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1 Introduction

The recent applied and theoretical econometrics literature has witnessed a growing

interest in the class of threshold models characterized by piecewise linear process-

es separated according to the magnitude of a threshold variable. When each linear

regime follows an autoregressive process for instance we have the well known threshold

autoregressive family of models, the statistical properties of which have been investi-

gated in early work by Tong and Lim (1980), Tong (1983, 1990), and more recently

reconsidered and extended in Hansen (1996, 1997, 1999a, 1999b, 2000), Caner and

Hansen (2000), Gonzalez and Gonzalo (1998) among others. Given their rich dynam-

ic structure and their ability to capture nonlinearities and asymmetries within an

intuitive mathematical framework, this class of nonlinear models has also generated

a growing interest among economists interested in capturing economically meaning-

ful nonlinearities. Examples include the analyis of asymmetries in persistence in

the US output growth (Beaudry and Koop (1993), Potter (1995)), nonlinearities in

unemployment rates (Hansen (1997), Koop and Potter (1998)), threshold e�ects in

cross-country growth regressions (Durlauf and Johnson (1997)) and in international

relative prices (Obstfeld and Taylor (1997), O'Connell and Wei (1997)) among nu-

merous others. Although economic theory is often silent about the speci�c type of

nonlinearities, it frequently suggests models with switching behavior as in the case

of the speculative storage model recently analyzed in Ng (1993) or situations where

macroeconomic variables such as output or employment present di�erent dynamics

according to the stage of the business cycle (see Koop, Pesaran and Potter (1996),

Altissimo and Violante (1999)). It is also important to point out that the threshold

family of models is only one among a multitude of other possible speci�cations able to

capture nonlinearities in economic variables. The choice is typically dictated by the

particular stylized facts the model is designed to capture as well as the availability

of statistical tools for conducting inferences. Alternative formulations include Hamil-

ton's regime switching model (Hamilton (1989)), the standard change-point model,

bilinear processes, among numerous others (see Carrasco (1997) for an encompassing

testing strategy covering a wide range of nonlinear speci�cations). Although the mul-

titude of potential speci�cations may suggest that the threshold family of models is

only a narrow subset, recently Petruccelli (1992) has shown that the latter may also

be viewed as an approximation to a more general class of nonlinear processes.
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Despite their ability to capture interesting asymmetric features and jump phenome-

na observed in economic and �nancial time series the use of threshold models in the

applied economics literature has been quite limited when compared with speci�ca-

tions such as Hamilton's regime switching model. Among the signi�cant problems

encountered when modelling data with threshold type of models are the prohibitive

computational costs when estimating speci�cations with more than two regimes and

on the theoretical side the di�culties in tabulating the limiting distributions of LR

type statistics for detecting single or multiple threshold e�ects. For the latter case

for instance, inferences are nonstandard due to the well known unidenti�ed nuisance

parameters problem together with the fact that the relevant limiting distributions

tend to depend on model speci�c moments, thus ruling out any general tabulation.

Tsay (1989) proposed a very interesting graphical approach for detecting the num-

ber and location of the thresholds and more recently, Hansen (1996) has developed

a general methodology for the treatment of the at most two regime case which to

our knowledge is the only technique that can handle very general threshold models

including SETAR's of any order but its applicability to models with possibly more

than two regimes is unclear.

In this paper our aim is to focus on some of the above mentioned computational

and theoretical di�culties by �rst formally establishing the large sample properties

of a sequential estimation approach that makes the estimation of multiple-threshold

models computationally feasible. We subsequently concentrate on the possibility of

using an alternative to testing for a data based determination of the unknown number

of regimes. The plan of the paper is as follows. Section II focuses on the sequential

estimation of the parameters of a multiple threshold model under the assumption

that the number of regimes is �xed and known. Section III extends the results to

the case of an unknown number of regimes by investigating the properties of a model

selection based approach for the joint determination of the threshold parameters and

their number. Section III concludes. All proofs are relegated to the appendix.
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2 Joint and Sequential Estimation under a known num-

ber of thresholds

We consider the following multiple threshold model expressed in matrix form

y =
m+1X
j=1

Xj�j + �(1)

where y denotes the T � 1 vector of observations on the dependent variable, Xj �
X � I(
j�1 < z � 
j) with X denoting the T � K matrix of regressors, �j the cor-

responding K � 1 vector of coe�cients and I(
j�1 < z � 
j) is the stacked T � 1

vector of indicator variables with z referring to the threshold variable that triggers

the regime changes and � is a random disturbance term with zero mean and variance

�2� . The corresponding threshold parameters are denoted (
1; . . . ; 
m) with 
0 = �1,


m+1 =1 and � is the Hadamard product operator. The threshold variable z could

be a component of the regressor matrix or a variable that is external to the sys-

tem. Given data collected in y, X and z, and assuming that the number of regimes

is known, our objective is to estimate the regression coe�cients together with the

threshold parameters. Speci�cally the unknown (m + 1)K +m dimensional param-

eter vector is given by � = (�1; . . . ;�m+1; 
1; . . . ; 
m). It is also worth noting that

within the speci�cation in (1) we have X =
Pm+1

j=1 Xj and the regressors are such

that X0
iXj = 0 8i 6= j. Before proceeding with the estimation of � we introduce a

set of preliminary assumptions, ensuring the estimability of the unknown parameter

vector. We de�ne X� = X � I(
0j � � < z � 
0j ) and
�X� = X � I(
0j < z � 
0j + �) for

a small � � neighborhood of each of the m true threshold parameters and 8j.

Assumption A1 (i) The threshold parameters are such that 
i 2 �m, i = 1; . . . ; m,

where �m = f(
1; . . . ; 
m) : �1 < 
 < 
1 < . . . < 
m < �
 < 1g, (ii) The mini-

mum eigenvalues of X0
�X�=T and �X

0
�
�X�=T are bounded away from zero and (iii) the

threshold variable z has a positive density in [
; �
].

Part (i) of the above assumption restricts all threshold parameters to lie in the

bounded subset [
; �
] of the threshold variable sample space, (ii) ensures that there

are enough observations in each regime for estimability purposes and (iii) rules out

the possibility that two distinct threshold values produce the same �t. In practice

the analysis is conducted by imposing an ad-hoc lower bound for the number of

observations in each regime. Following Hansen (1999a) for instance and letting Tj
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8j = 1; . . . ; m+1 denote the number of observations in regime j, it is common practice

to require Tj=T � �, with � typically set to 10%. Conditional on 
 = (
1; . . . ; 
m)

the model in (1) is linear in the �0js and thus the application of the least squares

principle leads to the concentrated sum of squared errors function

ST (
1; . . . ; 
m) = y0y�
m+1X
j=1

y0Xj(X
0
jXj)

�1X0
jy(2)

from which the threshold parameters can be estimated through the following opti-

mization program

(
̂1; . . . ; 
̂m) = arg min
(
1;...;
m)2�m

ST (
1; . . . ; 
m):(3)

The slope parameter estimates can then be computed as �̂j = �̂j(
̂
0
1 ; . . . ; 
̂

0
m). We

next introduce a set of high level assumptions (uniform LLN type results) which will

allow us to establish the limiting properties of both the joint and sequential threshold

parameter estimators. We let (
01 ; . . . ; 

0
m) denote the true con�guration of threshold

parameters and X0
j = X � I(
0j�1 < z � 
0j ) 8j = 1; . . . ; m + 1 refers to the corre-

sponding regressor matrix.

Assumption A2 As T !1, uniformly over 
j 2 <

(i)
X0

jX
0
j

T

p!
h
G(
j ^ 
0j )�G(
j�1 ^ 
0j )

i
�
h
G(
j ^ 
0j�1)�G(
j�1 ^ 
0j�1)

i
,

(ii)
X0

j�

T

p! 0,

(iii)
X0

j�p
T

= Op(1),

where G(
0j ) are symmetric positive de�nite matrices 8j and the G(
j)0s are symmet-

ric positive de�nite matrices, absolutely continuous and strictly increasing functions

of 
j, 8j = 1; . . . ; m+ 1.

