]; % coefficient list, Model analysis!
16 xa = M_approx(xa,coeff_list,xk_list,Ac); % analysis state
17 xav(:,j) = xa; % analysis state list
18 e(j)=norm(xbv(:,j)-xv(:,j)); % calculate the error
19 end

Here, the model approximation approach is shown in the code below:

2. Matlab Code for Lorenz ’63 Model Approximation function

1 function tx=M_approx(x,coeff_list,xk_list,Ac)

2 N = size(coeff_list,2);
3 A = Ac*eye(3,3);
4 tx = x;
5 if(N>0)
6 for j=1:N
7 xk = xk_list(:,j);
8 tx = tx + exp(-(x-xk)’*A*(x-xk))*coeff_list(:,j);
9 end

10 end

Lastly, next we show the code for the data assimilation steps for the Lorenz
’63 model, including the initializations of the background and error correlation
matrices. The following script does not yet integrate the learning, which can
then be carried out by integrating its steps shown in code No. 1 into the data
assimilation cycle.

3. Matlab Code for Lorenz ’63 Data Assimilation step

1 B = 0.5*eye(3,3); % background error correlation Matrix
2 m = size(H,1);
3 R = 0.5*eye(m,m); % observation error correlation matrix

4 % Assimilation Cycle
5 xa = x0; % initial state for iteration
6 sigmaA = 11; % parameter in the Lorentz system
7 for j=1:Nnat
8 xb = sim_06_2_1_Lorenz63(xa,dtime,sigmaA); % Calculate the background
9 xbv(:,j) = xb; % and save it in xbv

10 y = yv(:,j);

11 xa = xb + B*H’*inv(R+H*B*H’)*(y-H*xb); % data assimilation step

Chapter 7 Page 119/150

Section 7.2 Model Reconstruction for Dynamical Systems

12 xav(:,j) = xa;
13 end

14 ea = sqrt(sum((xav-xv).^2))
15 eb = sqrt(sum((xbv-xv).^2))

7.2 Learning Higher Dimensional Lorenz-96

7.2.1 Display Trajectories and Runge-Kutta Application
In the following script below, we present an illustration of the L96 setup to

show a visualization of the nodes and activity function of the L96 model as
depicted in Figure 2.2 and 2.3 above.

1 Matlab Code for Lorenz ’96 - Setup

1 clear all; % clear all variables
2 close all; % close all figures
3 %--
4 % We set up the Lorenz 96 System first of all
5 % There are N nodes located on a circle.
6 % At each node we have some excitation modelled
7 % by x(j), j = 1,..., N
8 %--
9 N = 9; % N = Number of Nodes on a Circle

10 h = 2*pi/N; % h = angle between two nodes
11 % vector of angles for all nodes
12 angle = [0:h:2*pi-h]’;
13 % vector of excitation values
14 x = 10*sin(2*angle);
15 % points in space to put the nodes
16 r1 = cos(angle); % first coordinate
17 r2 = sin(angle); % second coordinate
18 %--
19 % generate visualization figure
20 %--
21 fo = figure(1);
22 % first we plot a reference line
23 plot3(r1,r2,zeros(size(x)),’k.-’,’LineWidth’,2,...
24 ’Color’,[.6 .6 .6], ’MarkerSize’,25); hold on;
25 % second, we plot the excitation function
26 plot3(r1,r2,x,’k.-’,’LineWidth’,2); grid on;
27 saveas(fo,’01_setup.png’,’png’)

In the following code, we show the time integration evolution to show the

Chapter 7 Page 120/150

Section 7.2 Model Reconstruction for Dynamical Systems

changes in the excitation state for x for the L96 model as shown in Figure 2.2
above.

2 Matlab Code for Lorenz ’96 - We carry out the loop of the time integration

1 %--
2 % Here we carry out the loop of time integration
3 % to checking and displaying the change of the
4 % excitation x for our Lorenz 96 model
5 %--
6 nsteps = 1000; % number of time steps
7 F = 8; % forcing term of Lorenz 96
8 t = 0; % time shift in Runge-Kutta
9 h = 0.01; % step size for Runge-Kutta

10 for j=1:(nsteps+1) % loop over time steps
11 [xtmp] = time_integration(x, t, 1, h, F);
12 xp = xtmp(:,2);
13 % display the current excitation state
14 figure(2);
15 % first plot the nodes in gray
16 plot3(r1,r2,zeros(size(xp)),’k.-’,’LineWidth’, ...
17 2,’Color’,[.6 .6 .6],’MarkerSize’,25); hold on;
18 % now plot the excitation xp as a curve
19 plot3(r1,r2,xp,’k.-’,’LineWidth’,2);
20 % set axis and further grid parameters
21 axis([-1 1 -1 1 -12 12])
22 view(3); grid on;
23 title([’Time index j=’ num2str(j)]);
24 hold off; % remove previous curves by hold off
25 pause(.01)
26 % reset initial value for the next integration step
27 x = xp;
28 end

Next, we display the control code used for simulating the convergence of
the chaotic and highly non-linear Lorenz-96 equation. We simulate a data
assimilation cycle with an implementation of the Local Ensemble Transform
Kalman Filter (LETKF) approach.

3 Matlab Code for Lorenz ’96 - We display the trajectories over time and describe
the integration time step size for the Runge-Kutta

1 %--
2 % We display the trajectories for all nodes
3 % individually
4 %--

Chapter 7 Page 121/150

Section 7.2 Model Reconstruction for Dynamical Systems

5 nsteps = 100; % steps for Runge-Kutta integration
6 F = 8; % forcing term
7 t = 0; % time shift in Runge-Kutta
8 h = 0.01;% integration step size Runge-Kutta

9 % get nsteps of the integration in one go
10 [x2] = time_integration(x, t, nsteps, h, F);

11 % show the trajectories over time
12 fo = figure(3); % generate figure
13 Nsqrt = ceil(sqrt(N)); % to position figures
14 for j=1:N
15 subplot(Nsqrt,Nsqrt,j) % generate subplot
16 plot(x2(j,:),’LineWidth’,1)% show j-th variable
17 axis tight; set(gca,’FontSize’,12)
18 title([’x(’ num2str(j) ,’)’]) % display title
19 end
20 saveas(fo,’trajectories.png’,’png’)

In order to have a better understanding of the vector, scalar or matrix we
have in each of the steps, we look at the combination of the angles for all nodes
using the angle setup vectors below.
[angle 2*angle sin(2*angle) x]

ans =

0.00000 0.00000 0.00000 0.00000
0.69813 1.39626 0.98481 9.84808
1.39626 2.79253 0.34202 3.42020
2.09440 4.18879 -0.86603 -8.66025
2.79253 5.58505 -0.64279 -6.42788
3.49066 6.98132 0.64279 6.42788
4.18879 8.37758 0.86603 8.66025
4.88692 9.77384 -0.34202 -3.42020
5.58505 11.17011 -0.98481 -9.84808

7.2.2 Nature Run of Lorenz-96
In the script below, we set up model parameters, initialise the true state, set

up the observation operator and generate a nature run and the observations.

