MATHEMATICS DEPARTMENT

A Numerical Method for the Computation of the Analytic

Singular Value Decomposition

S.J.G. Bell, N.K. Nichols

Numerical Analysis Report 2/94

UNIVERSITY OF READING

A Numerical Method for the Computation of the Analytic

Singular Value Decomposition

S.J.G. Bell , N.K. Nichols !

Numerical Analysis Report 2/94

Department of Mathematics
P.O. Box 220
University of Reading
Whiteknights
Reading
RG6 2AX
United Kingdom

I'Thanks are due to my supervisor Nancy Nichols for support and assistance, and to the

Science and Engineering Research Council, who have funded my PhD.

Abstract

A numerical method for calculating a smooth time-varying matrix decomposition
based on the singular value decomposition for constant matrices is given. The
decomposition is known as the Analytic Singular Value Decomposition (ASVD)
and is here calculated by reducing it to a system of ordinary differential equations.
These equations are then solved numerically using a method which preserves
orthogonality of the left and right singular factors. After the basic method is
given, examples are shown which highlight some of the problems. An improved

version of the method is then presented.

Contents
1 Introduction

2 How Can the ASVD be Found?

2.1 Examplel
2.2 Differential Equations for the ASVD
2.3 Some Points of Interesto oo

231 AProblem.

2.3.2 An Observation oo
2.4 ASVD Algorithm ASVDAFUo oo
25 Notes. . . .o oo

3 Examples
3.1 Example2
3.2 Orthogonality of Left and Right Factors
3.3 Example3
3.4 Exampled
3.5 Examplebo

3.6 Comments

4 Stabilization
4.1 Stabilized Examples o000
4.2 Example2 e
4.3 Example3do
4.4 Exampled
45 Examplebo
4.6 Thoughts on these Examples
4.7 Non-Analytic Example 6

5 Summary
6 References

A Appendix 1
1.1 Examplel e
1.2 Example2 e

oo S Ot o = WY N

©

11
12
12
14
16

19
20
20
20
22
22
24
26

29

31

1.3
1.4
1.5
1.6
1.7

Example 3 oo 34

Example 4 o o 35
Example b o oo 37
Example 6o 38
Example 7 o oo 40

i

1 Introduction

The Singular Value Decomposition (SVD) is a tool of great importance in numer-
ical analysis. It provides a stable, reliable transformation to canonical form which
yields a great deal of information about the matrix rank, null space and range
space not given by other decompositions. Furthermore, the transformation takes
place via orthogonal factors and so the conditioning of the matrix is completely
unaffected. In particular, the motivation for this work derives from its use in
feedback design for time-invariant descriptor systems (see Bunse-Gerstner et al
[3]). The SVD is used to reduce a system of constant coefficient differential alge-
braic equations to canonical form so that a feedback can be chosen to regularize
the system.

With this in mind we present a time-varying version of the SVD, the Analytic
Singular Value Decomposition (henceforth the ASVD), a version of the singular
value decomposition for A(t), a matrix with variable, analytic coefficients - the
motivation being, that this may be used for time-varying descriptor systems in
the same way that the SVD is used in the time-invariant case (see Kunkel and

Mehrmann [5]).

Definition 1 For a real, analytic, matriz valued function E(t) : [a,b] — R™*"
where m > n, an Analytic Singular Value Decomposition is a path of factorisa-
tions:
Et) = X(1)S)Y ()" (1)

where

o X(1):[a,b] — R™™ and Y (1) : [a,b] — R"*" are orthogonal,

o S(t):[a,b] — R is diagonal, and

o X(1),Y(t) and S(t) are analytic.

An important point to note is that we must relax the conditions that the singular
values be non-negative and ordered for an ASVD to exist. The existence and
uniqueness of the ASVD is gone into thoroughly by Bunse-Gerstner et al [2].
We shall concern ourselves with its numerical computation (Section 2), then we
present some examples to illustrate the algorithm in action in Section 3. We then
say why it does not work and give an improved algorithm which does work in

Section 4, as illustrated by the examples of Section 5.

2 How Can the ASVD be Found?

It might be thought that to calculate the ASVD numerically, all one need do,
would be to compute an SVD pointwise. This is not the case - such a sequence
of SVD’s would not in general be smooth, as for a given matrix FE(t) there is
generally more than one possible smooth SVD path. A sequence of SVD’s would
tend to jump from path to path. This can be easily seen from the following

example.

2.1 Example 1

Define
1—1t 0

1 0 1—t 0 10
t € (—o0,—1],
0 —1 0 -1 -1 0 1
1 0 1—t 0 10
te(—1,0],
0 1 0 1+t 0 1
XSy ()" =
0 1 1+t 0 0 1
t e (0,1],
10 0 1—t 10
0 —1 14+t 0 0 1
t e (1,00).
1 0 0 —141 10

So, the singular values are continuous but not differentiably so, and the elements
of the singular factors X and Y are not even continuous. This is due to the SVD
forcing the singular values to be non-negative and ordered, and illustrates the
fact that we must allow these two conditions to be relaxed in the time-varying
case if we are to get any sort of smooth decomposition. In many applications we
wish to track these values in an (at least) continuous way. This is clearly not
possible by a pointwise SVD calculation.

The fact that we are constraining our matrix to be analytic is no accident.