In what follows it will also be understood that G(
00 ^ :) � 0, G(
0 ^ :) � 0,

G(
m+1 ^ 
0m) � G(
0m), and G(
m ^ 
0m+1) � G(
m). Within our notation-

al conventions it is also implicit that G(
m+1 ^ 
0m+1) = G � 0 together with

G(
m+1) � G(
0m+1) � G � 0. Thus an immediate consequence of assumption

A2(i) is that X0X=T
p! G � 0. The above assumptions can be shown to hold un-

der a wide range of speci�cations considered in applied work. If y is generated by
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a SETAR process for instance then from Chan (1990), A2 holds provided that the

relevant characteristic polynomials have roots that lie inside the unit circle, the error

process is iid with a bounded and continuous pdf and Ej�tj4r < 1 for some r > 1

(see also Hansen (1996, pp. 420-422) for a more general discussion on speci�cations

under which A2 holds). The limiting behaviour of the jointly estimated threshold

parameters is summarized in the following proposition

Proposition 2.1 As T ! 1 and under A1 and A2(i)-(ii) we have 
̂i
p! 
0i ,

i = 1; . . . ; m.

The above joint estimators are straightforward to compute when the model is char-

acterized by two regimes (m=1) since the optimization program requires a one-

dimensional grid search only. When m > 1 however, the computational burden

becomes substantial, requiring multi-parameter grid based simulations over all pos-

sible values of all threshold parameters taken together. The problem in hand is

analogous to the computational problems arising when dealing with multiple-change

point problems, recently investigated by Bai (1997), Bai and Perron (1998a, 1998b)

and in the earlier work of Hawkins (1976) and Vostrikova (1981). In that literature

it has been suggested that one may proceed sequentially by estimating the change-

points one at a time since the change-point estimator obtained as an optimizer of a

misspeci�ed single parameter based objective function (derived from a �tted model

with a single break while the true model contains more than one) maintains its con-

sistency property for one of the true change-points. Given the similarities between

threshold and change-point models, Hansen (1999) also conjectured that a similar

feature should hold when �tting threshold models. To our knowledge however the

recent literature does not provide any formal proof of the above result in the context

of general threshold models such as the speci�cation considered in (1) and even in

the context of standard change-point models, the properties of the sequential estima-

tion approach have only been established for simple mean shift models with no other

included regressors (see Bai (1997) and Bai and Perron (1998)). Our next objective

therefore is to formally establish the properties of threshold estimators obtained via a

sequential estimation approach, requiring solely a single parameter grid search in each

sequence. We concentrate on the limiting behaviour of a single threshold parameter

estimate obtained from a �tted two-regime speci�cation when the true model is given

by (1). This will subsequentially allow us to formally establish the properties of a

6



sequential algorithm for estimating all the threshold parameters one at a time. The

�tted model is given by

y = Z1�1 + Z2�2 + u(4)

where Z1 = X�I(z � r) and Z2 = X�I(z > r) while the true model is speci�ed as in

(1). Note that Z1 + Z2 = X and Z1
0Z2 = 0. Applying the conditional least squares

approach outlined previously to (4) leads to the following optimization program for

the threshold parameter estimate

r̂ = arg min
r2�1

ST (r)(5)

where

ST (r) = y0y�
2X

j=1

y0Zj(Z
0
jZj)

�1Z0jy(6)

and �1 is the sample space of the threshold variable given by the \merged" version

of �m, i.e. �1 = [
; �
]. For greater technical convenience for what follows it is useful

to de�ne an alternative objective function JT (r) = ST �ST (r), with ST denoting the

sum of squared errors under the restriction �1 = . . . = �m+1 in (1) and reformulate

the optimization programme in (5) as

r̂ = argmax
r2�1

JT (r)(7)

with

JT (r) = (�̂2 � �̂1)
0Z02Z2(X

0X)�1Z01Z1(�̂2 � �̂1)(8)

and where the �̂
0
s in (8) denote the regime speci�c least squares estimators of the

slopes for given r. Their dependence on the unknown threshold parameter is omitted

for notational parsimony. The limiting behaviour of a properly normalized version of

JT (r) is established in the following lemma

Lemma 2.1 As T !1 and under A1 and A2(i)-(ii) we have

sup
r2�

����JT (r)T
� J1(r)

���� p! 0

where J1(r) is nonstochastic continuous given by

J1(r) =

"
mX
`=1

�
0

`G(r ^ 
0` )G(r)�1 +

mX
`=1

�
0

`(G(r ^ 
0` )�G(
0` ))(G�G(r))�1

#

(G�G(r))G�1G(r)"
G(r)�1

mX
`=1

G(r ^ 
0` )�` + (G�G(r))�1
mX
`=1

(G(r ^ 
0` )�G(
0` ))�`

#
(9)
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with �` = (�` � �`+1).

The above limit function J1(r) will have di�erent expressions over the m+1 regimes.

For r = 
0k and k = 1; . . . ; m for instance we have

J1(r = 

0
k) =

"
kX
`=1

�
0

`G(
0` )G(
0k)
�1 +

mX
`=k+1

�
0

`(G�G(
0` )(G�G(
0k))
�1

#

(G�G(
0k))G
�1G(
0k)"

G(
0k)
�1

kX
`=1

G(
0` )�` + (G�G(
0k))
�1)

mX
`=k+1

(G�G(
0` )�`

#
:(10)

Following the derivation of the uniform limit in (9), the most important subsequent

step in the evaluation of the asymptotic properties of the extremum estimator de-

�ned in (7) involves establishing the existence of a unique maximum of J1(r). Since

the uniform limit in (9) may have multiple local maxima we initially introduce an

assumption ensuring that one of the true regimes dominates in the data and subse-

quently establish that J1(r) has a unique maximum.

Assumption A3 There exists a single threshold parameter say 
0s such that J1(r =


0s ) > J1(r = 
0k) 8k 6= s and k = 1; . . . ; m.

Given the expression of J1(r = 
0k) in (10) and assuming m = 2 with s = 1 (i.e.

assuming that in a three regime model the �rst regime dominates) for instance the

above assumption translates into the following requirement on the limiting objective

function

J1(
01)� J1(
02) = �
0

1G(
01 )G(
02)
�1(G(
02)�G(
01))�1

� �
0

2(G(
02)�G(
01))(G�G(
01 ))
�1(G�G(
02))�2 > 0:(11)

Lemma 2.2 Under A3 the limiting functional J1(r) in (9) is uniquely maximized at

r = 
0s .

The following two propositions focus on the consistency and rate of convergence of

the threshold parameter estimator de�ned in (5) and (7).

Proposition 2.2 As T !1 and under A1, A2(i)-(ii) and A3 we have r̂
p! 
0s .

Proposition 2.3 As T ! 1 and under A1, A2(i)-(ii) and A3 we have T jr̂ � 
0s j =
Op(1).
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Propositions 2.1 and 2.3 establish that the single threshold parameter estimator ob-

tain from a misspeci�ed two regime model is T-consistent for the dominant true

threshold from a model that has m + 1 regimes. In practice since the dominant

threshold parameter is unknown (it could correspond to any of the m true threshold

parameters) we use subsamples [
; r̂) and (r̂; �
] to estimate the second threshold pa-

rameter. It is then straightforward to extend the arguments of the two propositions

to show that this second threshold parameter will also be T-consistent for the next

dominant threshold parameter. The above results can thus be used to implement

a sequential algorithm for the estimation of all m parameters one at a time via a

sequence of m one-dimensional optimization programmes as in (7) over appropriately

de�ned search domains. Under m = 2 for instance and once the �rst stage esti-

mator, say r̂(1) has been obtained from (7)-(8), we proceed conditional on r̂(1) and

search for the second threshold by evaluating the second stage objective function over

r(2) 2 [
; r̂(1))[(r̂(1); �
]. Note that this latter objective function will have di�erent ex-
pressions over the two sub-intervals since in practice it is not known whether the �rst

stage estimate r̂(1) is consistent for 
01 or 
02. Speci�cally, the second stage objective

function can be formulated as

JT (r
(2)) = JLT (r

(2))I(r(2) < r̂(1)) + JRT (r
(2))I(r(2) > r̂(1))

where JLT (r
(2)) and JRT (r

(2)) are analogous to (8) but derived from the following two

canonical forms

QLy = Z
(2)
1 �1 + Z

(2)
2 �2 + u(12)

QRy = Z
(2)
1 �1 + Z

(2)
2 �2 + u;(13)

where Z
(2)
1 = X � I(z � r(2)), Z

(2)
2 = X � I(z > r(2)), and QL and QR are orthog-

onal matrices with orthogonal columns spanning the orthogonal complement of the

column space of X � I(z � r̂(1)) and X � I(z > r̂(1)) respectively. Given the above

notation, the consistency of the second stage threshold parameter estimator r̂(2) can

then be established in exactly the same manner as for r̂(1). Although it is beyond our

scope to concentrate on the limiting distributions of the threshold parameter estima-

tors it is also important to mention that analogous to the change-point framework of

Bai (1997), the �rst stage sequential estimator, denoted r̂(1) above, will not have the

same limiting distribution as its jointly estimated counterpart since the former has

been estimated using a misspeci�ed objective function contaminated by the wrongly

omitted thresholds and as a result will be less e�cient regardless of the sample size.
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It is however possible to iterate the sequential procedure so as to make both sequen-

tially estimated threshold parameters have the same asymptotic distribution as say


̂1 and 
̂2 under m = 2. In the context of the above example this can be achieved

simply by re-estimating the �rst stage threshold parameter r(1) taking r̂(2) obtained in

the second stage as given and subsequently re-estimating the second stage threshold

parameter once more. This is the principle adopted in the analysis that follows.