1 Matlab Code for Lorenz ’96 - Nature Run and its Observations

1 %===
2 % Setup data for data assimilation cycle
3 %===

Chapter 7 Page 122/150

Section 7.2 Model Reconstruction for Dynamical Systems

4 randn(’seed’,cc);
5 % use rng instead of randn
6 %---
7 % 1) Setup important parameters
8 %---
9 % Model parameters

10 %F = 8; % forcing term for the true state
11 %N = 50; % model state dimension 50
12 %% Parameters for the numerical solution of the model
13 %dtime = 0.3; % steps of integration
14 %% Parameters for generating observations and in
15 %noise = 0.1; % noise factor on measurements % standard deviation of observations
16 %---
17 % 2) Initialize true state
18 %---
19 %x0 = F * ones(N, 1); % truth state at t = 0
20 %x0(N/2) = x0(N/2) + F/1000; % introduce a small perturbation
21 x0 = 5*sin(2*pi*3*(1:N)’/N);
22 x = x0; % initial condition
23 %---
24 % 3) Setup Observation operator
25 %---
26 Hcase = 1; % select type of H operator 1 = points, 2 = integrals
27 %obsloc = 1:N; % observing every variable
28 obsloc = 1 : hH : N; % observing only every second variable
29 mobs = length(obsloc); % number of observations
30 H = zeros(mobs, N);
31 % locations and matrix of differences
32 switch(Hcase)
33 case 1
34 % observations josen at obsloc, observing the state at these points
35 H = zeros(mobs, N);
36 for i = 1 : mobs
37 H(i, obsloc(i)) = 1;
38 end
39 case 2
40 v1org = cos(0:2*pi/N:2*pi-1/N)’;
41 v2org = sin(0:2*pi/N:2*pi-1/N)’;
42 v1 = v1org(obsloc’);
43 v2 = v2org(obsloc’);
44 v1mat = repmat(v1,1,N);
45 v2mat = repmat(v2,1,N);
46 v1matp = repmat(v1org’,mobs,1);
47 v2matp = repmat(v2org’,mobs,1);
48 vmat = sqrt((v1mat-v1matp).^2 + (v2mat-v2matp).^2);
49 % non-local H operator
50 %H = real(exp(-vmat.^2*1)>0.9);

Chapter 7 Page 123/150

Section 7.2 Model Reconstruction for Dynamical Systems

51 H = real(exp(-vmat.^2*1))>0.9;
52 %endswitch
53 end
54 %---
55 % 4) Generate a "nature" run and the "observations"
56 %---
57 for j=1:Nnat
58 % time integration of the initial true state
59 [x,Y,yy] = sim_06_4_1_Lorenz96(x,dtime,h,F,J,H,ko,sc,ocase);
60 xv(:,j) = x; % save it in xv
61 y(:,j) = yy + noise*randn(size(yy,1),1); % observation + noise

62 end
63 disp([’Nnat = ’ num2str(Nnat) ’ cycling steps prepared’]);

7.2.3 Learning Coefficients of Model Representation
based on the Kalman Filter

The scripts below describe the model parameters for the L96 model including
that used for learning the model error.

The Lorenz ’96 script for carrying out the learning algorithm based on
the Kalman Filter is presented below. The code demonstrates the learning
approach for the model error term or the model itself using the Kalman filter
method used in Section 3.2 above. First, we show the initialized values for
all the terms used in the equation in Part A and Part B provides the view of
the error term for the model, coefficient observation operator Hc, the Kalman
matrix and the model coefficients updates.

1 Matlab Code for Lorenz ’96 - Set model parameter used for model error
learning (Part A)

1 Nc = size(F,1); % size of coefficient vector
2 cb = zeros(Nc,1); % initial model bias coefficient vector c
3 %cb = F; %
4 cb0 = cb;
5 Bc = 1*eye(Nc,Nc); % covariance matrix for model coefficients
6 Bc0 = Bc; % initial Bc matrix
7 method_version = ’KF’ % choose ’3D’,’4D’ or ’KF’
8 Hc_matrix = []; % initialization of complete Hc_matrix
9 r0 = 0.5; % model error for learning

10 Rc = r0 * eye(N,N); % model error for learning
11 aci = 0.0000; % factor for control of additive covariance inflation

Chapter 7 Page 124/150

Section 7.2 Model Reconstruction for Dynamical Systems

2 Matlab Code for Lorenz ’96 - Learning the model error or the model itself
(Part B)

1 %
2 % Learning the model error or the model itself
3 %
4 %e_ba(:,j) = (xbm - xa_old)/h; % model error term
5 e_ba(:,j) = (xam - xa_old)/h; % model error term
6 Hc = sim_06_5_8_setup_Hc(xa_old,J); % coefficient observation operator Hc
7 xbv_Hc(:,j) = xa_old + Hc*cb*h;
8 emb(:,j) = xbm - xbv_Hc(:,j); % current error
9 cbv(:,j) = cb;

10 %
11 if(strcmp(method_version,’3D’))
12 Kc = Bc*Hc’*inv(Rc + Hc*Bc*Hc’); % Kalman matrix
13 ca = cb + Kc*(e_ba(:,j)-Hc*cb); % ... 3DVAR
14 elseif(strcmp(method_version,’KF’))
15 Kc = Bc*Hc’*inv(Rc + Hc*Bc*Hc’); % Kalman matrix
16 ca = cb + Kc*(e_ba(:,j)-Hc*cb); % ... KF
17 Bc = (eye(Nc,Nc)-Kc*Hc)*Bc+aci*Bc0; % update Bc matrix
18 elseif(strcmp(method_version,’4D’))
19 if(j>1)
20 e_ba_full = [e_ba_full; e_ba(:,j)];
21 else
22 e_ba_full = e_ba(:,j);
23 end
24 Hc_matrix = [Hc_matrix ; Hc]; % setup 4d observation operator
25 Kc_matrix = Bc0*Hc_matrix’*inv(noise^2*eye(N*j,N*j)+Hc_matrix*Bc0*Hc_matrix’);
26 ca = Kc_matrix*(e_ba_full); % ... 4DVAR
27 end
28 cb = ca; % update model coefficients

3 Matlab Code for Lorenz ’96 - Hc operator

1 function Hc = sim_06_5_8_setup_Hc(x,J)

2 n = length(x); % number of variables
3 jv = (1:n)’; % vector of indices

4 js(:,J+1) = jv;
5 for j=1:J
6 js(:,J-j+1) = jv([(end-j+1):end 1:(end-j)]);
7 js(:,J+1+j) = jv([(1+j):end 1:j]);
8 end
9 % Hc first column

10 Hc(:,1) = ones(n,1); % add constant term
11 j0 = -2*J-1; % start of counter for -2*J:2*J when
12 % Hc columns j=1,...,2*j+1 next, loop for linear terms

Chapter 7 Page 125/150

Section 7.2 Model Reconstruction for Dynamical Systems

13 for j=1:(2*J+1)
14 Hc(:,1+j)= x(js(:,j));
15 end
16 % Hc columns for pure quadratic terms
17 j1 = 1 + (2*J+1); % start of counter
18 for j=1:(2*J+1)
19 Hc(:, j1+j) = x(js(:,j)).^2;
20 end
21 % Hc columns loop for fully mixed quadratic terms
22 j2 = 1+2*(2*J+1); % start of counter
23 vs = 0; % counting upper diagonal terms
24 for j=1:(2*J+1)
25 for k=(j+1):(2*J+1)
26 vs = vs + 1;
27 Hc(:, j2+vs) = x(js(:,j)) .* x(js(:,k));
28 end

29 end

4 Matlab Code for Lorenz ’96 - Visualize learning model outputs

1 ca2 = max(max(abs(xv)));
2 ca1 = -ca2;

3 %---
4 %
5 %---
6 fo = figure();

7 subplot(3,1,1);
8 surf(xbv);
9 view(2);

10 caxis([ca1 ca2])
11 shading interp;
12 set(gca,’FontSize’,14)
13 axis tight;
14 colorbar;
15 %axis(’label[y]’)
16 ylabel({’[y]’})
17 title(’First guess field’)

18 subplot(3,1,2);
19 surf(xbv_Hc);
20 view(2);
21 caxis([ca1 ca2])
22 shading interp;

Chapter 7 Page 126/150

Section 7.2 Model Reconstruction for Dynamical Systems

23 set(gca,’FontSize’,14)
24 axis tight;
25 colorbar;
26 %axis(’label[y]’)
27 ylabel({’[y]’})
28 title(’First guess field from Model Reconstruction’)

29 subplot(3,1,3);
30 surf(xbv_Hc-xv);
31 view(2);
32 caxis([ca1 ca2])
33 shading interp;
34 set(gca,’FontSize’,14)
35 axis tight;
36 colorbar;
37 title(’Model Reconstruction error’)
38 savefile(fo,’model_recon_error_first_guess_field’);

39 %---
40 %
41 %---
42 eba = xbv-xav;

43 fo = figure;
44 plot(mean(abs(emb)) ,’LineWidth’,2);
45 hold on;
46 plot(mean(abs(eba)), ’r--’,’LineWidth’,2);
47 plot(mean((xbv)), ’k:’, ’LineWidth’,2);
48 plot(mean((xbv_Hc)), ’b--’, ’LineWidth’,2);
49 set(gca,’FontSize’,14)
50 legend(’model reconstruction error’,’first guess error’,’mean fg’, ...
51 ’mean fg_rec’);
52 axis([1 Nnat 0 3])
53 savefile(fo,’model_recon_error_mean_first_guess_recon’);

54 %---
55 %
56 %---
57 fo = figure;
58 bar([F cb]);
59 set(gca,’FontSize’,14)
60 legend(’original coefficients’,’reconstructed coefficients’);
61 savefile(fo,’orig_recon_coefficients’);

62 %---
63 %
64 %---

Chapter 7 Page 127/150

Section 7.2 Model Reconstruction for Dynamical Systems

65 fo = figure;
66 surf(cbv-repmat(F,1,Nnat));
67 view(2);
68 shading flat;
69 set(gca,’FontSize’,14)
70 axis tight;
71 colorbar;
72 title(’Coefficient Reconstruction Error’)
73 savefile(fo,’coefficient_recon_error’);

The figure generated by the above code example is shown in Figure 4.12.