Unless this condition is met, there is no guarantee that any smooth singular value

2

path exists, even for infinitely differentiable matrix functions. Bunse-Gerstner et
al [2] discuss the non-uniqueness of the ASVD at length. They also derive an
“Fuler-type” numerical method for calculating the ASVD. The method works by
calculating a standard SVD at each time-step and then calculating the permu-
tation matrices needed to move it onto the correct path - the correct path in
their case being that for which the norm of the derivative of X (t) varies the least.
We now show how the ASVD may be computed numerically by another, simpler
method.

2.2 Differential Equations for the ASVD

Wright [6] proposed the following method for finding the ASVD by reducing it
to a set of ordinary differential-algebraic equations and then solving these.

Define the ASVD

where E(t) € ®™*". If we differentiate this we get
E=XSY" + XSY7" + X5Y7T.

Now, if we premultiply both sides of the above equation by X7, then postmultiply
by Y we get

XTEY = XTXS+ S+ SYTy,
which, if we write W = XTX, Z = YTY and Q = XTEY may be expressed
more neatly as the following equation

Q=WS+85+577, (2)

This equation has a great deal of structure which is not immediately obvious. We

can show that W and Z are skew-symmetric, since

dl d
0=— = —(XTX
dt dt()7 ‘
= XTX +XTX,
= Wi+ w.
Hence, WT = —W, and so W is skew-symmetric. Since Z is defined similarly to

W, it too is skew-symmetric. An important property of skew-symmetric matrices

is that they have zero diagonals. Thus, since S is a diagonal matrix, the only

3

contribution to the matrix S in equation (2) comes from the diagonal of Q.
Therefore, using the definitions of W and Z we may express the ASVD in terms

of the following set of equations

diag(5(1)) = diag(Q(1)), (3)

where the elements of Z and W are given by the algebraic equations

siWin+s;2Zk; = Qi (6)
siWik+seZi; = —Qky, (7)

where j > k. If m > n, ie. E(1) is rectangular, we have an extra set of equations

thus

Sij,k = Qj,kv (8)
where j =n+1,...,m,k=1,...,n. These, rearranged, give
$kQjk + 8;Qk
Wir = ;2 _ 3]2 = (9)
k J
3;Qix + $1klr;
7 k
Wip = @i (11)
Sk

Then, setting Wy, = =W, and Z,; = —Z; ; determines the other entries and

guarantees anti-symmetry.

2.3 Some Points of Interest
2.3.1 A Problem

It is obvious from looking at equations (6) and (7) in the form of (9) and (10)
that we have a problem when 3? = s7. If this is so, then the two equations (6)
and (7) become linearly dependent, ie. only one equation exists for every two
unknowns W;; and Zj ;. If 3? = s?, ie. the two singular values are identical for
all ¢, then there is a degree of freedom in the ASVD. One of the two unknowns
may be chosen arbitrarily if the two singular values are non-zero, both may be set

arbitrarily if the two singular values are identically zero (although they must be

4

set to analytic functions). Such a case presents no problem. What is a problem
is when two singular values become instantaneously equal in modulus. This may
only occur at isolated points, such a point being known as a non-generic point.
When this happens we lose one or both of the equations for W, and Zj ;, but
there is no corresponding degree of freedom in the ASVD - the path is still
uniquely defined, assuming analyticity. We are therefore left with a system for
which the solution is perfectly well-defined and unique [6], but does not give us
sufficient information to find the solution at such points.

Similarly, from (11), when E(t) is rectangular, points at which a singular value
becomes instantaneously zero are defined as non-generic points, whilst identically
zero singular values allow the corresponding W elements to be set to any analytic
function.

These non-generic points represent the only real problem in finding the ASVD
For all other points, provided that the initial value of t is generic, the equations

(3) - (8) uniquely define an ASVD path for a given initial SVD.

2.3.2 An Observation

The differential equations (4) and (5) are of the form
X = X(OW(X,0),

where W is skew symmetric which implies that X is orthogonal. All matrix
functions are analytic, so all matrices are differentiable and bounded. We would
like to solve these equations in such a way that the orthogonality of the left
and right factors is preserved, without having to reorthogonalise them at each
step. Most standard methods will not do this (see [4]). We, therefore, look to
a non-standard method and apply the following scheme from [1] to solve these

equations.

h
Xn—l—l - Xn - Z(Xn—l—l —I_ Xn)(Wn—I—l —I_ Wn)v (12)

but rewritten in the semi-explicit form
Xop1 = X, (I + B)(I - B,)™, (13)

where B,, = %(Wn+1 + W,).
This scheme has the great advantage that, provided B, is skew symmetric

and Xy is orthogonal, (13) always returns an estimate X,y which is orthogonal

to machine accuracy. Equation (13) is thus used in conjunction with the forward
extrapolation technique described in [1] as a predictor-corrector pair. The theory
on convergence of [1] gives sufficient conditions on the step size h for conver-
gence of this method and non-generic points are dealt with by leaving the initial
estimates for the relevant W or Z entries in place and only recalculating those
for which equations exist. We illustrate this with a basic version of our ASVD

algorithm for a constant step-size (ASVD4FU).