2.1 Empirical Properties

Having established the consistency of the joint and sequential estimators, our next

objective is to evaluate their relative behaviour in �nite samples, viewing the joint

estimation as the benchmark case. Our empirical results will also provide an overall

picture of the �nite sample behaviour and quality of estimators derived from thresh-

old type speci�cations, features that to our knowledge have not been investigated

in the recent time series literature and that are crucial for applied research. Given

the computational burden that arises when dealing with models having more than

three regimes we limit our analysis of the properties of the jointly estimated threshold

parameters to models with at most two threshold parameters (three regimes).

Before proceeding with the empirical performance of the threshold parameter estima-

tors however, it is important to highlight some di�culties that arise when designing

a threshold type data generating process. The problem is related to the sensitivity of

the variance of the estimators of the slopes (and implicitly that of the threshold pa-

rameter estimators) to the choice of the true threshold level. In a two regime (single

threshold parameter) setup for instance one would expect to obtain more accurate

estimates of both the threshold parameter and slopes if the true threshold parame-

ter is set equal to the median or mean of the distribution of the threshold variable.

In practice however it is often impossible to evaluate the moments of the threshold

variable appearing in the DGP analytically making the interpretation of the resulting

estimators (empirical bias, variance etc) extremely sensitive to the choice of the true

threshold parameter. It is this latter aspect that we wish to initially illustrate by

concentrating on a very simple DGP that lends itself to analytically tractable results.

This will then allow us to achieve a fairer interpretation of our subsequent simulations

based on richer dynamic structures. We initially consider the following two regime
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model

yt = �1I(yt�1 � 
1) + �2I(yt�1 > 
1) + �t(14)

where �t � NID(0; �2�) with �2� set equal to 1 with no loss of generality. We also let


01 denote the true value of the threshold parameter and �1(
1), �2(
1) and �2(
1)

refer to the probability limits of �̂1(
1), �̂2(
1) and �̂2(
1) respectively. Letting �()

denote the c.d.f. of a standard normal random variable and noting that I(yt�1 � 
1)

is a Markov Chain, standard calculations using its transition matrix lead to P (yt �

1) = �(
1��2)=(1��(
1��1)+�(
1��2)) � �(
1) from which it is straightforward

to obtain

�2(
1)� �1(
1) = (�2 � �1)
�(
1 ^ �01)� �(
1)�(
01)

�(
1)(1� �(
1))
(15)

and

�2(
1) = �2� + (�2 � �1)
2�(
01)(1� �(
01))

�(�2 � �1)
2 [�(
1 ^ 
01)� �(
1)�(


0
1)]

2

�(
1)(1� �(
1)
(16)

where �(
1^ 
01) = �(
1)I(
1 � 
01) + �(
01)I(
1 > 
01). From the expression of �(
1)

it is clear that under the above DGP we will have �(
1) = 0:5 when 
1 = 0:5(�1+�2)

also implying that 
1 = E(yt). In other words choosing a true threshold parameter

equal to the average of the parameters appearing in each regime ensures that it

will also equal to the mean and median of the threshold variable, thus leaving an

equal number of observations in both regimes. Our next objective is to evaluate

the limiting behaviour of the variance of �̂2(
1)� �̂1(
1). The latter should provide

valuable information about the impact of the location of the true threshold parameter


01 on the estimators of the parameters. Standard calculations lead to

VT (�̂2(

1



to estimators with an extremely high variance, relative to the most favourable mean

(or median) location. Under �1 = 1 and �2 = 2 for instance, the parabola is centered

at 
1 = 1:5 8
01 with the corresponding variance equal to 4 while the variance corre-

sponding to 
01 = 0 for instance is close to 40, a ten-fold increase. In order to illustrate

the usefulness of the above points we conducted a simulation experiment using the

DGP in (14) and evaluated the empirical bias and variance of 
̂1 for di�erent values

of 
01 together with the corresponding magnitudes for the slope estimates. Results

are displayed in Table 1.

Table 1 about here

It is immediately clear that the threshold parameter estimate becomes highly inac-

curate for values of 
0 that fall outside the [1,2] range, with a typical greater than

�ve-fold increase in its empirical standard deviation. The third and fourth columns

of Table 1 display the empirical means and standard deviations of the resulting es-

timated slope parameters �̂1(
̂1) and �̂2(
̂1). It is interesting to note that the latter

display a substantially smaller bias and a more stable variability when compared with

that of the threshold parameter estimates. In summary the purpose of this prelimi-

nary exercise was to highlight the importance of experiment design when considering

threshold type DGPs and that extreme caution should be taken when selecting the

magnitude of 
0. Ideally for results to give a su�ciently global picture it is an im-

portant imperative to scan across a wide range of possible true threshold parameter

values since for models with richer dynamics, many of our analytical results would

be unfeasible to obtain. We next concentrate on a similar speci�cation with three

regimes given by

yt = �1I(yt�1 � 
1) + �2I(
1 < yt�1 � 
2) + �3I(yt�1 > 
2) + �t:(18)

Under the above true model and using standard but tedious algebra we have

P (yt � 
1) =
�(
2 � �3)�(
1� �2) + �(
1� �3)�(�2 � 
2)

�(
1; 
2)
(19)

and

P (
1 < yt � 
2) =
�(
2 � �3)�(�1 � 
1)� �(
1� �3)�(�1 � 
2)

�(
1; 
2)
(20)

where

�(
1; 
2) = [�(
1 � �2)� �(
1 � �3)][�(�1 � 
2) + �(
2 � �3)]

+ [�(�2 � 
2) + �(
2 � �3)][�(�1 � 
1) + �(
1 � �3)](21)
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and P (yt > 
2) = 1 � P (yt � 
1) � P (
1 < yt � 
2). Our next objective therefore

involves comparing the �nite sample properties of the joint and sequential estima-

tion approaches when applied to (18). We concentrate on DGPs given by (18) with

�1 = 1, �2 = 2, �3 = 3 and �t � NID(0; 1). The chosen threshold parameter

structure encompasses a wide range of con�gurations leading to models with ap-

proximately equally divided regime proportions as well as models in which a single

regime dominates. Speci�cally we consider (
01; 

0
2) = (1; 2); (1:5; 2:5); (1; 3) and (2; 3)

which using (19)-(21) imply regime proportions of approximately (10%; 20%; 70%),

(35%; 30%; 35%), (20%; 60%; 20%) and (70%; 20%; 10%) respectively. All our exper-

iments are performed using T = 200 across N = 2000 replications. The empirical

means and corresponding standard deviations of the sequentially and jointly estimat-

ed threshold parameters together with the implied �̂0s are displayed in Table 2a.

Table 2a about here

As expected the precision of the estimates for both the joint and sequential approach-

es are highly sensitive to the location of the true threshold parameters with the most

favourable scenario occuring when all three regimes have an approximately equal

amount of observations. The increase in the variability of the threshold parameter

estimators also translates into more imprecise estimated slopes with a quantitative-

ly similar shift in magnitudes. When comparing both methods of estimation it is

immediately apparent that the �gures corresponding to the sequential and joint ap-

proaches are remarkably close, even for the moderately small sample size used in the

experiment. Both the point estimates and their corresponding standard errors are

virtually identical across all con�gurations of the true threshold parameters. Table

2b displays the results of a similar exercise using a SETAR(3;1,1,1) model given by

yt = 0:2yt�1I(yt�1 � �0:5)+0:8yt�1I(�0:5 < yt�1 � 0:5)�0:5yt�1I(yt�1 > 0:5)+ �t.