7.2.4 Implement Local Ensemble Transform Kalman Fil-
ter (LETKF)

The script below was used to implement the LETKF approach. It shows
the convergence of the model dynamics and the observation data.

This approach also helps to provide better initial conditions both for the
main and ensemble forecasts. In a nutshell, it provides an analysis state
obtained by performing localized analyses at each model grid point.

1 Matlab Code for Lorenz ’96 - LETKF Implementation

1 %===
2 % Local Ensemble Transform Kalman Filter (LETKF)
3 %===
4 rand(’seed’,cc) % use the same random numbers to achieve repeatability
5 randn(’seed’,cc) % use the same random numbers to achieve repeatability
6 m = size(yy,1); % number of observations
7 R = noise^2*eye(m,m); % data error covariance matrix
8 method = ’LETKF’; % method for display and plotting choices
9 mymodel = ’Lorenz’ %’Hc_model’ % choose ’Lorenz’ or ’Hc_model’

10 % mymodel = ’Hc_model’ % choose ’Lorenz’ or ’Hc_model’

11 % generate the initial ensemble
12 xa = repmat(x0,1,L) + 0.5*(rand(N,L)-0.5); xa2 = xa;
13 xam = mean(xa’)’; xa_old = xam;

14 spread_control = repmat(s_control_start_LETKF,N,1); % initial spread control
15 %c_aci = 0.0; % additive covariance inflation constant
16 I=eye(L,L); % standard identity matrix

17 % Initialization of Model Learning
18 sim_06_5_9_initialize_learning;
19 %---

Chapter 7 Page 128/150

Section 7.2 Model Reconstruction for Dynamical Systems

20 % Setup the localization
21 %---
22 v1 = cos(0:2*pi/N:2*pi-1/N)’;
23 v2 = sin(0:2*pi/N:2*pi-1/N)’;
24 v1mat = repmat(v1,1,N);
25 v2mat = repmat(v2,1,N);
26 vmat = sqrt((v1mat-v1mat’).^2 + (v2mat-v2mat’).^2);

27 for j=1:Nnat

28 switch(mymodel)
29 case ’Lorenz’
30 [xb,Y,yy,yym] = sim_06_4_1_Lorenz96(xa,dtime,h,Fm,J,H,ko,sc,ocase);
31 case ’Hc_model’
32 for ll=1:L
33 Hc = sim_06_5_8_setup_Hc(xa(:,ll),J);% coefficient observation operator Hc
34 xb(:,ll) = xa(:,ll) + Hc*cb*h;
35 end
36 xb_ff(:,2,:)=xb;
37 type =0;
38 [Y,yy,yym] = sim_06_2_1_Y(xb_ff,H,type,ko,sc,ocase);
39 end
40 xbm = (sum(xb’))’/L; % and its mean
41 xbv(:,j) = xbm; % save the mean in xbv
42 xbvv(:,j,:) = xb; % the full ensemble in xbvv

43 % carry out core LETKF step
44 sim_06_5_3_LETKF_96_loc_core;

45 xavv(:,j,:) = xa; % save full analysis ensemble
46 xam = (sum(xa’))’/L; % calculate analysis mean
47 xav(:,j)=xam; % save analysis mean

48 %---
49 % Calculate errors
50 %---
51 evb(j) = norm(y(:,j) - yym)/sqrt(N); % the "observation-first guess" error
52 eva(j) = norm(y(:,j) - H*xav(:,j))/sqrt(N); % the "observation-first guess"
53 ea(j) = norm(xav(:,j)-xv(:,j))/sqrt(N); % error of the mean (analysis)
54 eb(j) = norm(xbv(:,j)-xv(:,j))/sqrt(N); % error of the mean (first guess)

55 % model learning part
56 sim_06_5_9_learning;

57 xa_old = xam;

58 end

Chapter 7 Page 129/150

Section 7.3 Model Reconstruction for Dynamical Systems

59 eb_LETKF_mean = mean(eb) % mean first guess error
60 ea_LETKF_mean = mean(ea) % mean analysis error
61 eb_LETKF_ll = sqrt(sum(eb.^2)/Nnat) % first guess L2 error (normalized to Nnat)
62 ea_LETKF_ll = sqrt(sum(ea.^2)/Nnat) % analysis L2 error (normalized to Nnat)

7.3 Neuro Reconstruction for Neural Kernel
Estimation

This section shows the code used for the Gaussian Model Reconstruction
and the Kalman Learning approach used for the Kernel estimation in equation
(4.10) and Figure 4.16 respectively. In addition, the sensitivity analysis for
the neuro kalman filter and the corresponding outputs in Figure 5.12 are also
shown below.

1 Matlab Code for reconstructions of the different levels of observation errors

1 disp(’--- control.m ---------------- ’)
2 clc
3 clear all;
4 close all;

5 p1_setup;
6 p2_field_input;
7 p3_inverse;
8 p4_field_simulation;
9 %p5_model_reconstruction;

10 for joe = 1:10
11 obs_err=(0.1*joe-0.0999);
12 p7_neuro_kalman_filter
13 p8_neuro_show_dynamics
14 checking_errors;
15 obs_err_v(joe) = obs_err;
16 rec_err_v(joe) = e_ba3_norm;
17 end

18 fo10 = figure;
19 plot(obs_err_v,rec_err_v,’MarkerSize’,15,’LineWidth’,3);
20 xlabel(’Observation Error’)
21 ylabel(’Reconstruction Error’)
22 set(gca,’FontSize’,14)
23 saveas(fo10,’error_dependencies.png’,’png’)

The sensitivity and statistical analysis of the neuro kalman filter reconstruc-

Chapter 7 Page 130/150

Section 7.3 Model Reconstruction for Dynamical Systems

tion of the results to the different levels of observational noise is carried out by
the following code.

2 Matlab Code for the Sensitivity Analysis of the Neuro Kalman Filter Recon-
struction

1 disp(’--- p2_field_input.m ------------’)

2 sigma = 3; % decay parameter for Gaussian type excitation
3 uv = zeros(N,Nt); % vector to collect excitation fields
4 umat = zeros(n2,n1); % matrix to display excitation area in 2D
5 mycase = 2; % case of curve dynamics

6 for j=1:Nt % time loop
7 switch mycase
8 case 1
9 % parabula type curve of centre

10 c1v(j) = 0.2+a1*0.8/Nt*j;
11 c2v(j) = 0.2+3*a1/Nt*j - 3/a1*(a1/Nt*j)^2;
12 case 2
13 % elliptic centre curve over time
14 nRo = 3; % number of times to pass through circle
15 c1v(j) = a1/2 + a1/4*cos(nRo*2*pi*j/Nt);
16 c2v(j) = a2/2 - a2/4*sin(nRo*2*pi*j/Nt);
17 end
18 %endswitch

19 umat = exp(-sigma*((X1-c1v(j)).^2 + (X2-c2v(j)).^2));
20 uv(:,j) = reshape(umat,N,1);
21 end

22 %---
23 % now the graphics area
24 %---
25 if(1==0)

26 for j=1:Nt
27 umat = reshape(uv(:,j),n2,n1);
28 fobj = figure(100);
29 surf(X1,X2,umat);
30 view(2);
31 shading interp;
32 hold off;
33 pause(.1);
34 end

35 end

Chapter 7 Page 131/150

Section 7.3 Model Reconstruction for Dynamical Systems

The original neural reconstruction is carried out by the following code.