2.4 ASVD Algorithm ASVD4FU
1. Input tg = a,t, = b, h,itol, ntol, inmazx

2. Calculate initial SVD
XOSO% = E(to)

3. Calculate
Qo = XJ E(to)Y;
4. Calculate Wy and Zj

call wzcal(Wy, Zo, So, Qo)

5. Outer loop n =1,2,...

o Set SO =g |
e Inner loop incn =1,2,...,tnmax

— Use forward extrapolation on W, and Z,
If incn=1 then W, = 3W,_; —3W,_o + W, _5
Ion =320 1 =379+ 23
else W, = W,_1
o = Zp1
endif
— Calculate X,, and Y,

B =h(W, + W,_;)/4
C

= h(Zn + Zn_1)/4
X, =X,..(I+B)(I-B)™
Y, =Y, 1 (I+C)YI-C)

— Calculate), and 5,
Qn = (Xo) E(t,)Y,

diag(Sn) = 5 * diag(Qn-1 + Qn) + diag(Sn-1)
— Calculate W, and Z,
call wzcal(W,,, Z,,5,, Q)

— Decide whether to exit inner loop

If ||S, — SOFP||; > itol then SOLP = G,

next incn

Endif

o Write X,,, 5,,Y,
t,=1t,+h
it t, <t; then next n

e Iind

subroutine wzcal(W, 7,5, Q)

do 5, j=2.n
do 10, k=1,j-1
sqd = S*(j) — S*(k)
if sqd > ntol then
W = (S(k)Q(j, k) + S(j)Q(k, 1))/ sqd
Z = —(S()QU, k) + S(k)Q(k. j))/sqd
endif

Y

W(kvj) = _W(jv k)
Z(]v k) = _Z(kvj)

10 next k

5 next j
return

end

2.5 Notes

e Obviously, the forward extrapolation equations do not actually come into
play until the third time step. Before this, the value W,,_ is used as a first
guess for W, (and similarly for 7).

e A trapezium approximation is used to approximate equation (3). The rea-
son for this is that, since the approximations to equations (4) and (5) are

of order h*, there seems little point in using a higher order scheme for (3).

o A non-generic point is defined as any isolated point where the following
condition holds

|57 — 52| < ntol i .

o Convergence of the fixed point iteration is held to be when the following

condition is satisifed:

1S, — SOEP||.., < itol.

S, 1s the latest approximation to the vector of singular values at each step,

SOLD {5 the previous approximation at the same step. The inner

and
loop runs for at most inmax iterations, after which it is assumed that the
algorithm has failed to converge. The program then continues from the

next time step.

e The two tolerances, itol and ntol are set to the value of A% in all of the ex-
amples to follow. Experimentally it has been found that tolerances greater
than this lead to inaccuracy, and tolerances smaller than this can prevent
the algorithm from converging. This seems logical since the schemes used

are all of order 2.

o One set of equations for W have been omitted in the above algorithm - these
are the extra equations (8) which occur when FE is rectangular. Putting

them in presents no extra problems - they are omitted merely for neatness.

3 Examples

We now present a selection of interesting examples. They do not represent all
of the examples tested so far (a full list of all examples tested with various step-
sizes is given in Appendix 1), but they exhibit most of the important possible
characteristics. The errors we give are the relative errors in the approximated
singular values, ie.

_IS() = Sallz
error(t,) = S

Where graphs are shown, those depicting approximations to singular values are
labelled “Singular Values” and show all of the values on the one graph; those
depicting approximations to the singular factors are labelled “Left /Right Singular

Factor” and show the diagonal elements of the relevant matrix.

3.1 Example 2

This is of the form

where X(t) is given by

g s1 00 10 0 0 10 0 0

X(t): —S81 0 0 0 Cy S9 0 0 1 0 0 7
0 0 10 0 —s3 ¢ O 0 0 ¢33 s3

0 00 1][0 0 0 1][00 —s5 o]

and ¢ = cos(k —141), sp = sin(k —141), and
S(t) = drag(t,1 + 1,2+ 1,3 +1).

This is a nice, analytic matrix with no non-generic points anywhere. If we apply
our algorithm to it over the interval ¢ € [0,2] with a step-size h = 0.01, we get
the singular value paths shown in Figure 1. As we would expect, there are no
problems anywhere, although a point of minor interest is that the lower singular
value is —t, as opposed to t. This is perfectly acceptable though: since we are
starting at ¢ = 0, either function is perfectly correct - in other words, there is a
certain amount of (trivial) non-uniqueness at this point. Overall error (Figure 2)
is of the order 107°, and as the step-size is changed is seen to be consistent with

the algorithm being second order (See Appendix 1).

9

Singular Values

0.2

0.4

0.6 0.8

time

Figure 1: Example 2

Error in ASVD calculation

T — T

Figure 2: Example 2

10

Left Singular Factor

Figure 3: Example 2

Inspection of the approximation to X (¢) (Figure 3) shows a perfectly smooth

(at least to the naked eye) set of functions. There are no surprises here.

3.2 Orthogonality of Left and Right Factors

One of the greatest assets of our algorithm is the fact that the orthogonality of
the left and right factors is preserved - perfectly in theory, to machine error in
practice. It would be good, therefore, before going any further, to demonstrate
that this is indeed the case.
We use the previous example, but this time the graph (Figure 4) shows the
quantity
X X5 = Tl

in other words, it gives a measure of the loss of orthogonality as we step forwards
in time.

Using standard difference techniques, the loss of orthogonality is of the same
order as the global truncation error [1]. Using our algorithm with the orthogo-
nality preserving difference scheme, we get the results shown in Figure 4. These
are very pleasing - the calculations were carried out in Matlab using twelve point
precision, the loss of orthogonality is of the order 1071* to 1071°. Shortening the

step size seems to produce no dramatic effect on this loss of orthogonality.

11

Loss of Orthogonality
10™ : : ‘

.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time

Figure 4: Example 2

We will not show the same results for any of the following examples, partly

for brevity, but mainly because they are all very similar.

3.3 Example 3

This is of the same form as Example 2, now with
S(t) =diag(.5+1,2—1t,1—1,1),

and evaluated over the same interval ¢ € [0,2], with the same step-size h = 0.01.