The choice of the true parameters is such that the regime proportions are approxi-

mately (40%, 35%, 25%).

Table 2b about here

For this scenario, results based on both T=200 and T=400 are presented. Focusing

�rst on the relative behaviour of both estimation techniques it is again clear that

they lead to estimates that remain very similar in terms of their �nite sample vari-

ability and bias even in the context of models with richer dynamic structures. When

evaluating the overall quality of the resulting estimators however and regardless of
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the estimation technique it is important to note the drastic deterioration (in terms

of loss of precision and �nite sample bias) of both the threshold and slope estimates

when moving from the simple threshold model with no conditional mean dynamics in

each regime towards a more general SETAR process. In the latter case despite small

�nite sample biases the threshold parameters display a very high degree of variability

which persists even as we move from T=200 to T=400.

3 Estimation under an unknown number of thresholds:

A Sequential Model Selection Approach

In the preceding section our analysis was conducted under the assumption that the

number of regimes of the threshold models is known. In practice however economic

theory rarely o�ers an intuitive rationale for an �a priori imposition of a speci�c num-

ber of regimes in the data. Numerous empirical applications aiming to describe the

dynamics of macroeconomic variables have taken the ad-hoc view that two regimes

may be appropriate for describing alternative dynamics for expansions and recessions.

Others (e.g. Pesaran and Potter (1997), Koop and Potter (1999)) have argued that

perhaps three regimes, encompassing bad times, good times and normal times should

be modelled. Given this uncertainty it is then natural to inquire about data-based

methods for the determination of the number of regimes. The literature on thresh-

old models does not seem to o�er any formal methodology for detecting the number

of regimes in threshold type speci�cations, beyond the case involving testing single

threshold versus linear models. In Chan (1990) for instance, the author obtained

the limiting distribution of an LR type test statistic in the context of a general two

regime SETAR model, but with the exception of a few special cases the limiting dis-

tribution does not lend itself to conventional tabulations due to its dependence on a

large number of unknown parameters (e.g. moments of the regressors). More recently

Hansen (1996), developed a bootstrap based procedure that allows the construction

of asymptotically valid p-values for a large number of test statistics for the null of

linearity versus two regimes. To our knowledge, Hansen's (1996) asymptotic p-value

based approach is the only technique that allows the treatment of general threshold

type models such as SETAR's of any order and its implementation is not restricted

to models with simple dynamics. Although its validity is established for the treat-

ment of the at most two regimes case it is not clear whether Hansen's (1996) can be
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legitimately extended to a framework that allows the sequential determination of the

number of regimes when the latter could be greater than two (see Hansen (1999)).

Given the numerous unresolved di�culties arising in this context our objective here

is to propose an alternative to sequential testing.

We propose to view the problem of specifying the number of regimes from a model

selection perspective in which our main task is to select the optimal model among a

portfolio of nested speci�cations and where the selection is made via the optimization

of a penalized objective function. The objective function is such that one of its

component is a monotonic function of the model dimension (e.g. the residual variance)

and its other component penalizes the increase or decrease of the �rst component

caused by the increase in the model dimension. Within our threshold framework

the purpose of the penalty term is to penalize over-segmentation as m is allowed to

increase. Formally, letting ST (
1; . . . ; 
m) denote the concentrated sum of squared

errors de�ned in (2), then in the spirit of the traditional model selection literature we

introduce the following criterion

ICT(
1; . . . ; 
m) = log ST (
1; . . . ; 
m) +
�T
T
[K(m+ 1)](22)

where �T is a deterministic function of the sample size (or a constant independent of

T ) that is in turn multiplied by the number of free parameters. Clearly an increase in

m will lead to a reduction in ST (
1; . . . ; 
m), a reduction that will be penalized due

to the resulting increase in the number of estimated parameters. It is also important

to observe that the minimization of the above objective function for given m will lead

to the same estimates of the threshold parameters as in (3) since the penalty term

does not depend on the magnitude of the threshold parameters. In a related study,

Liu, Wu and Zidek (1997) also considered a criterion similar to (22) for the estima-

tion of the number of threshold parameters. They used simulation based evidence to

introduce a penalty term playing the role of �T in (22). Their analysis however is

based on a direct joint estimation of the concentrated sum of squared errors function

ST (
1; . . . ; 
m) and di�ers from ours in its implementation and probabilitic frame-

work.

Noting that under the linear speci�cation the objective function, say ICT (0) =

logST + �T
T
K, does not depend on the threshold parameters we can introduce a
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modi�ed criterion de�ned as

QT (m) = ICT(0)� min

1;...;
m

ICT(
1; . . . ; 
m)

or more speci�cally as

QT (m) = max

1;...;
m

log

"
�̂2

�̂2(
1; . . . ; 
m)

#
� �T

T
K m:(23)

The model selection based estimator of the number of unknown threshold parameters

can then be formally de�ned as

m̂ = arg max
0�m�M

QT (m)(24)

for some upperbound M . Note that the threshold parameter estimates are implicitely

obtained as a by-product of the above regime determination procedure. It is also

useful to observe that T times the �rst component in the right hand side of (23) is

the likelihood ratio statistic for testing linearity against m + 1 regimes. Thus if we

let FT (
) denote any of the conventional LR, Score or Wald type test statistics we

can also consider alternative versions of the objective function in (23) by introducing

�QT (m) = max

1;...;
m

FT (
1; . . . ; 
m)� �TKm;(25)

as a more general version of QT (m) in (23). This also suggests that the approach

can accomodate the presence of heteroscedasticity via the use of heteroscedasticity

robust versions of FT (:) in (25). We next concentrate on the theoretical and empirical

properties of the model selection based estimates obtained as a solution to (24).

3.1 m=0 versus m=1 case

When our objective is to select between a linear and a two-regime speci�cation we

have m̂ = argmax0�m�1QT (m). Recalling that QT (0) = 0 by construction the

model selection procedure involves accepting the linear speci�cation (m=0) if QT (1) <

QT (0) or equivalently if

ICT (0) � min

12�1

ICT (
1)(26)

and decide for the threshold model when

ICT(0) > ICT(
1)(27)
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for some 
1 2 �1. Using the expressions of ICT (0) and ICT(
1) given above it is

useful to note that the selection rule in (26) can be reformulated as

max

12�1

T log

"
�̂2

�̂2(
1)

#
� �T K(28)

or equivalently as

max

12�1

T (�̂2 � �̂2(
1))

�̂2(
1)
� �TK(29)

since T [exp
�
�TK
T

�
� 1] ' �TK. At this stage it is again interesting to note that the

quantities appearing on the left hand side of (28) and (29) are conventional likeli-

hood ratio and Wald type test statistics for the hypothesis of linearity versus a two

regime threshold model. Their limiting distributions typically depend on unknown

and model speci�c moments and cannot be tabulated. An important advantage of

the model selection approach is that it does not rely on the critical values of the test

statistics for deciding between the linear and threshold speci�cations. Instead the

decision rule is based on the deterministic penalty term, solely function of the sample

size multiplied by the number of free parameters. Equivalently when seen from a

conventional testing perspective the above decision rule can be interpreted as using

a test statistic in which the signi�cance level is allowed to converge to zero as the

sample size increases. Such a strategy has often been advocated when one performs a

sequence of nested tests so as to avoid a build up of Type I errors or more generally to

make the testing strategy lead to consistent estimates. We next show that the above

model selection procedure leads to an estimator of m0 that is weakly consistent. The

result is summarized in the following proposition

Proposition 3.1 Letting m0 denote the true number of threshold parameters with

m0 2 f0; 1g, m̂ de�ned as in (24) with �T such that (i) �T ! 1 and (ii) �T
T
! 0

then under A1-A2(i)-(iii) we have P (m̂ = m0)! 1 as T !1.

The above proposition establishes that with probability tending to one and assuming

that m0 2 f0; 1g, the model selection procedure leads to an estimated number of

threshold parameters that coincides with the true number provided that the penalty

term satis�es conditions (i) and (ii). A possible candidate for the choice of the penalty

term is �T = log T corresponding to a Schwarz type criterion but clearly the set of

possible choices is extremely wide making it di�cult to argue for an optimal penalty
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choice. To our knowledge theoretical guidelines about speci�c choices of �T remain an

open question in most frameworks that advocate the use of model selection criteria.