3 Matlab Code for Neural Field Equation - Neuro Reconstruction

1 disp(’--- p3_inverse.m ----------------’)
2 for j=1:(Nt-1)
3 % setting up psi and phi in neural field equation integration form
4 % psi = Wmat* phi
5 psi(:,j) = tau*(uv(:,j+1)-uv(:,j))/ht0 + uv(:,j);
6 phi(:,j) = f(uv(:,j),eta);
7 end

8 %--
9 % solve the inverse problem next

10 %--
11 % solving for all time steps simultaneously rewriting psi’ = phi’*Wmat’
12 A = phi’;
13 rhs = psi’; %
14 alpha = 0.01;
15 nn = size(A,2);
16 % solving A*(Wmat’) = rhs based on Tikhonov regularization
17 Wmat = (inv(alpha*eye(nn,nn)+A’*A)\A’*rhs)’;

18 %--
19 % display the reconstructed kernel Wmat
20 %--
21 if(1==0)
22 dn1 = 7;
23 dn2 = 7;
24 for j1 = 1:dn1:n1
25 for j2=1:dn2:n2
26 jj = (n2-1)*j1+j2;
27 disp([’j1, j2, jj = ’ num2str(j1), ’ ’, num2str(j2), ’ ’, num2str(jj)])
28 w = reshape(Wmat(:,jj),n2,n1);
29 fobj200=figure(200);
30 surf(X1,X2,flip(w));
31 shading interp;
32 hold on;
33 %plot3(X2v(jj),X1v(jj),10,’k.’,’MarkerSize’,15,’Color’,[1 1 1]);
34 plot3(xv1(j1),xv2(j2),10,’k.’,’MarkerSize’,15,’Color’,[1 1 1]);
35 view(2);
36 clim([-.1 .1])
37 colorbar;
38 axis tight;
39 hold off;
40 pause(.5);
41 end
42 end

Chapter 7 Page 132/150

Section 7.3 Model Reconstruction for Dynamical Systems

43 end

In this script, we show what the neural kernel based dynamics will generate,
which is contained in the field usimv.

4 Matlab Code for displaying the neural kernel field simulations

1 disp(’--- p4_field_simulation.m -------’)
2 ht = ht0*1;
3 usimv = zeros(nn,Nt); % generate neural kernel field dynamics
4 usimv(:,1) = uv(:,1);

5 for j=1:Nt-1
6 dsim = ht/tau*(-usimv(:,j) + Wmat*f(usimv(:,j),eta));
7 usimv(:,j+1) = usimv(:,j)+dsim;
8 end

9 %---
10 % now the graphics area
11 %---
12 if(1==0)

13 for j=1:Nt
14 % simulated field after kernel reconstruction
15 umat = reshape(usimv(:,j),n2,n1);
16 % original field prescribed and fed into kernel reconstruction
17 umat2 = reshape(uv(:,j),n2,n1);

18 fobj = figure(100);
19 clf(100)

20 subplot(2,1,1)
21 surf(X1,X2,umat+1e-3);
22 view(2);
23 shading interp;
24 colorbar
25 hold off;
26 title(’Dynamics from NFE’)
27 %
28 subplot(2,1,2)
29 surf(X1,X2,umat2+1e-3);
30 view(2);
31 shading interp;
32 colorbar
33 hold off;

Chapter 7 Page 133/150

Section 7.3 Model Reconstruction for Dynamical Systems

34 title(’Prescribed Dynamics’)
35 %
36 pause(.1);
37 end

38 end

This script allows the user to pick a point in two-dimensional space by a
mouse click and then the corresponding column of the kernel W is displayed as
a two-dimensional field showing the influence of a field at the chosen point to
all other fields in the two-dimensional neural domain.

5 Matlab Code for two-dimensional neural domain

1 jj = ceil(N/2);

2 while(jj>0)
3 w = reshape(Wmat(:,jj),n2,n1);

4 fobj200=figure(200);
5 surf(X1,X2,w);
6 hold on;
7 plot3(X1v(jj),X2v(jj),10,’k.’,’MarkerSize’,15);
8 plot3(c1v,c2v,ones(size(c1v)),’k.’);
9 shading interp;

10 view(2);
11 clim([-.1 .1])
12 colorbar;
13 hold off;

14 [x,y]=ginput(1);
15 jx = ceil(x/a1*n1);
16 jy = ceil(y/a2*n2);
17 jj = n2*(jx-1)+jy;

18 end

This script is used to carry out the model reconstruction for the kalman
filter approach.

6 Matlab Code for carrying out the neuro kalman filter model reconstruction

1 %
2 % Learning the model error or the model itself

Chapter 7 Page 134/150

Section 7.3 Model Reconstruction for Dynamical Systems

3 %
4 disp(’learning ...’)
5 method_version = ’KF’;
6 represent1 = 3; % case for representation of W
7 switch (represent1)
8 case 1, 2
9 Nc = nn*nn;

10 case 3
11 Nc = 2*(Nt-1);
12 p9_Gmat_setup;
13 clear Hc
14 end
15 cb = zeros(Nc,1);
16 cbv = zeros(Nc,Nt-1);
17 % Our model representation is connecting each variable with each variable
18 Bc = eye(Nc,Nc); % model space covariance matrix
19 Bc0 = Bc; % for KF additive covariance inflation ACI
20 aci = 0; % aci strength
21 Rc = obs_err^2*eye(nn,nn); % observation error covariance matrixx

22 randn(’seed’,0);
23 uv_e = uv + obs_err*randn(size(uv)); % add random lerror to truth
24 % to simulate observation error

25 disp(’... entering time loop ...’)
26 for j=1:Nt-1
27 str1 = sprintf("%d, ", j);
28 fprintf(str1)

29 Hc = zeros(nn,Nc);
30 switch(represent1)
31 case 1
32 % model observation operator
33 % Ansatz du = M * u with du in R^nn, M in R^(nn x nn),
34 for jj=1:nn
35 Hc(jj,(nn*(jj-1)+1):(nn*jj)) = uv(:,j)’;
36 end
37 e_ba(:,j) = (uv(:,j+1) - uv(:,j))’; % term to learn
38 case 2
39 % model observation operator
40 % Ansatz du = -u + W f(u)
41 for jj=1:nn
42 Hc(jj,(nn*(jj-1)+1):(nn*jj)) = f(uv(:,j)’,eta);
43 end
44 e_ba(:,j) = uv(:,j+1)-(1-ht)*uv(:,j);
45 case 3
46 % model observation operator

Chapter 7 Page 135/150

Section 7.4 Model Reconstruction for Dynamical Systems

47 % Ansatz du = -u + W f(u) with W = sum G_xi c_xi
48 for jj=1:Nt-1
49 Hc(:,2*jj-1) = reshape(GG(:,jj+1)*GG2(:,jj)’,nn,nn)* f(uv(:,j),eta);
50 if(jj > 1)
51 Hc(:,2*jj) = reshape(GG(:,jj-1)*GG2(:,jj)’,nn,nn)* f(uv(:,j),eta);
52 else
53 Hc(:,2*jj) = reshape(zeros(nn,1)*GG2(:,jj)’,nn,nn)* f(uv(:,j),eta);
54 end
55 end
56 e_ba(:,j) = uv_e(:,j+1)-(1-ht)*uv_e(:,j);
57 end
58 cbv(:,j) = cb; % save current vector
59 e_bav(:,j) = e_ba(:,j)-Hc*cb; % current error
60 %
61 if(strcmp(method_version,’3D’))
62 Kc = Bc*Hc’*inv(Rc + Hc*Bc*Hc’); % Kalman matrix
63 ca = cb + Kc*(e_ba(:,j)-Hc*cb); % ... 3DVAR
64 elseif(strcmp(method_version,’KF’))
65 Kc = Bc*Hc’*inv(Rc + Hc*Bc*Hc’); % Kalman matrix
66 ca = cb + Kc*(e_ba(:,j)-Hc*cb); % ... KF
67 Bc = (eye(Nc,Nc)-Kc*Hc)*Bc+aci*Bc0; % update Kalman matrix
68 elseif(strcmp(method_version,’4D’))
69 if(j>1)
70 e_ba_full = [e_ba_full; e_ba(:,j)];
71 else
72 e_ba_full = e_ba(:,j);
73 end
74 Hc_matrix = [Hc_matrix ; Hc]; % setup 4d observation operator
75 Kc_matrix = Bc0*Hc_matrix’*inv(noise^2*eye(N*j,N*j)+Hc_matrix*Bc0*Hc_matrix’);
76 ca = Kc_matrix*(e_ba_full); % ... 4DVAR
77 end
78 cb = ca; % update model coefficients
79 end
80 disp(’’)

This script allows us to set up the Gaussian functions.