This does have non-generic points, occurring at ¢ = 0.25,0.5,0.75, 1.0, 1.5.
Therefore we might expect worse results, certainly at the non-generic points.
Examination of the singular values calculated seems to suggest that everything
is fine; they are nice and smooth, and look accurate enough to the naked eye
(Figure 5). When we look at the error (Figure 6) we see that this is indeed the
case. The results are comparable with the previous example, giving an error of
order 107° away from the initial value. As before, the left factor seems perfectly

smooth (Figure 7).

3.4 Example 4

This is of the same form as Example 2, now with
S(t) = diag(1,t,2 —t,3 — 2t).

12

0.5

Singular Values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time

Figure 5: Example 3

Error in ASVD calculation

Figure 6: Example 3

13

Left Singular Factor

0.4r

0.2r 1

-0.2 A

-0.4F]

-0.61 1

time
Figure 7: Example 3

All four singular values intersect at ¢ = 1, and there are further non-generic
points at ¢ = % and t = 2.

Evaluated over t € [0,2] with a step-size A = 0.01, this example poses a real
problem. The singular values (Figure 8) happily follow the correct path until
t=1, where they receive a knock which pushes them onto new paths. This is
confirmed by the error obtained (Figure 9) which is reasonable (order 107°) until
the first non-generic point. Inspection of the entries of the left singular matrix
X(t) (Figure 10) shows that the values of the singular factors are fine up to
this point, and hopeless afterwards. These are results obtained using only two
iterations in the inner loop of the algorithm (inmax = 2). Slightly better results
can be obtained if more are allowed. If, say tnmax = 100, then the method
converges more satisfactorily at t=1, but fails at t=>5/3. The only way to resolve

this problem is to go down to a smaller step-size (say O(107?)).

3.5 Example 5

This is similar to the previous examples. However, whilst the matrix X (¢) has
the same structure as before, its entries are now ¢; = cos(t), ¢, = cos(t/2) and

c3 = cos(t/4), etc. The singular values are given by

S(t) = diag(1,t,¢*,1%).

14

Singular Values

2.5F

1.2 1.4 1.6
time

Figure 8: Example 4

Error in ASVD calculation

Figure 9: Example 4

15

Left Singular Factor

0.8 4

0.6 4

-0.21 1

0.4 g

time
Figure 10: Example 4

All four singular values have equal modulus at ¢ = £1. Further, three of them
intersect at ¢ = 0. The region of integration is now ¢ € [—2, 2], and the step-size
is still 2 = 0.01.

Despite the fact that this should be the worst of the three examples, the
algorithm almost manages to cope up until t=1 (see Figure 11). The quadratic
contact at t=0 seems to present no problems to the singular values (the error is
of the order 10™* at this point), and it is not until t=1 that everything falls apart
(Figure 12). Figure 13 shows, once again, a huge jump in the entries of X ()
where the singular values. coincide at ¢ = 1.

Again, this version of the algorithm took inmaxz = 2 iterations. Experimen-
tally, if inmax is allowed to be bigger and the step size smaller (1072 or less),
then the algorithm will work. The entries of X(t) jump slightly at t=1, but the
algorithm stays on course and the error decays back to its previous level beyond
t = 1 (it has been tested up to t=10). Convergence is attained after no more

than two iterations except at t=1, which requires nine.

3.6 Comments

1. Although the errors in the computed singular values give a fair indication
of the performance of the algorithm, it should be noted that it is perfectly

possible for the singular values to follow the correct path but for the singular

16

Singular Values

8 T
7L
6L
sk
4
al
2
1
ok
Ak
L L L L L L L
-2 15 -1 05 0 0.5 1 15
time
Figure 11: Example 5
Error in ASVD calculation
10"
10°
10°
10
10°
10°
107

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 12: Example 5

17

Left Singular Factor

Figure 13: Example 5

matrices to bifurcate. This does not happen in any of the previous examples

given, but does in some of the examples in Appendix 1.

. It should be stressed that we show the last two examples because they cause
problems for the method. There are many other examples, all of which give
no trouble at all; the algorithm produces results perfectly consistent with a

second-order scheme.

18

4 Stabilization

A major problem with the algorithm of Section 2 is the gradual build-up of error
caused by round-off and truncation error. From experiments run, the bifurcation
at some non-generic points seems to be caused by this accumulation of error and
not by any step-size criterion (for all the examples tested the step-size condition
was always satisfied). At a non-generic point, the ASVD is not fully defined by
the equations given and so the problem is very sensitive to error. It seems that if
the approximation is still fairly accurate, then the algorithm can cope with this
instantaneous singularity and stays on course (in fact, after a non-generic point,
the error decays back to its level prior to the non-generic point). If, however,
the accumulated error is too great, then the approximated solution may bifurcate
and switch to another singular value path. There are several possible ways we
could deal with this; one is to obtain extra equations for the entries of W and 7
for use at non-generic points. This can be done by differentiation of equations
(6)- (8). This idea is impractical, however, in that it requires knowledge of the
derivatives of). Further, if the first derivatives of two singular values should also
happen to be equal in modulus, then the equations for W and Z become linearly
dependent once again; the next derivative has to be taken, and so on. All in all,
with the extra complicated terms involved (the derivative of () can be replaced by
other “known” terms, but it is messy), and with the extra special cases involving
derivatives of singular values, this does not seem to be a viable option.