Under some special classes of SETAR models however it is possible to gain further

insight on the large and small sample behaviour of the model selection approach using

the fact that the limiting distribution of the maximum LR or Wald type test statistics

can be expressed in terms of the supremum of normalized squared Brownian Bridges.

The availability of limiting results that may lead to proper tabulations of critical

values is determined by the choice of the delay parameter in relation to the choice of

the autoregressive lag length in each regime as well as the presence or absence of a

constant term in the �tted models (see Tong (1990, pp. 239-246)). Here we consider

the following two-regime model

yt = �1 I(yt�1 � 
1) + �2 I(yt�1 > 
1) + �t:(30)

Following Chan (1990) the limiting distribution of the maximum likelihood ratio type

statistics for testing H0 : �1 = �2 = � versus H1 : �1 6= �2 is given by

max

12�

FT (
1) ! max
�2�

[B(�)� �B(1)]2

�(1� �)
(31)

where B(:) is a standard Brownian Motion and � = P (yt � 
1) with � = [�1; �2]

where �1 = P (yt � 
) and �2 = P (yt � �
). The above result can allow us to evaluate

analytically the behaviour of the model selection approach outlined above. Assuming

that the true model is characterized by m0 = 0 (i.e. it is linear) and letting P
1j0
1

denote the limiting probability of falsely pointing to m = 1 we have

P 1j0
1 = P

"
max
�2�

[B(�)� �B(1)]2

�(1� �)
> �1

#
(32)

where �1 = limT!1 T (e
�T
T � 1) � limT!1 �T . The above expression can also be

reformulated as the absorption probability of an Ornstein-Uhlenbeck process, as

P [ max
0�t��

jU(t)j > p
�1];(33)

where � = 1
2 log[�2(1 � �1)=�1(1 � �2)] and U(t) is a zero mean Ornstein-Uhlenbeck

process with covariance kernel E[U(t)U(s)] = ejt�sj. Next using a result due to Dirkse

(1975)2, (33) can be approximated as

P [ max
0�t��

jU(t)j > p
�1] �

r
2

�
e
�
�1
2
p
�1

�
�� �

�1
+

2

�1

�
:(34)

2See also Miller and Siegmund (1982) for a minor correction brought to Dirkse's (1974) original

formulation.
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From the above expression we can infer that the probability of over-segmentation

under �T = log T for instance (within this linear versus single threshold framework)

will be converging to zero at the rate Op

�q
logT
T

�
. Note that this is in contrast

with the standard multiple regression framework under which the BIC's probabil-

ity of \over�tting" vanishes faster, at the rate 1=
p
T . This suggests that in our

threshold class of models, BIC based inferences will not necessarily lead to over-

ly parsimonious choices (i.e. undersegmentation) in �nite samples. It is also clear

from (34) that if we were to choose an Akaike type penalty (i.e. �T = 2) we would

be facing an extremely high probability of over�tting. Under �1 = 2 for instance

(corresponding to the Akaike penalty), � = 0 and 10% trimming in both sides of

� (implying 
 = �1:28 and �
 = 1:28 under normality) the approximation in (34)

leads to a spurious probability of pointing to the threshold model of approximately

87%. Although the above arguments were based on a simple model similar result-

s also hold for a wider class of SETAR type speci�cations for which the limiting

null distribution of the maximum LR statistic is again given by (31) albeit with a

di�erent structure of the set �. Indeed it is interesting to also consider the case

where each regime is speci�ed as an AR(1) process with no constant. Speci�cally

we consider yt = �1yt�1I(yt�1 � 
1) + �2yt�1I(yt�1 > 
1) + �t with the null given

by H0 : �1 = �2 = �. Under this scenario the limiting distribution of the LR type

statistics is again given by (31) but with � de�ned as �(
1) = E(y2t I(yt � 
1))=E(y
2
t ).

Since yt is unconditionally normal, standard calculations lead to �1 = 0:3249 and

�2 = 0:6751 under 10% trimming. Thus under �1 = 2 the above approximation lead-

s to a spurious probability of selecting the threshold speci�cation of approximately

56.7%.

REMARK (Spurious Thresholds) Since under an AR(1) process we have E(y2t ) =

�2� =(1� �2) it becomes immediately clear that for � = 1 (i.e. when the true DGP is

given by a random walk) the conventional tests as well as the model selection based

inferences will point to the threshold alternative with probability one since the set �

in (31) will be shrinking to zero.

Our next objective is to evaluate the �nite sample performance of the alternative

criteria across a wider range of DGPs. We initially concentrate on linear models

(i.e. m0 = 0) and evaluate the performance (correct decision frequencies) of the

various criteria when used for distinguishing between linearity and single threshold
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type nonlinearity. For the choice of our speci�cations we follow our above discussion

and consider an AR(1) process yt = �yt�1 + �t. The corresponding �tted threshold

model is then given by yt = �
(1)
1 yt�1I(yt�1 � 
1) + �

(2)
1 yt�1I(yt�1 > 
1) + �t. Table

3a presents the correct decision frequencies (i.e. choosing m = 0 over m = 1) across

three sample size (T = 200; 400 and T = 600) and where BIC, AIC, HQ, BIC2 and

BIC3 refer to the model selection criteria with penalty terms �T = logT , �T = 2,

�T = 2 log logT , �T = 2 logT and �T = 3 logT respectively. The main motivation

for the inclusion of the less familiar penalty terms labeled as BIC2 and BIC3 is to

provide a su�ciently general description of the sensitivity of the model selection based

decision frequencies to the magnitude of �T .

Table 3a about here

The results based on the AIC criterion con�rm our previous theoretical analysis, with

the criterion shown to point spuriously to the threshold model more than 50% of the

times. This empirical frequency further deteriorates as the autoregressive parame-

ter � approaches the unit root region. Similarly the HQ criterion, despite its ability

to point to the true model asymptotically, is also performing poorly in moderately

large samples by wrongly selecting the threshold model close to 30% of the times.

As expected from proposition 3.2 the criterion improves its ability to point to the

true model as the sample size grows but this latter improvement occurs very slowly

re
ecting the weakness of the HQ penalty. Among all model selection criteria the

best performance is displayed by the BIC and its variants, denoted BIC2 and BIC3.

Under j�j < 1 for instance and for reasonably large sample sizes the BIC is able to

point to the linear model more than 93% of the times with a deterioration occuring

only under the random walk model. Also, contrary to the linear regression frame-

work the BIC does not appear to lead to spurious parsimonious choices. Both the

BIC2 and BIC3 are pointing to the correct model with a probability close to 1. At

this stage however the BIC2 and BIC3 based frequencies must be interpreted with

caution since a close to 100% correct decision frequency might be due to a spurious

choice of the most parsimonious structure due to the strength of the penalty terms

characterizing BIC2 and BIC3.

We next consider a threhold DGP (i.e. m0 = 1) of the form yt = �yt�1I(yt�1 �
0)��yt�1I(yt�1 > 0)+�t with � = f�0:40;�0:25;�0:15;�0:10;�0:05g. Note that as
the magnitude of j�j decreases, the existence of a two regime process will become more
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and more di�cult to detect. The empirical correct decision frequencies corresponding

to this experiment are presented in Table 3b.

Table 3b about here

Taking into consideration the previously analyzed behaviour of the criteria under

m0 = 0, Table 3b suggests that the BIC and to a lesser extent the BIC2 display the

best overall performance, with an excellent ability to point to the true model even for

moderately small sample sizes. As expected, the ability of all criteria to point to the

correct threshold model decreases with j�j but even under j�j = 0:15 and T=600 the

BIC is still able to select the true speci�cation more than 93% of the times, compared

with 60% for the BIC2.

3.2 General Case

Here we consider the case where there may be more than one threshold parameters

(i.e. more than two regimes) in the set of possible models. Taking advantage of

our general result on the consistency of the threshold parameter estimators in un-

derspeci�ed models we propose a sequential model selection based strategy for the

estimation of the unknown number of threshold parameters, regardless of their num-

ber. Speci�cally the idea involves �rst proceeding as in the above section, deciding

between a linear model (m=0) and a two regime threshold speci�cation (m=1). If

QT (0) > QT (1) the procedure stops and we decide that the data support the linear

model. If QT (0) < QT (1) we obtain the estimate of the �rst threshold parameter, say

r̂(1) and conditional on this �rst stage threshold parameter estimator we proceed with

a second stagem = 0 versusm = 1 decision process conducted on both subsamples in

order to detect the eventual presence of a second threshold. The procedure continues

until the model selection procedure leads to the choice m = 0 on all subsamples. More

formally, letting Q
(i;j)
T (1) denote the magnitude of (23) or (25) obtained in step i and

subsample j, the stopping rule involves concluding for the presence of m+ 1 regimes

(or m threshold parameters) when Q
(m+1;j)
T (1) < 0 for all j = 1; . . . ; m+ 1. The fol-

lowing proposition summarizes the asymptotic properties of the sequential threshold

parameter estimator.