6 Matlab Code for for setting up the kernel functions

1 for j=1:Nt % time loop
2 GG(:,j) = reshape(exp(-sigma*((X1-c1v(j)).^2 + (X2-c2v(j)).^2)),nn,1);
3 sigma2 = 10;
4 GG2(:,j) = reshape(exp(-sigma2*((X1-c1v(j)).^2 + (X2-c2v(j)).^2)),nn,1);
5 end

Chapter 7 Page 136/150

Section 7.4 Model Reconstruction for Dynamical Systems

7.4 PDE for Weather Simulation
This section shows the code used for learning the PDE by the Kalman filter

approach.
1 disp([’--- p8_Kalman_learning.m ---’]);

2 tic;
3 %method = ’3D’; % define the method to use
4 method = ’KF’;
5 nn = n1*n2; % number of points in 2d grid
6 disp([’nn = ’ num2str(nn) ’ steps to do!’]);
7 bv2 = zeros(ns,nn); % initialization
8 svv = zeros(nt,nn); % ~
9 svv2 = zeros(nt,nn); % ~

10 nx = 2; % number of input coordinates around current location
11 ny = 2; % ~
12 ns = (2*nx+1)*(2*ny+1); % total number of input coordinates
13 for jj=1:nn
14 Bcv(jj,:,:) = eye(ns,ns); % initialization of Bc Matrix
15 end
16 Rc = 0.1; % observation error, here it is a scalar only
17 %
18 svv = zeros(nt-1,nn); % ~
19 svv2 = zeros(nt-1,nn); % ~
20 for jt = 1: nt-1
21 t = toc; % calculate time estimate
22 tt = t/jt*nt; % ~
23 str1 = sprintf("\r\r\r\r\r\r\r%10s",[num2str(t,4) ’/’ num2str(tt,4)]);
24 fprintf([str1 ’ seconds ’]);
25 jj = 1; % counter for points in spatial grid
26 for jx = 1:1:n1;
27 for jy = 1:1:n2;
28 js = n2*(jx-1) + jy; % current point where variable to learn is located
29 p1v(jj) = a1/n1*jx; % point coordinate 1
30 p2v(jj) = a2/n2*jy; % point coordinate 2

31 sv = uv(js,jt+1)’; % right-hand side for point js

32 umat = reshape(uv(:,jt),n2,n1);
33 usmat = umat(mymod([-ny:ny]+jy,n1),mymod([-nx:nx]+jx,n1));
34 Hc = reshape(usmat,1,ns);

35 % learn the coefficients
36 alpha = 0.0001; % regularization parameter for learning
37 %b = inv(alpha*eye(ns,ns)+ Hc’*Hc)*Hc’*sv;
38 bb = bv2(:,jj);

Chapter 7 Page 137/150

Section 7.4 Model Reconstruction for Dynamical Systems

39 Bc = reshape(Bcv(jj,:,:),ns,ns);
40 Kc = Bc*Hc’*inv(alpha+Rc + Hc*Bc*Hc’);
41 ba = bb + Kc*(sv - Hc*bb);
42 if(method == ’KF’)
43 Bc2 = (eye(ns,ns)-Kc*Hc)*Bc;
44 else
45 Bc2 = Bc;
46 end
47 Bcv(jj,:,:) = Bc2;
48 %bmat = reshape(b,(2*ny+1),(2*nx+1));

49 % save for test and display
50 bv2(:,jj) = ba;
51 svv(:,jj) = sv;

52 sv2 = Hc*b;
53 svv2(:,jj) = sv2;

54 jj = jj + 1;
55 end
56 end
57 end

58 t = toc;
59 disp([’Time for complete learning of this field t=’ num2str(t) ’ sec’]);

60 disp(’Testing the learned coefficients in comparison:’);
61 jj = ceil(nn/3);
62 disp([bv(1:10,jj) bv2(1:10,jj)]);
63 disp([’ norm(bv - bv2)/norm(bv) = ’ num2str(norm(bv-bv2)/norm(bv))])

Chapter 7 Page 138/150

Bibliography

[1] A. Adadi, M. Lahmer, and S. Nasiri. Artificial intelligence and covid-19:
A systematic umbrella review and roads ahead. Journal of King Saud
University - Computer and Information Sciences, 34(8, Part B):5898–5920,
2022.

[2] M. Al-Emran, M. Al-Kabi, and G. Marques. A Survey of Using Ma-
chine Learning Algorithms During the COVID-19 Pandemic, pages 1–8.
Research Gate, 03 2021.

[3] B. I. Alliance. The brain research through advancing innovative neu-
rotechnologies® (brain) initiative. The Brain Initiative, 2013.

[4] J. Alswaihli, R. Potthast, A. Hutt, D. Saddy, and I. Bojak. Kernel recon-
struction for delayed neural field equations. Pre-print, 2017. Preprint.

[5] S. Amari. Dynamics of patterns formation in lateral-inhibition type
neural fields. Biolobical Cybernetics, 27:77–87, 1977.

[6] D. Amsallem, M. J. Zahr, and C. Farhat. Nonlinear model order reduction
based on local reduced-order bases. International Journal for Numerical
Methods in Engineering, 92(10):891–916, 2012.

[7] J. L. Anderson and S. L. Anderson. A monte carlo implementation of
the nonlinear filtering problem to produce ensemble assimilations and
forecasts. Monthly Weather Review, 127(12):2741 – 2758, 1999.

[8] H. M. Arnold, I. M. Moroz, and T. N. Palmer. Stochastic parametrizations
and model uncertainty in the lorenz ’96 system. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences,
371(1991):20110479, 2013.

[9] M. M. Arzhanov, V. V. Malakhova, I. I. Mokhov, and M. R. Parfenova.
Stability of relic methane hydrates under climatic changes in the holocene.

139

Section 7.4 Model Reconstruction for Dynamical Systems

IOP Conference Series: Earth and Environmental Science, 386(1):012019,
nov 2019.

[10] M. Asch, M. Bocquet, and M. Nodet. Data Assimilation. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2016.

[11] R. Aster, B. Borchers, and C. Thurber. Parameter estimation and inverse
problems. Recherche, 67:02, 01 2012.

[12] L. Bangjun, X. Guangzhu, et al. Parameter estimation. Ebook Central,
pages 77–113, 2017.

[13] A. G. Barto and R. S. Sutton. Chapter 19 - reinforcement learning
in artificial intelligence. In J. W. Donahoe and V. Packard Dorsel,
editors, Neural-Network Models of Cognition, volume 121 of Advances in
Psychology, pages 358–386. North-Holland, 1997.

[14] C. Batlle and N. Roqueiro. Balanced model order reduction method
for systems depending on a parameter. IFAC-PapersOnLine, 52(1):412–
417, 2019. 12th IFAC Symposium on Dynamics and Control of Process
Systems, including Biosystems DYCOPS 2019.

[15] P. Beim Graben and R. Potthast. Inverse problems in dynamic cognitive
modeling. Chaos (Woodbury, N.Y.), 19:015103, 04 2009.

[16] G. D. Birkhoff. Dynamical Systems. American Mathematical Society,
1927.