Another idea is due to Wright [6] and this involves reducing the accumulated
error by replacing the exact matrix E(t) at each step by a perturbed one, C(t)
say, of the form

C1t) = B+ (B, = Bl = (1

where t € [t,,tn41], F(t,) is the exact value of E at ¢, and F,, is our approximated

value, given by

E,=X,S,YT.

This has the properties

19

Differentiating C, we get

(E(tn) — En)

C(t) = E(t) + TR

(15)

So, at each node, we replace E(t) by C(t) and hope that this will remove the
accumulated error and hence lead to more accurate results. This “stabilization”

does have an effect on the method, as the following results show.

4.1 Stabilized Examples

In the following examples we use exactly the same algorithm as before, but with
the derivative of E replaced by that of C, where C is our “stabilization matrix”.
The examples, too, are the same - Example 2 of this section coincides with Ex-
ample 2 of the previous section, etc., and the same step-size (b = 0.01) and
parameter values are used. Literally the only thing changed is the value of E.
This small change to the algorithm makes a vast difference to the results as we

show.

4.2 Example 2

Although this example gave our original algorithm no problems, we can see that
there are substantial improvements with our new, stabilized algorithm. If we look
at Figure 14 we see what these improvements are specifically, much reduced error.
The error is initially order 1078 and then decays rapidly to order 1071, This is
incredible for a second-order method and certainly suggests that stabilization

works.

4.3 Example 3

Again, this was dealt with satsifactorily by the original algorithm, even though it
had non-generic points. If we look at the error (Figure 15) we see the same drastic
improvement; an initial error of order 107®, decaying away to order 107 — 10710,
There is a sharp blip at £ = 1, corresponding to one of the non-generic points,

but this causes no problems later on.

20

Error in ASVD calculation
T T T

Figure 14: Stabilized Example 2

Error in ASVD calculation

Figure 15: Stabilized Example 3

21

Singular Values

time
Figure 16: Stabilized Example 4

4.4 Example 4

This is one of the “problem” examples from the previous section. For a step
greater than A = 0.001 the algorithm failed entirely, and the step-size had to be
reduced for it to converge at the non-generic points. Figure 16 shows the singular
values that we obtain - all on the correct paths, and Figure 17 shows the error
- initially order 107, decaying away (though not so rapidly as before) to order
10!, However, good singular values do not imply good singular factors. We
must therefore look to Figure 18 which displays X (¢). Once again, there are no
problems. Without stabilization, the method failed on this example until the
step-size was made as small as 0.001. Now, the method works for a step as large
as h = 0.1.

These results, and many others, suggest that, somehow, stabilization raises
the order of the method to four. This is exciting, as, it puts the method on
a par with a good implicit Runge-Kutta scheme [7] for these examples, with

orthogonality preserved to machine accuracy, but with far fewer calculations.

4.5 Example 5

Now the results are slightly worse. Figure 19 shows the computed singular values,
and Figure 20 the error. Everything is in the correct place, but the error for this

example is slightly worse than for the two previous examples. Why this should

22

Error in ASVD calculation

Figure 17: Stabilized Example 4

Left Singular Factor
T T

Figure 18: Stabilized Example 4

23

Singular Values
8 T

Figure 19: Stabilized Example 5

be so, we do not know, but the error is now of the order 107° throughout most of
the region of integration. There is no sharp decline, but a fairly smooth, constant
magnitude error.

Again, inspection of the left singular factor shows perfectly good behaviour

(Figure 21).

4.6 Thoughts on these Examples

It has been seen that stabilization has an enormous effect on the accuracy of the
solutions, raising the order of the algorithm by at least one, sometimes more.
What is more, the stabilization procedure is extremely cheap to implement, in-
volving only a few divisions and matrix additions at each step. And, very impor-
tantly, none of the examples tested required more than two fixed point iterations
at any step. This means that the fixed point iteration can be disposed of; all
that is required is the “initial guess” step and then one more run through the
calculations to correct the values. What we do not know is why stabilization
works as well as it does.

It does, however, seem to work extremely well, and, with this in mind, we
shall apply the method to one last problem. This is of interest because it is not

analytic.

24

Error in ASVD calculation

Figure 20: Stabilized Example 5

Left Singular Factor

0.6

Figure 21: Stabilized Example 5

25

Singular Values

time
Figure 22: Stabilized Example 6

4.7 Non-Analytic Example 6

This is of the form

where

and ¢ = cos(t),s = sin(1).

Despite the fact that this example is C®, the method without stabilization fails
completely. The singular values are tracked very accurately, but the subspaces
bifurcate at t=1 and t=2. Most of the theory of this paper, however, relies on
all matrix functions being no more than three-times differentiable [1], so with the
aid of the stabilization, it should be hoped that the method will cope. Figures
22 - 24 show the results with a step size of 0.01. The error in this case has a
strange symmetry: it remains between 1077 and 107% everywhere except in the

interval [1,2] where it plummets to effectively zero. This is probably something

26

Error in ASVD calculation

Figure 23: Stabilized Example 6

Left Singular Factor

Figure 24: Stabilized Example 6

27

to do with the simplicity of the system over this interval, as it reduces to just

The left and right singular factors are not perfect - there is a slight blip after
t = 2. They are not knocked off course, however, but settle back down again.
Reducing the step size irons out these blips.

Although these results are less accurate than for previous analytic examples,
what is exciting and important is that the algorithm works at all. The accuracy is
certainly good enough for many practical purposes, and the fact that everything
works suggests that the algorithm as it stands has excellent potential as a method

for finding the ASVD of a matrix.