Proposition 3.2 Letting m̂seq denote the number of threshold parameters estimated

via the sequential procedure with (i) �T !1 and (ii) �T
T
! 0 then under A1-A3 we
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have P (m̂seq = m0)! 1 as T !1.

At this stage it is important to reiterate that the sequential model selection based

approach described above is very much similar to conducting a sequence of F tests

for the determination of the number of threshold parameters but with the decision

rule based on the penalty term rather than the critical values of the relevant limiting

distributions. In the present multiple threshold framework however these distribu-

tions depend on all the parameters of the DGP and cannot be tabulated for practical

purposes. In order to evaluate the �nite sample behaviour of the sequential model

selection based approach we conducted two sets of experiments using models with

m0 = 1 (two regimes) and m0 = 2 (three regimes) respectively. We concentrate

solely on the properties of the BIC and its two variants since our previous analysis

demonstrated the unreliability of alternative criteria such as the AIC or HQ. Results

corresponding to the two-regime speci�cation are presented in Table 4a. Note �rst

that the convergence of m̂ to its true value m0 = 1 is clearly visible across the increas-

ing sample sizes, with the BIC detecting the true number of threshold parameters

more than 90% of the times under T=600 and close to 95% of the times under T=800.

Tables 4a and 4b about here

It is also important to note that the procedure does not display any tendency to under-

segment in the sense that the wrong decisions are mostly clustered at m̂ = m0+1. An

overall similar picture also arises from the results corresponding to a true model with

three regimes (see Table 4b). The BIC and its variants do not display any tendency

to under-segment and the wrong decisions are again clustered at m0+ 1. Overall the

BIC displays desirable large sample properties and a reasonably good �nite sample

behaviour. Obviously for the latter one should interpret any experimental result with

caution since �nite sample simulation based performance can be highly DGP speci�c.

Under our DGP in Table 4a for instance, our choice of true parameter values is such

that each regime has an approximately equal number of observations (50%). If we

were to modify the magnitude of the slope and/or threshold parameters in such a

way that one regime strongly dominates then it is natural to expect a deterioration

in performance of the model selection criteria in small samples.
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4 Conclusion

In this paper our objective was to provide a model selection based framework for

estimating and conducting inferences in the context of multiple threshold models.

We formally proved that estimating the threshold parameters one at a time leads to

consistent estimates and subsequently investigated the asymptotic and �nite sample

properties of a model selection based approach for the determination of the number

of regimes.
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APPENDIX

As a matter of notation we refer to the fact that a symmetric matrix A is positive

(semi) de�nite by writing A � (�)0. More speci�cally matrix A is said to be larger

than another symmetric matrix B if A �B � 0. Equivalently, A � B , A �B �
0, x0Ax � x0Bx together with A � B, A�B � 0, x0Ax > x0Bx.

PROOF OF PROPOSITION 2.1: We reparameterize the true speci�cation as y =

W� + X�m+1 + �, with W = [X
01
;X
02

; . . . ;X
0m
], � = (�1;�2; . . . ;�m)

0, X
0i
=

X � I(z � 
0i ) and �i = �i � �i+1, 8i = 1; . . . ; m. The �tted model is given by (1)

and we further de�ne M = I �Pm+1
i=1 Pi with Pi = Xi(X

0
iXi)

�1Xi. With the above

notation and using straightforward algebra, the concentrated sum of squared errors

function can be reformulated as ST (
1; . . . ; 
m) = �0W0MW�+ �0M�+ 2�0W0M�.

Using assumptions A2(i)-(ii) we have �0M�
T

= �0�
T

+ op(1) and
�0W0M�

T
= op(1)

uniformly over 
i 2 �m, leading to

ST (
1; . . . ; 
m)

T
� �0�

T
=

�0W0MW�

T
+ op(1):(A.1)

Letting RT (
1; . . . ; 
m) = ST (
1; . . . ; 
m)� ST (
01; . . . ; 

0
m) and using

ST (

0
1; . . . ; 


0
m)

T
=

�0�

T
+ op(1);(A.2)

we can write

RT (
1; . . . ; 
m)

T
=

�0W0MW�

T
+ op(1):(A.3)

Since �0W0MW� can be rewritten as (W�)0M(W�) with M idempotent, we have

�0W0MW� � 0, 8 
i for i = 1; . . . ; m. Our next objective is to establish that the non-

stochastic and continuous uniform probability limit of (A.3) say �0R1(
1; . . . ; 
m)�,

reaches its unique minimum value of zero if and only if (
1; . . . ; 
m) = (
01; . . . ; 

0
m).

Letting Rii
1(
1; . . . ; 
m) denote the diagonal components of R1(
1; . . . ; 
m) and using

assumptions A2(i)-(ii) we obtain

R
ii
1(
1; . . . ; 
m) = G(
0i )�

m+1X
j=1

[G(
0i ^ 
j)�G(
0i ^ 
j�1)][G(
j)�G(
j�1)]

[G(
0i ^ 
j)�G(
0i ^ 
j�1)](A.4)

for i = 1; . . . ; m and

R
ij
1(
1; . . . ; 
m) = G(
0i )�

m+1X
j=1

[G(
0i ^ 
j)�G(
0i ^ 
j�1)][G(
j)�G(
j�1)]

[G(
0i ^ 
j)�G(
0i ^ 
j�1)](A.5)
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for j 6= i, j = 1; . . . ; m and where G(
0i ; 
0) � 0, G(
0i ; 
m+1) � G(
0i ) and

G(
m+1) � G. As a direct consequence of (A.4) and (A.5) we have Rii
1(
1; . . . ; 
m) �

Rij
1(
1; . . . ; 
m) 8j 6= i and

Rii
1(
1; 
2; . . . ; 
i�1; 


0
i ; 
i+1; . . . ; 
m) = 0

Rii
1(


0
1; 


0
2; . . . ; 


0
i�1; 
i; 


0
i+1; . . . ; 


0
m) � 0(A.6)

implying that R1(
1; . . . ; 
m) = 0 if and only if 
i = 
0i 8i = 1; . . . ; m. Since

(
̂1; . . . ; 
̂m) = argmin[RT(
1; . . . ; 
m)=T ] and (A.3) converges uniformly in proba-

bility to the nonstochastic continuous functional �R1(
1; . . . ; 
m)� that is uniquely

minimized at (
01; . . . ; 

0
m) it follows from Theorem 2.2 of Newey and McFadden (1998)

that (
̂1; . . . ; 
̂m)
p! (
01; . . . ; 


0
m).

PROOF OF LEMMA 2.1: We use the same parameterization as in the proof of

Proposition 2.1. Using assumptions A2(i)-(ii) and the fact that Z02X = Z02Z2 and

Z01X = Z01Z1 we can express �̂2 � �̂1 in (8) as

�̂2 � �̂1 =

"
Z02Z2

T

#�1 "
Z02W

T

#
��

"
Z01Z1

T

#�1 "
Z01W

T

#
�+ op(1):(A.7)

and the result in (9) follows by noting from assumption A2(i) that

sup
r

�����
Z01X
0

i

T
�G(
0i ^ r)

����� p! 0;(A.8)

and

sup
r

�����
Z02X
0

i

T
� (G(
0i )�G(
0i ^ r))

����� p! 0:(A.9)

LEMMA A.1: For r 2 (
01 ; 

0
2) and letting

K1 = G(
01)G(r)�1(G(r)�G(
01))

K2 = G(
02)G(r)�1(G(r)�G(
01)(G�G(
01))
�1(G�G(
02))

M1 = G(
01)G(
02)
�1(G(
02)�G(
01 ))

M2 = (G(
02)�G(
01 ))(G�G(
01))
�1(G�G(
02 ));

we have

(i) M1 � K1 and M2 � K2
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(ii) 8x 6= 0, 0 < x0K1x
x0M1x

< 1

(iii) 8x 6= 0, z 6= 0 and x 6= z,
h
x0M1x
x0K1x

i h
z0K2z
z0M2z

i
� 1

PROOF OF LEMMA A.1: (i) From assumption A2(i), G(r) is a continuous strictly

increasing function of r. Since r 2 (
01; 

0
2) it follows that G(
02) � G(r) directly

implying that M1 � K1. The result M2 � K2 follows using the same argument.