[17] BrainBox. The brain box initiative. Brainbox Initiative, 2016.

[18] J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino. Combining data
assimilation and machine learning to emulate a dynamical model from
sparse and noisy observations: A case study with the lorenz 96 model.
Journal of Computational Science, 44:101171, 2020.

[19] J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino. Combining data
assimilation and machine learning to infer unresolved scale parametriza-
tion. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 379(2194):20200086, 2021.

[20] M. Breakspear. Dynamic models of large-scale brain activity. Nat Neurosci
20, pages 340–352, 2017.

Chapter 7 Page 140/150

Section 7.4 Model Reconstruction for Dynamical Systems

[21] P. Bressloff. Spatiotemporal dynamics of continuum neural fields. Journal
of Physics A: Mathematical and Theoretical, 45:033001, 12 2011.

[22] P. C. Bressloff and S. Coombes. Physics of the extended neuron. Inter-
national Journal of Modern Physics B, 11, 1997.

[23] C. Buizza, C. Quilodrán Casas, P. Nadler, J. Mack, S. Marrone, Z. Titus,
C. Le Cornec, E. Heylen, T. Dur, L. Baca Ruiz, C. Heaney, J. A. Díaz
Lopez, K. S. Kumar, and R. Arcucci. Data learning: Integrating data
assimilation and machine learning. Journal of Computational Science,
58:101525, 2022.

[24] M. Burger, H. Dirks, and J. Mueller. Inverse problems in imaging. In
M. Cullen, M. A. Freitag, S. Kindermann, and R. Scheichl, editors, Large
Scale Inverse Problems, volume 13 of Radon Series on Computational
and Applied Mathematics. Walter de Gruyter, Berlin, 2013.

[25] M. Carlu, F. Ginelli, V. Lucarini, and A. Politi. Lyapunov analysis of
multiscale dynamics: the slow bundle of the two-scale lorenz 96 model.
Nonlinear Processes in Geophysics, 26(2):73–89, 2020.

[26] C. Q. Casas, R. Arcucci, P. Wu, C. Pain, and Y.-K. Guo. A reduced
order deep data assimilation model. Physica D: Nonlinear Phenomena,
412:132615, 2020.

[27] S. Chen, R. Yang, R. Yang, L. Yang, X. Yang, C. Xu, B. Xu, H. Zhang,
Y. Lu, and W. Liu. A parameter estimation method for nonlinear systems
based on improved boundary chicken swarm optimization. Discrete
Dynamics in Nature and Society, 2016:1–11, 01 2016.

[28] M. C. Cieslak, A. M. Castelfranco, V. Roncalli, P. H. Lenz, and D. K.
Hartline. t-distributed stochastic neighbor embedding (t-sne): A tool for
eco-physiological transcriptomic analysis. Marine Genomics, 51:100723,
2020.

[29] B. J. Cook, A. D. H. Peterson, W. Woldman, and J. R. Terry. Neural field
models: A mathematical overview and unifying framework. Mathematical
Neuroscience and Applications, Volume 2, mar 2022.

[30] S. Coombes, P. beim Graben, and R. Potthast. Tutorial on Neural Field
Theory, pages 1–43. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

Chapter 7 Page 141/150

Section 7.4 Model Reconstruction for Dynamical Systems

[31] S. Coombes, P. beim Graben, R. Potthast, and J. Wright, editors. Neural
Fields: Theory and Applications. Springer-Verlag Berlin Heidelberg, 2014.

[32] S. Coombes, H. Schmidt, and I. Bojak. Interface dynamics in planar
neural field models. Journal of mathematical neuroscience, 2:9, 05 2012.

[33] A. Corigliano, M. Dossi, and S. Mariani. Model order reduction and
domain decomposition strategies for the solution of the dynamic elas-
tic–plastic structural problem. Computer Methods in Applied Mechanics
and Engineering, 290:127–155, 2015.

[34] D. Dee. Variational bias correction of radiance data in the ecmwf system.
ECMWF Workshop on Assimilation of High Spectral Resolution Sounders
in NWP, pages 97–112, 01 2004.

[35] J. Doherty and R. J. Hunt. Two statistics for evaluating parameter
identifiability and error reduction. Journal of Hydrology, 366(1):119–127,
2009.

[36] I. C. Education. What is machine learning. IBM Cloud Learn Hub, 2020.

[37] F. Engert. The big data problem: Turning maps into knowledge. Neuron,
83(6):1246–1248, 2014.

[38] H. W. Engl, M. Hankle, and A. Neubauer. Regularization of Inverse
Problems. Mathematics and Its Applications. Springer Netherlands, 2000.

[39] G. Evensen, G. Burgers, and P. J. van Leeuwen. Analysis scheme in
the ensemble Kalman filter. Monthly Weather Review, 126(6):1719–1724,
1998.

[40] G. Evensen and P. J. van Leeuwen. An ensemble kalman smoother for
nonlinear dynamics. Monthly Weather Review, 128:1852–1867, 2000.

[41] H. Festjens, G. Chevallier, and J. Dion. Nonlinear model order reduction
of jointed structures for dynamic analysis. Journal of Sound and Vibration,
333(7):2100–2113, 2014.

[42] G. R. Francisco Chinesta, Antonio Huerta and K. Willcox. Model order
reduction. Encyclopedia of Computational Mechanics, pages 1–59, 2004.

Chapter 7 Page 142/150

Section 7.4 Model Reconstruction for Dynamical Systems

[43] M. Freitag and R. Potthast. Synergy of inverse problems and data
assimilation techniques. In M. Cullen, M. A. Freitag, S. Kindermann, and
R. Scheichl, editors, Large Scale Inverse Problems, volume 13 of Radon
Series on Computational and Applied Mathematics. Walter de Gruyter,
Berlin, 2013.

[44] P. Galetsi, K. Katsaliaki, and S. Kumar. The medical and societal impact
of big data analytics and artificial intelligence applications in combating
pandemics: A review focused on covid-19. Social Science and Medicine,
301:114973, 2022.

[45] F. Galvanin, E. Cao, N. Al-Rifai, A. Gavriilidis, and V. Dua. Model-
based design of experiments for the identification of kinetic models in
microreactor platforms. Research Gate, 12 2015.

[46] M. E. Gharamti, I. Hoteit, and J. Valstar. Dual states estimation of a
subsurface flow-transport coupled model using ensemble kalman filtering.
Advances in Water Resources, 60:75–88, 2013.

[47] O. Ghattas and K. Willcox. Learning physics-based models from data:
perspectives from inverse problems and model reduction. Acta Numerica,
pages 445–554, 2021.

[48] M. Gianfelice, F. Maimone, V. Pelino, and S. Vaienti. On the recurrence
and robust properties of lorenz’63 model. Commun. Math. Phys., 313, 03
2011.

[49] C. W. Groetsch. Inverse problems in the mathematical sciences, volume 6
of Theory and Practice of Applied Geophysics Series. Vieweg, 1993.

[50] J. Guan, K. Simek, E. Brau, C. Morrison, E. Butler, and K. Barnard. Pro-
ceedings of the 32 nd international conference on machine learning, lille,
france. In Moderated and Drifting Linear Dynamical Systems, volume 37,
07 2015.

[51] R. Gutenkunst, J. Waterfall, F. Casey, K. Brown, C. Myers, and J. Sethna.
Universally sloppy parameter sensitivities in systems biology models.
PLOS Comput Biol, 3:e189, 11 2007.

[52] R. Guzzi. Data Assimilation: Mathematical Concepts and Instructive
Examples. Springer, 2016.

Chapter 7 Page 143/150

Section 7.4 Model Reconstruction for Dynamical Systems

[53] D. Hansel and C. van Vreeswijk. The mechanism of orientation selec-
tivity in primary visual cortex without a functional map. Journal of
Neuroscience, 32(12):4049–4064, 2012.

[54] A. Heidari, N. Navimipour, M. Unal, and S. Toumaj. Machine learning
applications for covid-19 outbreak management. Neural Computing and
Applications, 34:15313–15348, 9 2022.