28

5 Summary

We have presented a cheap low-order technique for finding the ASVD of an ana-
lytic matrix. This method has the very desirable property that the orthogonality
of the left and right factors is preserved to machine accuracy. Further, we have
modified the ASVD algorithm to increase its accuracy far beyond what could
normally be expected for a second order method. We do not know, as yet, why
stabilization works as well as it does in some cases, and obviously, we would like
to know this and, perhaps more importantly, when it may not work.

What does make the ASVD problem unique is that, although the exact solu-
tions X (¢), 5(¢) and Y'(¢) are not known explicitly, the product

is known exactly for all ¢ € [a,b]. This is not information that one normally has
when solving an o.d.e. and so it seems logical that use can be made of this extra
information to improve the accuracy.

A further modification that has been made is the addition of a step sizer. All
of the calculations are carried out by one-step techniques - the only part of the
algorithm that requires information from points other than the present node and
the previous node is the forward extrapolation used to calculate W,y and 7, 4.
This has been designed for use with a variable step, however, and so it is a fairly
simple matter to implement a step sizer. This has been done and results confirm
that it works.

The most obvious improvement that could be made is to improve the algo-
rithm’s handling of non-generic points.

We said before that obtaining extra equations by differentiating the equations
for the ASVD was not a good idea. Perhaps, however, with the extra accuracy
of stabilization and forward extrapolation to find an initial estimate for W and
7 we can make it a workable idea. If we look at the equations for W and Z at a

non-generic point we see that we are left with, at most, one equation

kWi + 8i 2k = Qg

Using further differentiation Wright [6] shows that we may derive a further two
equations for W and 7, thus

Sij,k + SjZk,j + 25, W + 25,23 ; = _(XTEY)j,k — Z W;:iQix — Z Qi ks
2k 2

29

and

$iWik + 81 Zkj + 28 Wik + 28625 = —(XTEY)iy + 3 WiiQij — Y QriZii.
it ik

At a non-generic point we may subtract the second equation from the first to get

Q(ék - 5]‘)(W]‘7k - Zgw‘) = r.h.s.

This is our second equation and we may use it to define W and Z (noting that

the derivatives of S are known) except in the following special cases.
® S5, = Sk and é]‘ == Sk
® S5, = —S5g and 5]‘ == —ék.

It should also be noted that the summations in the above equations may not be
known explicitly if there are more than two identical singular values at a single
point. Hopefully the “initial guess” should give sufficiently accurate estimates to

the missing elements to be able to smooth out any error.

30

6

References

1]

2]

Simon J.G. Bell and Nancy K. Nichols. Numerical solution of orthogonal

matrix differential equations. Technical report, University of Reading, 1994.

Angelika Bunse-Gerstner, Ralph Byers, Volker Mehrmann, and Nancy
Nichols. Numerical computation of an analytic singular value decomposition.

Technical report, University of Bielefeld, 1990.

Angelika Bunse-Gerstner, Volker Mehrmann, and Nancy Nichols. Numeri-
cal methods for the regularization of descriptor systems by output feedback.

Technical report, University of Minnesota, 1992.

Luca Dieci, Robert Russel, and Erik Van Vleck. Unitary integrators and

applications to continous orthonormalization techniques. Preprint, 1992.

Peter Kunkel and Volker Mehrmann. Smooth factorisation of matrix valued
functions and their derivatives. Institut fur Geometrie und Praktische Math-

ematik, 1990.

K.Wright. Differential equations for the analytic singular value decomposition

of a matrix. Technical report, University of Newcastle, 1991.

K. Wright. Numerical solution of differential equations for the analytic sin-

gular value decomposition. Technical report, University of Newcastle, 1993.

31

A Appendix 1

We now present a complete list of results obtained for the examples given in this
paper and some examples not given. The algorithm ASVD4FU was used, both

with and without stabilization. The tolerances itol and ntol were set to be hZ

where h was the step size, and the parameter inmazx was set at 2.

1.1 Example 1

where
[ev o ss00][1 0 oof[1t0o 0 o0
— 0 0 0 0 o1 0 0
Xl(t) _ S1 G Cy S9
0 0 10 0 —s3 ¢ 0 0 0 ¢ s3
0 0 010 0 0 1]]00 —s3 ¢
cp = cos(k —1+1)and sy = sin(k — 1 +1), and
S(t) = diag(3 +t,24+t,1+1,1).
e Region of integration ¢ € [0, 2].
e No non-generic points.
e Analytic.
Unstabilized
h Max error | Average error | Smooth X | Smooth Y
1104 3.91e-2 2.34e-2 yes yes
210.2 7.81e-3 5.10e-3 yes yes
310.1 1.60e-3 1.17e-3 yes yes
4 10.04 2.6le-4 1.90e-4 yes yes
5| 0.02 6.63e-5 4.81e-5 yes yes
6 | 0.01 1.68e-5 1.21e-5 yes yes
710.004 | 2.70e-6 1.95e-6 yes yes
810.002 | 6.77e-7 4.89e-7 yes yes
9 | 0.001 1.69e-7 1.22e-7 yes yes

32

Stabilized
h Max error | Average error | Smooth X | Smooth Y
1104 2.30e-2 1.35e-2 yes yes
210.2 1.77e-3 6.02e-4 yes yes
310.1 1.17e-4 2.30e-5 yes yes
4 10.04 3.06e-6 3.12e-7 yes yes
5| 0.02 1.92e-7 1.10e-8 yes yes
6 | 0.01 1.20e-8 3.70e-10 yes yes
710.004 | 3.08e-10 4.00e-12 yes yes
8 10.002 | 1.93e-11 1.25e-13 yes yes
9 10.001 | 1.20e-12 5.38e-15 yes yes