(ii) Since K1 � M1 we have K1M
�1
1 � I and therefore �max(M�1

1 K1) < 1 which

together with �min(M�1
1 K1) > 0 implies the desired result. (iii) First note that

K2M
�1
2 = (G(
02) �G(
01))M

�1
1 K1(G(
02) � G(
01))

�1, implying that K2M
�1
2 and

M�1
1 K1 have the same characteristic roots. Next we have

z0K2z

z0M2z
� �max(M�1

2 K2)

and

x0M1x

x0K1x
� �max(K�1

1 M1) = �max((M�1
1 K1)

�1) = [�max(M�1
1 K1)]

�1

which implies the desired result.

PROOF OF LEMMA 2.2: With no loss of generality we provide the proof assuming

m = 2 and setting s = 1 in the context of the requirements of assumption A3.

The proof is in three parts. Since J1(r) takes di�erent expressions over the three

regions given by [
; 
01), (

0
1; 


0
2) and (
02 ; �
], the result will follow by showing that

the maximum of J1(r) cannot occur in any of the three regions in the sense that

J1(
01) > J1(r), J1(

0
2) > J1(r), and the requirement that J1(


0
1) > J1(


0
2). We

start by treating the case r 2 (
01; 

0
2). Using the expression of J1(r) in (9) and

setting m = 2 we have

J1(

0
1)� J1(r) = �01G(
01)G(r)�1(G(r)�G(
01))�1

� �02(G�G(
02))(G�G(r))�1(G(r)�G(
01))

(G�G(
01))
�1(G�G(
02))�2

> �01K1�1 � �02K2�2

=
�01K1�1
�1M1�1

�
�01M1�1 �

�01M1�1
�1K1�1

�02K2�2
�2M2�2

�2M2�2

�

>
�01K1�1
�1M1�1

h
J1(
01)� J1(
02)

i
> 0:(A.10)

The �rst inequality follows by observing that G(
02)G(r)�1 � (G � G(
02))(G �
G(r))�1 since r < 
02 and the last inequality follows from Lemma A.1 (iii) and the
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fact that J1(
01)� J1(
02) = �1M1�1 � �2M1�2 obtained in (11) and thus implying

that the maximum of J1(r) cannot occur in (
01 ; 

0
2). We next concentrate on the

case r < 
01 . Using (9) and standard algebra we can write

J1(
01)� J1(r) = w0(G�G(
01))
�1(G(
01)�G(r))(G�G(r))�1w(A.11)

with w = [(G � G(
01))�1 + (G � G(
02))�2]. Next note that w = 0 implies

J1(
01) < J1(
02) which is ruled out by assumption, thus w 6= 0 and therefore

the above quadratic form is strictly positive, implying that the maximum of J1(r)

cannot occur for r < 
01. The treatment of the case r > 
02 is identical.

PROOF OF PROPOSITION 2.2: The result follows from Lemmas 2.1, 2.2 and using

Theorem 2.2 of Newey and McFadden (1998).

PROOF OF PROPOSITION 2.3: We proceed using the same simpli�cations as in

the proof of Lemma 2.2, setting m = 2 and s = 1 with the true model given by

y = X0
1�1+X

0
2�2+X

0
3�3+ �. To establish the T-consistency of r̂ it su�ces to show

that ST (r) � ST (

0
1) > 0 for T jr � 
01 j su�ciently large (see Chan (1993)). From

Proposition 2.2 we operate in a ��neighborhood of 
01 and treat the case r < 
01 .

Formally we establish that for every � > 0, there exists an 0 < M <1 such that for

all T large we have

P

"
min

M
T
<(
01�r)

ST (r)� ST (

0
1) � 0

#
< �:(A.12)

We initially write ST (r)� ST (
01) = (ST (r)�ST (r; 
01))� (ST (
01)�ST (r; 
01)) where

ST (r; 
01) denotes the concentrated sum of squared errors function from the following

auxiliary speci�cation

y = Z1�1 +Xr
01
�2 + �X
01

�3 + u(A.13)

with Xr
01
= X � I(r < z � 
01) and �X
01

= X � I(z > 
01). We can therefore write

ST (r)� ST (
01)

T (
01 � r)
= (�̂3 � �̂2)

0

2
4X0

r
01
Xr
01

(Z02Z2)�1 �X
0

01
�X
01

T (
01 � r)

3
5 (�̂3 � �̂2)�

(�̂2 � �̂1)

2
4Z01Z1(X

0
1
0X0

1)
�1X0

r
01
Xr
01

T (
01 � r)

3
5 (�̂2 � �̂1);

and using X0
r
01
Xr
01

(Z02Z2)�1 �X
0

01
�X
01

= Xr
01
(I� PZ2)Xr
01

together with

k(Z01Z1)(X
0
1
0X0

1)
�1k < 1
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since r < 
01 , we have

ST (r)� ST (

0
1)

T (
01 � r)
� (�̂3 � �̂2)

0

"
X0

r
0
1

Xr
0
1

T (
01 � r)

#
(�̂3 � �̂2)� (�̂3 � �̂2)

0

"
X0

r
0
1

PZ2Xr
0
1

T (
01 � r)

#
(�̂3 � �̂2)�

(�̂2 � �̂1)

"
X0

r
0
1

Xr
0
1

T (
01 � r)

#
(�̂2 � �̂1):(A.14)

Next it is straightforward to show that

�̂2 � �̂1
p! 0(A.15)

and

�̂3 � �̂2
p! (�2 � �1) + (G�G(
01))

�1(G�G(
02))(�3 � �2):(A.16)

Thus from (A.15) and since under our assumptions







X0

r
0
1
X

r
0
1

T (
01�r)






 = Op(1) the third

term in the right hand side of (A.14) can be made arbitrarily small. Similarly since

we are operating with r in a small neighborhood of 
01 it follows that the second term

on the right hand side of (A.14) can also be made arbitrarily small. This follows from






X0

r
01
PZ2Xr
01

T (
01 � r)







 �







X0

r
01
Z2

T (
01 � r)

 
Z02Z2

T

!�1












Z02Xr
01

T (
01 � r)






 (
01 � r).

Finally we have

(�̂3 � �̂2)
0

2
4X0

r
01
Xr
01

T (
01 � r)

3
5 (�̂3 � �̂2) � �min

"
Xr
01

Xr
01

T (
01 � r)

#
k�3 � �2k2:(A.17)

Since by assumption the minimum eigenvalue of the moment matrix taken in the

neighborhood of 
01 is strictly positive and given the result in (A.16) it follows that

ST (r)� ST (

0
1) > 0 on the relevant set, thus establishing the required result.

PROOF OF PROPOSITION 3.1: We �rst consider the case m0 = 0 and prove that

P (m̂ = 1)! 0 as T ! 1, which by (26) is equivalent to P [ICT (0) > ICT(
1)]! 0

for some 
1 2 �1, thus implying that the procedure does not oversegment asymptot-

ically. Using (23) we write

P [ICT (0) > ICT(
1)] � P [ICT(0) > min

12�1

ICT (
1)]

= P

"
max

12�1

T log

 
�̂2

�̂2(
1)

!
> �TK

#
:(A.18)
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Assuming with no loss of generality that j�̂2 � �̂2(
1)j=�̂2 is small and using log(1 +

x) ' x together with �̂2(
1)
p! �2� and �̂2

p! �2� implied by the LLN, we can refor-

mulate (A.12) as

P [ICT(0) > ICT (
1)] � P [max

12�1

FT (
1) > �TK](A.19)

with FT (
1) = T (�̂2� �̂2(
1))=�̂
2. Next, under m0



Proof of Proposition 3.2 We �rst show that the event fm̂ > m0g cannot occur

as T ! 1. Let Q
(i;j)
T (1) denote the value of (23) evaluated in step i for subsample

j. For the sequential model selection procedure to stop at m0 (assuming all previous

decisions to be correct since m̂ > m0) it is required that Q
(m0+1;j)
T (1) < 0 8j =

1; 2; . . . ; m0 + 1. Thus the occurence of the event fm̂ > m0g implies the existence of
at least one j 2 f1; 2; . . . ; m0+1g for which Q(m0+1;j)

T (1) > 0. We can therefore write

P [m̂ > m0] �
m0+1X
j=1

P [Q
(m0+1;j)
T (1) > 0]

and

P [m̂ > m0] �
m0+1X
j=1

P [ max
r(m0+1)2(r̂(j�1);r̂(j))

F
(j)
T (r(m0+1)) > �TK]! 0

provided that �T ! 1 and where it is understood that r̂(0) � 
 and r̂(m0+1) � �
.