[55] G. Hooker. Forcing function diagnostics for nonlinear dynamics. Biomet-
rics, 65(3):928–936, 2009.

[56] B. R. Hunt, E. J. Kostelich, and I. Szunyogh. Efficient data assimilation
for spatiotemporal chaos: A local ensemble transform Kalman filter.
Physica D: Nonlinear Phenomena, 230(1-2):112–126, 2007.

[57] C. Huntingford, E. S. Jeffers, M. B. Bonsall, H. M. Christensen, T. Lees,
and H. Yang. Machine learning and artificial intelligence to aid climate
change research and preparedness. Environmental Research Letters,
14(12):124007, nov 2019.

[58] H. S. W. Jorge A. Revelli, Miguel A. Rodriguez. Resonant phenomena in
extended chaotic systems subject to external noise: The lorenz’96 model
case. Physica A, 387:1–8, 03 2008.

[59] E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge University Press, 2002.

[60] B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative Regularization
Methods for Nonlinear Ill-Posed Problems. Radon Series on Computa-
tional and Applied Mathematics. De Gruyter, 2008.

[61] A. Karimi and M. R. Paul. Extensive chaos in the lorenz-96 model.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4):043105,
Dec 2010.

[62] M. Kawato. Reinforcement models. In Encyclopedia of Neuroscience,
pages 89–97. Academic Press, Oxford, 2009.

[63] Y. Kim and H. Bang. Introduction to Kalman Filter and Its Applications,
chapter Open access peer-reviewed chapter, pages 1–10. InTechOpen, 11
2018.

Chapter 7 Page 144/150

Section 7.4 Model Reconstruction for Dynamical Systems

[64] B. Koo, H. Son, H. Kim, T. Jo, and J. Y. Yoon. Model-order reduction
technique for temperature prediction and sensor placement in cylindrical
steam reformer for ht–pemfc. Applied Thermal Engineering, 173:115153,
2020.

[65] S. Kotsuki, Y. Sato, and T. Miyoshi. Data assimilation for climate
research: Model parameter estimation of large-scale condensation scheme.
Journal of Geophysical Research: Atmospheres, 125(1):e2019JD031304,
2020. e2019JD031304 2019JD031304.

[66] R. Kotter. Neuroscience databases: tools for exploring brain structure-
function relationships. The Royal Society, 356(1412):1111–20, 2001.

[67] R. Kress. Linear Integral Equations, volume 82 of Applied Mathematical
Sciences. Springer New York, 1999.

[68] M. Lang, P. Van Leeuwen, and P. Browne. A systematic method of
parameterisation estimation using data assimilation. Tellus A: Dynamic
Meteorology and Oceanograph, 68(1):p.29012, 2016.

[69] J. W. Lichtman, H. Pfister, and N. Shavit. The big data challenges of
connectomics. Nature Neuroscience, 17(11):1448–54, 2014.

[70] E. Lorenz. Deterministic nonperiodic flow, massachusetts institute of
technology. Journal of the Atmospheric Science, 20, 1963.

[71] E. Lorenz. Predictability: a problem partly solved. Seminar on Pre-
dictability, 4-8 September 1995, 1:1–18, 1995 1995.

[72] Y. Luo, E. Weng, X. Wu, C. Gao, X. Zhou, and L. Zhang. Parame-
ter identifiability, constraint, and equifinality in data assimilation with
ecosystem models. Ecological Applications, 19(3):571–574, 2009.

[73] M. Maheu, S. Dahaene, and F. Meyniel. Brain signatures of a multiscale
process of sequence learning in humans. Neuroscience, 8:e41451, 2019.

[74] K. Maik. How data assimilation helps illuminate complex biology. SciPort
RLP, pages 1–31, 2017.

[75] H. Markram, E. Muller, Ramaswamy, et al. Reconstruction and simulation
of neocortical microcircuitry. Cell, 163(2):456–92, 2015.

Chapter 7 Page 145/150

Section 7.4 Model Reconstruction for Dynamical Systems

[76] S. Martina-Perez, M. J. Simpson, and R. E. Baker. Bayesian uncer-
tainty quantification for data-driven equation learning. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
477(2254):20210426, 2021.

[77] MathWorks. Introducing machine learning, part (1-4). Mathworks Tuto-
rial, 2016.

[78] L. McInnes, J. Healy, N. Saul, and L. Großberger. Umap: Uniform
manifold approximation and projection. Journal of Open Source Software,
3(29):861, 2018.

[79] S. Mishra Tiwari, O. Dogan, J. Akhil, S. K. Shandilya, F. Ortiz-Rodríguez,
S. Bajpai, and S. Banerjee. Applications of machine learning approaches
to combat COVID-19: A survey. Lessons from COVID-19, pages 263–287.
PubMed, 01 2022.

[80] M. Moye and C. Diekman. Data assimilation methods for neuronal state
and parameter estimation. J Math Neuroscience, Vol. 8, 2018.

[81] G. Nakamura and R. Potthast. Inverse Modeling. 2053-2563. IOP
Publishing, 2015.

[82] A. Nogaret, C. Meliza, D. Margoliash, Abarbanel, and H. D. I. Automatic
construction of predictive neuron models through large scale assimilation
of electrophysiological data. Scientific Reports, 6:1–14, 2016.

[83] B. Odunuga, R. Potthast, and D. Saddy. On model reconstruction for
dynamcial systems. Pre-print, 2017. Preprint.

[84] U. Parlitz, J. Schumann-Bischoff, and S. Luther. Local observability of
state variables and parameters in nonlinear modeling quantified by delay
reconstruction. Chaos (Woodbury, N.Y.), 24:024411, 06 2014.

[85] Y. C. Peter Jan van Leeuwen and S. Reich. Nonlinear Data Assimilation.
Frontiers in applied dynamical systems; v.2. Springer, 2015.

[86] A. M. Pinho, S. Casas, and L. Amendola. Model-independent recon-
struction of the linear anisotropic stress. Journal of Cosmology and
Astroparticle Physics, 2018(11):027–027, Nov 2018.

[87] R. Potthast. Inverse problems and data assimilation for brain equations -
state and current challenges. Conference Paper, 2015.

Chapter 7 Page 146/150

Section 7.4 Model Reconstruction for Dynamical Systems

[88] R. Potthast and P. Beim Graben. Existence and properties of solutions
for neural field equations. Mathematical Methods in the Applied Science,
33(8):935–949, 2009.

[89] R. Potthast and P. Graben. Inverse problems in neural field theory. SIAM
Journal on Applied Dynamical Systems, 8(4):1405–1433, 2009.

[90] G. J. Powers et al. The weather research and forecasting model: Overview,
system efforts, and future directions. Bulletin of the American Meteoro-
logical Society, 98(8):1717 – 1737, 2017.

[91] D. Purves, G. J. Augustine, D. Fitzpatrick, et al. National center for
biotechnology information, u.s. national library of medicine. In Recon-
struction of the Action Potential. Neuroscience. 2nd edition. Sunderland
(MA): Sinauer Associates, 2001.

[92] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng. A survey of machine
learning for big data processing. EURASIP Journal on Advances in
Signal Processing, 2016:67, 05 2016.

[93] M. Rabinovich and P. Varona. Robust transient dynamics and brain
functions. Frontiers in computational neuroscience, 5:24, 06 2011.

[94] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Kling-
müller, and J. Timmer. Structural and practical identifiability analysis of
partially observed dynamical models by exploiting the profile likelihood.
Pubmed, pages 1923–9, 6 2009.

[95] M. Rezapour, M. Niazi, and M. Gurcan. Machine learning-based analytics
of the impact of the covid-19 pandemic on alcohol consumption habit
changes among united states healthcare workers. Scientific Reports 13,
page 6003, 4 2023.

[96] D. Rosen, R. L. Burden, J. D. Faires, and A. C. Reynolds. Numerical
analysis. The American mathematical monthly, 87(3):231, 1980.

[97] A. Roskams and Z. Popovic. Power to the people: Addressing big data
challenges in neuroscience by creating a new cadre of citizen neuroscien-
tists. Neuron, 92:658–664, 11 2016.