1.2 Example 2

E(t) = Xi(1)S(6) X (1),
where X is as before, and
S(t) = diag(1,t,2 — t,3 — 2t).
e Region of integration ¢ € [0, 2].

e Non-generic points: all four singular values coincide at t=1, other crossings

at t=5/3 and t=2.

o Analytic.
Unstabilized
h Max error | Average error | Smooth X | Smooth Y
1104 4.15e-1 1.71e-1 no no
210.2 7.44e-1 2.71le-1 no no
310.1 1.33e4-0 4.01e-1 no no
4 10.04 7.58e-1 1.85e-1 no no
510.02 1.03e4-0 3.45e-1 no no
6 | 0.01 1.29e+0 4.25e-1 no no
710.004 | 8.10e-1 1.87e-1 no no
8 10.002 | 5.74e-1 5.34e-2 no no
9 10.001 | 5.76e-1 5.28e-2 no no

33

Stabilized
h Max error | Average error | Smooth X | Smooth Y

1104 2.96e-1 6.91e-2 ? ?

210.2 3.08e-3 1.66e-3 yes yes
310.1 1.30e-4 4.88e-5 yes yes
4 10.04 3.15e-6 4.67e-7 yes yes
5| 0.02 1.93e-7 1.43e-8 yes yes
6 | 0.01 1.19e-8 4.39e-10 yes yes
710.004 | 3.03e-10 4.46e-12 yes yes
8 10.002 | 1.89e-11 1.39e-13 yes yes
9 10.001 | 1.18e-12 6.73e-15 yes yes

The first table shows how totally the unstabilized algorithm fails on this ex-
ample. This failure is due to the X and Y values jumping at each non-generic
point. With a larger value of inmax, slightly better results are possible for small

step-sizes, but, in general, we may say that the unstabilized algorithm fails on

this example.

The stabilized algorithm, however, gives excellent results - the question marks
in the first two rows refer to the fact that insufficient data points were available

for us to be able to tell whether the X and Y matrices were smooth or not.

1.3 Example 3

where X, has the same structure as X7, but now ¢; = cos(t), 2 = cos(t/2),

E(1) = X, (1)S5(1)Xa(1)

c3 = cos(t/4), s1 = sin(t), sg = sin(t/2) and s = sin(t/4), and

S(t) = diag(1,1,1*,17).

e Region of integration ¢ € [—2,2].

e Non-generic points: all four singular values coincide at t=+1, three coincide

at t=0.

e Analytic.

34

Unstabilized
h Max error | Average error | Smooth X | Smooth Y
1104 1.62e+0 7.88e-1 no no
210.2 9.41e-1 3.21e-1 no no
3101 6.29e-1 1.06e-1 no no
4 10.04 6.57e-1 1.04e-1 no no
510.02 1.01e+0 1.58e-1 no no
6 | 0.01 9.35e-1 1.49e-1 no no
710.004 | 1.07e-1 1.71e-1 no no
81 0.002 | 3.06e-1 5.25e-2 no no
91 0.001 1.07e-1 1.71e-1 no no
Stabilized
h Max error | Average error | Smooth X | Smooth Y
1104 1.09e+0 4.18e-1 no no
2102 1.63e+0 5.09e-1 no no
310.1 5.25e-4 2.65e-4 yes yes
4 10.04 3.20e-5 1.71e-5 yes yes
5| 0.02 4.00e-6 2.14e-6 yes yes
6 | 0.01 5.00e-7 2.69e-7 yes yes
710.004 | 3.20e-8 1.72e-8 yes yes
8 10.002 | 4.00e-9 2.15e-9 yes yes
9 10.001 | 5.00e-10 2.69e-10 yes yes

For all of the unstabilized results and the first two stabilized results, the
elements of X and Y jumped at t=1.

1.4 Example 4

cos(t) sin(t) op 0 cos(t) sin(t)

E(t) =
Q —sin(t) cos(t) 0 oy —sin(t) cos(t)

Y

35

where
I—(—-1* 0<t<1

oy = 1 1<t <2,
1—(t—2)r 2<t<3
and

09 = 1.
e Region of integration ¢ € [0, 3].

o The two singular values coalesce at t=1 and remain equal until t=2 where

they separate again.

e Non-analytic - four times differentiable.

Unstabilized
h Max error | Average error | Smooth X | Smooth Y
1104 1.91e+0 3.54e-1 no no
210.2 8.29e-1 9.07e-2 no no
3101 5.91e-3 4.65e-3 no no
4 10.04 1.02e-3 7.97e-4 no no
51 0.02 2.65e-4 2.06e-4 no no
6 | 0.01 6.71e-5 5.19e-5 no no
710.004 | 1.08e-5 8.35e-6 no no
8 10.002 | 2.70e-6 2.09e-6 no no
910.001 | 6.74e-7 5.22e-T no no

36

Stabilized
h Max error | Average error | Smooth X | Smooth Y
1104 1.26e+0 2.17e-1 no no
210.2 2.15e-2 6.22e-3 yes yes
310.1 2.76e-3 6.12e-4 yes yes
4 10.04 1.76e-4 3.57e-5 yes yes
5| 0.02 2.32e-6 4.82e-6 yes yes
6 | 0.01 2.96e-6 5.5Te-T yes yes
710.004 | 1.91e-7 3.52e-8 yes yes
8 10.002 | 2.39e-8 4.41e-9 yes yes
9 | 0.001 3.00e-9 5.51e-10 yes yes

The unstabilized results demonstrate the fact that the singular values can be

perfectly okay, even if the X and Y values are going haywire.