The case fm̂ < m0g follows in exactly the same manner as in Proposition 3.1 since

in any subsample that has at least one threshold we have �̂2 � �̂2(r̂)
p! C > 0.
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Table 1: Empirical Mean and Standard Deviation of Estimators

DGP: yt = �1I(yt�1 � 
01) + �2I(yt�1 > 
01) + �t

�1 = 1, �2 = 2, T = 250 and N = 5000


01 
̂1 �̂1 �̂2

0.0 1.612 1.744 2.020

(0.920) (0.305) (0.196)

0.5 0.788 1.180 2.018

(0.526) (0.347) (0.107)

1.0 0.996 0.993 2.006

(0.133) (0.156) (0.086)

1.5 1.491 0.995 2.004

(0.096) (0.105) (0.105)

2.0 1.985 0.994 2.007

(0.124) (0.084) (0.158)

2.5 2.154 0.984 1.805

(0.564) (0.112) (0.364)

3.0 1.317 0.988 1.216

(0.897) (0.198) (0.302)
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Table 2a: Empirical Mean and Standard Deviation of Estimators

DGP: yt = �1I(yt�1 � 
01) + �2I(

0
1 < yt�1 � 
02) + �3I(yt�1 > 
02) + �t

�1 = 1, �2 = 2, �3 = 3, T = 200, N = 2000.

Sequential Estimation

(
01 ; 

0
2 ) 
̂1 
̂2 �̂1 �̂2 �̂3

(1,2) 1.244 2.230 1.183 2.211 3.002

(0.364) (0.539) (0.379) (0.445) (0.136)

(1.5,2.5) 1.480 2.495 0.995 2.003 3.005

(0.127) (0.132) (0.125) (0.163) (0.128)

(1,3) 0.996 2.973 0.998 2.001 3.002

(0.138) (0.146) (0.174) (0.104) (0.175)

(2,3) 1.682 2.655 1.003 1.718 2.763

(0.581) (0.381) (0.144) (0.479) (0.396)

Joint Estimation

(1,2) 1.247 2.213 1.186 2.106 3.003

(0.360) (0.512) (0.372) (0.434) (0.143)

(1.5,2.5) 1.479 2.493 0.992 1.997 3.011

(0.126) (0.124) (0.126) (0.152) (0.123)

(1,3) 0.993 2.972 0.986 1.997 3.006

(0.144) (0.169) (0.175) (0.116) (0.181)

(2,3) 1.686 2.711 1.013 1.715 2.699

(0.579) (0.391) (0.132) (0.472) (0.400)
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Table 2b: Empirical Mean and Standard Deviation of Estimators

DGP: yt = �1yt�1I(yt�1 � 
01) + �2yt�1I(

0
1 < yt�1 � 
02) + �3yt�1I(yt�1 > 
02) + �t

�1 = 0:2, �2 = 0:8, �3 = �0:5, N = 2000.

Sequential Estimation

(
01 = �0:5; 

0
2 = 0:5) 
̂1 
̂2 �̂1 �̂2 �̂3

T=200 -0.582 0.483 0.179 1.028 -0.512

(0.519) (0.344) (0.096) (1.209) (0.125)

T=400 -0.536 0.507 0.187 0.974 -0.509

(0.418) (0.207) (0.066) (0.683) (0.086)

Joint Estimation

T=200 -0.511 0.415 0.180 1.250 -0.508

(0.452) (0.340) (0.090) (2.037) (0.126)

T=400 -0.502 0.492 0.188 0.985 -0.501

(0.409) (0.205) (0.071) (0.675) (0.082)
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Table 3a: Correct Decision Frequencies: Linear Model

DGP: yt = �yt�1 + �t

T=200

� BIC AIC HQ BIC2 BIC3

0.5 88.4 44.9 70.9 99.3 99.8

0.7 87.8 45.1 69.7 98.8 99.8

0.9 85.6 41.2 66.3 98.7 99.9

1.0 50.0 9.7 24.9 89.8 98.7

T=400

0.5 92.4 44.9 72.5 99.2 100.0

0.7 91.1 44.7 71.9 99.5 100.0

0.9 90.9 42.0 70.7 99.4 100.0

1.0 56.9 9.7 27.4 93.2 99.7

T=600

0.5 93.5 45.7 74.1 99.7 100.0

0.7 92.1 45.8 74.4 99.7 100.0

0.9 91.9 42.6 73.5 99.6 100.0

1.0 60.1 9.8 29.2 94.2 99.7
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Table 3b: Correct Decision Frequencies: Threshold Model

DGP: yt = �yt�1I(yt�1 � 0)� �yt�1I(yt�1 > 0) + �t

T=200

� BIC AIC HQ BIC2 BIC3

-0.40 100.0 100.0 100.0 99.3 95.1

-0.25 94.2 99.7 98.9 72.4 43.4

-0.15 63.3 91.3 80.4 25.2 7.4

-0.10 38.7 78.2 58.9 9.9 1.8

-0.05 19.0 61.5 38.2 2.7 0.2

T=400

-0.40 100.0 100.0 100.0 100.0 100.0

-0.25 99.9 100.0 100.0 97.0 84.2

-0.15 84.5 98.0 94.6 46.6 18.2

-0.10 53.2 88.6 75.2 16.5 3.5

-0.05 21.6 66.6 42.4 2.5 0.2

T=600

-0.40 100.0 100.0 100.0 100.0 100.0

-0.25 100.0 100.0 100.0 99.6 97.1

-0.15 93.5 99.6 98.8 60.5 36.3

-0.10 66.5 95.2 86.3 25.4 6.0

-0.05 22.7 72.1 46.9 2.8 0.2
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Table 4a: Correct Decision Frequencies: Threshold Model (m0 = 1)

Sequential Model Selection

yt =

(
�3 + 0:5yt�1 � 0:9yt�2 + �t yt�2 � 1:5

2 + 0:3yt�1 + 0:2yt�2 + �t yt�2 > 1:5

T=400

m̂ = 0 m̂ = 1 m̂ = 2 m̂ � 3

BIC 0.8 80.5 18.7 0.0

BIC2 1.3 91.1 7.6 0.0

BIC3 1.3 91.5 7.1 0.0

T=600

m̂ = 0 m̂ = 1 m̂ = 2 m̂ � 3

BIC 0.1 90.0 10.0 0.0

BIC2 0.2 96.3 3.5 0.0

BIC3 0.4 96.4 3.3 0.0

T=800

m̂ = 0 m̂ = 1 m̂ = 2 m̂ � 3

BIC 0.1 94.4 5.4 0.0

BIC2 0.1 98.4 1.5 0.0

BIC3 0.2 98.5 1.3 0.0

36



Table 4b: Correct Decision Frequencies: Threshold Model (m0 = 2)

Sequential Model Selection

yt =

8><
>:

2:7 + 0:8yt�1 � 0:2yt�2 + �t yt�2 � 5

6 + 1:9yt�1 � 1:2yt�2 + �t 5 < yt�2 � 12

1 + 0:7yt�1 � 0:3yt�2 + �t yt�2 > 12

T=400

m̂ � 1 m̂ = 2 m̂ = 3 m̂ � 4

BIC 0.0 79.7 20.3 0.0

BIC2 0.0 98.1 1.9 0.0

BIC3 0.0 99.1 0.9 0.0

T=600

m̂ � 1 m̂ = 2 m̂ = 3 m̂ � 4

BIC 0.0 85.4 14.6 0.0

BIC2 0.0 99.0 1.0 0.0

BIC3 0.0 99.3 0.7 0.0

T=800

m̂ � 1 m̂ = 2 m̂ = 3 m̂ � 4

BIC 0.0 88.1 11.9 0.0

BIC2 0.0 99.0 1.0 0.0

BIC3 0.0 99.8 0.2 0.0
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