[98] J. Samuel, P. Coulibaly, G. Dumedah, and H. Moradkhani. Assess-
ing model state and forecasts variation in hydrologic data assimilation.
Journal of Hydrology, 513:127–141, 2014.

Chapter 7 Page 147/150

Section 7.4 Model Reconstruction for Dynamical Systems

[99] W. Schilders. Introduction to Model Order Reduction, pages 3–32. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[100] J. Schmidt, M. Marques, et al. Recent advances and applications of
machine learning in solid-state materials science. npj Computational
Mater, 5(83), 2019.

[101] R. S. Scorer. Atmospheric data analysis, roger daley, cambridge atmo-
spheric and space science series, cambridge university press, cambridge,
1991. International Journal of Climatology, 12(7):763–764, 1992.

[102] Z. Shen, Y. Tang, X. Li, and Y. Gao. On the localization in strongly
coupled ensemble data assimilation using a two-scale lorenz model.
Earth and Space Science, 8(3):e2020EA001465, 2021. e2020EA001465
2020EA001465.

[103] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. ProQuest Ebook Central. John Wiley & Sons, Incorporated,
2006.

[104] P. Smith, S. Dance, M. Baines, N. Nichols, and T. Scott. Variational
data assimilation for parameter estimation: Application to a simple
morphodynamic model. Ocean Dynamics, 59:697–708, 11 2009.

[105] P. Smith, G. Thornhill, S. Dance, A. Lawless, D. Mason, and N. Nichols.
Data assimilation for state and parameter estimation: Application to
morphodynamic modelling. Quarterly Journal of the Royal Meteorological
Society, 139:314–327, 01 2013.

[106] S. Strogatz. Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering. CRC Press, 2nd edition
edition, 2019.

[107] H. B. Syeda, M. Syed, K. Sexton, S. Syed, S. Begum, F. Syed, and
F. Jr. The role of machine learning techniques to tackle covid-19 crisis:
A systematic review. (preprint). JMIR Medical Informatics, 9, 08 2020.

[108] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter
Estimation. SIAM, 2005.

[109] S. Theodoridis. Parameter Estimation. Elsevier Science and Technology,
ProQuest Ebook Central, 2015.

Chapter 7 Page 148/150

Section 7.4 Model Reconstruction for Dynamical Systems

[110] R. Tomasello, M. Garagnani, T. Wennekers, and F. Pulvermüller. A
neurobiologically constrained cortex model of semantic grounding with
spiking neurons and brain-like connectivity. Frontiers in Computational
Neuroscience, 12:88, 2018.

[111] M. Ursino, F. Cona, and E. Magosso. Mathematical models for computa-
tional neuroscience. Modeling Methodology for Physiology and Medicine:
Second Edition, pages 311–332, 12 2013.

[112] Vaibhaw, J. Sarraf, and P. Pattnaik. Chapter 2 - brain–computer inter-
faces and their applications. In V. E. Balas, V. K. Solanki, and R. Kumar,
editors, An Industrial IoT Approach for Pharmaceutical Industry Growth,
pages 31–54. Academic Press, 2020.

[113] F. van der Heijden, R. Duin, D. de Ridder, and D. Tax. Parameter
Estimation, chapter 3, pages 45–80. John Wiley & Sons, Ltd, 2004.

[114] L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[115] M. Viana. (what’s new on lorenz strange attractors?). the mathematical
intelligencer. The Mathematical Intelligencer 22, pages 6–19, 2000.

[116] S. Vieira, W. H. Lopez Pinaya, and A. Mechelli. Chapter 1 - introduction
to machine learning. In A. Mechelli and S. Vieira, editors, Machine
Learning, pages 1–20. Academic Press, 2020.

[117] K. Vlachas, K. Tatsis, K. Agathos, A. R. Brink, and E. Chatzi. A
local basis approximation approach for nonlinear parametric model order
reduction. Journal of Sound and Vibration, 502:116055, 2021.

[118] E. Walter and L. Pronzato. On the identifiability and distinguishability
of nonlinear parametric models. Mathematics and Computers in Sim-
ulation, 42(2):125–134, 1996. Mathematical Modelling and Simulation
in Agriculture and Bio-Industries Proceedings of the 1st IMACS-IFAC
Symposium Msu2SABI.

[119] J. Wang, A. Hertzmann, and D. J. Fleet. Gaussian process dynamical
models. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in
Neural Information Processing Systems, volume 18. MIT Press, 2005.

Chapter 7 Page 149/150

Section 7.4 Model Reconstruction for Dynamical Systems

[120] K. E. Willcox. Approximate yet accurate surrogates for large-scale
simulation. Science at Extreme Scales: Where Big Data Meets Large-
Scale Computing Tutorials, Institute for Pure and Applied Mathematics,
The University of Texas, Austin, pages 1–52, 2018.

[121] J. Wouters. A brief introduction to the Lorenz-63 system. CC Attribution
3.0 License, 2013.

[122] K. Xu, J. Maidana, S. Castro, and P. Orio. Synchronization transition in
neuronal networks composed of chaotic or non-chaotic oscillators. PMCID:
PMC5976724, 8, 2018.

[123] T. Zhang, Z. Lu, J. Liu, and G. Liu. Parameter identification of nonlinear
systems with time-delay from time-domain data. Nonlinear Dynamics,
104:4045–4061, 04 2021.

[124] Y. J. Zhen Li and K. Xu. Non-linear model-order reduction based on
tensor decomposition and matrix product. Institution of Engineering and
Technology, Control Theory and Applications, 12 Iss:2253–2262, 2018.

[125] Y. Zhu, J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, J. Jung,
D. Groff, Q. Liu, P. Delst, E. Liu, and D. Kleist. Variational bias
correction of radiance data in the ecmwf system. In Variational Bias
Correction in the NCEP’s Data Assimilation System, 03 2014.

Chapter 7 Page 150/150

	Contents
	Introduction
	An Overview
	Model Reconstruction in Neuroscience
	Parameter Estimation in Data Assimilation
	Reduced Order Model Literature
	Survey on Modern Learning Techniques
	Data Assimilation Techniques
	The Approach of Parameter Estimation
	Thesis Outline

	Model Systems
	Lorenz '63
	Simulation Setup, Techniques, and Deterministic Chaos

	Lorenz '96
	The Lorenz '96 Model System and its Background
	Simulation Setup, Techniques, and Visualization

	Amari Neural Field Model
	The Amari Model and its Background

	Weather Forecasting
	Setup for Reaction-Diffusion Equation

	Data Assimilation for Learning Models
	A Variational Approach to Model Reconstruction
	Kalman Filter for Model Learning
	Forcing Term Estimation (FTE)
	Forcing Term Estimation based on Polynomials (POL)
	Forcing Term Estimation based on Radial Basis Functions (RBF)

	Neural Kernel Estimation
	Classical Kernel Estimation
	A Kalman Filter for Kernel Estimation

	Low and High-Dimensional Applications
	Learning the three-dimensional Lorenz '63
	Variational Model Learning a 1d Scenario
	Variational Model Learning for L63
	Statistical Analysis of the Numerical Experiment Description: L63

	Learning higher dimensional Lorenz 96
	Statistical Analysis of the Numerical Experiment Description: L96

	Neural Field Model Learning the Kernel
	Applications to Reaction-Diffusion System
	Sensitivity Analysis of the Numerical Experiment Description: PDE

	Statistical Sensitivity Analysis of Model Reconstruction
	Sensitivity Results for Lorenz Model L63
	Sensitivity Results for Lorenz 96 Model
	Sensitivity Results for the Amari Neural Field Equation

	Conclusions and Perspectives
	Evaluation of Results
	Limitations of the techniques used in the thesis
	Perspectives on Techniques
	Perspectives on Applications

	Bibliography
	Appendix
	Learning Low Dimensional Lorenz-63
	Learning Higher Dimensional Lorenz-96
	Display Trajectories and Runge-Kutta Application
	Nature Run of Lorenz-96
	Learning Coefficients of Model Representation based on the Kalman Filter
	Implement Local Ensemble Transform Kalman Filter (LETKF)

	Neuro Reconstruction for Neural Kernel Estimation
	PDE for Weather Simulation