1.5 Example 5

where

E(1) = X2(1)S(1)X (1),

1
S(t) = diag(t + 5,2 —t,1—1t1).

e Region of integration ¢ € [0, 2].

e Non-generic points at t = 0.25, t = 0.5, ¢t = 0.75,t = 1.0 and ¢ = 1.5.

e Analytic.

37

Unstabilized
h Max error | Average error | Smooth X | Smooth Y
1104 6.17e-1 1.58e-1 no no
210.2 6.74e-1 2.94e-1 no no
3101 3.83e-1 6.75e-2 no no
4 10.04 8.41e-1 2.53e-1 no no
51 0.02 8.37e-1 2.49e-1 no no
6 | 0.01 3.10e-5 1.98e-5 yes yes
710.004 | 1.8le-2 6.35e-3 no no
8 | 0.002 1.23e-6 7.86e-7 yes yes
910.001 | 3.07e-7 1.96e-7 yes yes
Stabilized
h Max error | Average error | Smooth X | Smooth Y
1104 5.32e-1 1.51e-1 no no
210.2 5.52e-3 2.52e-3 yes yes
310.1 1.50e-4 6.96e-5 yes yes
4 10.04 3.53e-6 5.20e-7 yes yes
5| 0.02 2.17e-7 1.40e-8 yes yes
6 | 0.01 1.34e-8 4.41e-10 yes yes
710.004 | 3.41e-10 4.53e-12 yes yes
8 10.002 | 2.13e-11 1.42e-13 yes yes
9 10.001 | 1.33e-12 5.93e-15 yes yes

1.6 Example 6

cos(1/t) —sin(1/t) exp(—1/t?)
sin(1/t) cos(1/t) 0 [!] 7Y
E(t) =
’ t=0.
0

e Region of integration ¢ € [—1, 1].
e No non-generic points, but a smooth ASVD path does not actually exist.

38

e Non-analytic, infinitely differentiable.

Unstabilized
h Max error | Average error | Smooth X | Smooth Y
1104 1.05e+0 3.32e-1 ? yes
210.2 1.02e+0 2.26e-1 ? yes
310.1 4.01e-1 9.17e-2 no yes
4 10.04 1.77e-1 3.99e-2 yes yes
5| 0.02 6.08e-3 1.54e-3 yes yes
6 | 0.01 2.08e-1 4.33e-2 no yes
710.004 | 3.96e-3 6.90e-4 yes yes
8 10.002 | 3.98e-3 5.3Te-4 yes yes
9 | 0.001 2.33e-3 3.24e-4 yes yes
Stabilized
h Max error | Average error | Smooth X | Smooth Y
1104 1.11e+0 3.78e-1 ? yes
210.2 3.62e-2 1.64e-2 ? yes
310.1 9.31e-2 1.49e-2 no yes
4 10.04 1.08e-1 9.09e-3 yes yes
5| 0.02 2.05e-2 7.60e-4 yes yes
6 | 0.01 1.66e-2 3.86e-4 yes yes
710.004 | 3.87e-3 6.02e-5 yes yes
8 | 0.002 1.89e-3 2.50e-5 yes yes
9 | 0.001 1.26e-3 1.49e-5 yes yes

As before, the question marks in the above tables indicate that it was impos-
sible to say whether the X entries were smooth.

It would be somewhat optimistic to expect sensible results for X in a neigh-
bourhood of zero, so “Smooth X” for this example implies that the entries of
X either side of a small neighbourhood of ¢ = 0 were smooth (typically entries
outside t &~ 40.2).

39

1.7 Example 7

E(t) = X:(1)S() X4 (1),

I—(—=1* 0<t <1,
$1 = 1 1<t <2,
1—(t—2)" 2<t<3,
S9 = 1,
1
S3 = 57
1
Sq4 = §—|-€_10t.

e Region of integration ¢ € [0, 3].

e Non-generic points at

Singular values s; and s, are identical for ¢ € [1,2]. Singular values s;
and s, are almost identical from ¢ = 0.5 onwards (hence the two very close

non-generic points).

e Non-analytic, four times differentiable.

40

Unstabilized
h Max error | Average error | Smooth X | Smooth Y

1104 1.42e+0 5.05e-1 ? ?

210.2 4.92e-1 1.52e-1 no no
3101 6.85e-1 1.74e-1 no no
4 10.04 5.94e-1 3.34e-1 no no
5 10.02 4.77e-1 1.42e-2 no no
6 | 0.01 5.79e-1 1.49e-2 no no
710.004 | 9.62e-5 6.58e-5 no no
8 10.002 | 2.10e-3 7.64e-5 no no
9 10.001 | 6.59e-5 1.12e-5 no no

Stabilized
h Max error | Average error | Smooth X | Smooth Y

1104 1.45e+0 5.02e-1 no no
210.2 3.91e-1 1.05e-1 no no
310.1 1.03e4-0 1.18e-1 no no
41 0.04 1.15e+0 3.93e-1 no no
51 0.02 6.39e-1 2.15e-2 no no
6 | 0.01 5.54e-2 4.46e-3 no no
710.004 | 1.62e-2 1.18e-3 no no
8 10.002 | 1.18e-2 8.44e-4 yes yes
910.001 | 4.05e-3 2.92e-4 no no

Strangely, the results without stabilization are more accurate for the singular
values. However, the values for X and Y are absolutely hopeless, whereas for the
stabilized results they are much better, even if they are only perfect for one of

the step-sizes.

41

