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Abstract—Iterative learning of B-spline basis 
functions model for the output probability density 
function (PDF) control of non-Gaussian systems is 
studied in this paper using the recursive least 
square algorithm. Within each control interval, the 
basis functions are fixed and the control input 
design is performed that controls the shape of the 
output PDFs. However, between each control 
interval, periodic learning techniques are used to 
tune the shape of the basis functions.  This has been 
shown to be able to improve the accuracy of the 
B-spline approximation model. As such, the overall 
B-spline model of the output PDFs becomes a 
dual-model related to both time and space variables. 
The algorithm has been applied to a simulation 
study of the molecular weight distribution (MWD) 
control of a styrene polymerization process, leading 
to some interesting results. 

I. INTRODUCTION 

IN recent years, the control of the whole shape of the 
output probability density function (PDF) has been 
studied in response to the increased demand from many 
practical systems ([1-21]).  For this type of systems, the 
actual controlled output is the shape of the output 
probability density functions and the inputs are only 
related to time (such as flow rate and valve opening, 
etc).  In this regard, the following partial differential 
equation (PDE) can be generally used to represent the 
dynamical evolution of the output PDFs  
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( )γ ⋅ denotes the output PDF.  This PDE model is a 
general expression of many population balance 
equations such as the following widely used particulate 
system model [20] 
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where t is time;ζ  is the internal coordinate; ( ),W tζ is 
the number density of particles; ( , )k tζ  is the particle 
growth rate; and ( , )h tζ  is the net creation of particles.  
 
For the systems represented by either (1) or (2), the aim 
of the controller design is to ensure that the shape of the 
output probability density function can follow a target 
distribution.  This type of control is termed as the 
stochastic distribution control (SDC), which is a new 
research area.  In comparison with the traditional 
stochastic control theory where only output mean and 
variances are of concern, stochastic distribution control 
can offer a much better solution and are of course not 
restricted to Gaussian input cases.  Indeed, this is a 
challenging problem and such systems are seen in 
general material processing industries.  
 

 
Figure 1 MWD/PSD in polymerization 

 
Typical examples are particle size distribution (PSD) 
or molecular weight distribution (MWD) control in 
chemical engineering (see Fig. 1) and food processing 
shown in Fig 2, combustion flames distribution control 
displayed in Fig 3 and 2D paper web grammage 
distribution control in papermaking as shown in Fig. 4, 
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etc. With the fast development of sensing technology, 
the output probability density functions of these 
systems are now becoming measurable. This has 
provided an excellent opportunity for control engineers 
to develop for the first time direct feedback control for 
the output probability density functions, leading to a 
much improved system performance. 

In Fig. 1, the system is subjected to the inputs from the 
raw materials, chemicals and the required operating 
conditions such as temperature and pressure etc.  The 
idea is to use chemical input for the chemical and 
physical reactions so that the produced materials would 
have a desired PSD/MWD which is characterized by its 
probability density functions ([9-18]). 
 
As for the system represented in Fig. 2, the system is 
subjected to the original wheat particles, where the gap 
of the two rollers can be adjusted so as to make sure 
that the broken wheat particles have a desired 
probability density function ([2-5]). 
 
 

 
Figure 2. PSD in food processing 

In Fig. 3, the general structure of a combustion csystem 
is given.  The system is subjected to the fuel input 
together with some operating conditions, and produces 
a flames (or a temperature) distribution inside the 
combustion chamber.  With the development of image 
processing, several digital cameras can be used to 
measure the distribution of the flame, which can be 
further transferred into the temperature distribution 
([6-8]).  An efficient combustion would mean that the 
distribution of temperature needs to be nicely 
controlled.  This can also be formulated as to control 
the fuel flow rate so that the flames distribution can be 
made to follow a target distribution.  
 
The system image represented in Fig. 4 reflects a 2D 
grammage distribution of a paper sheet ([1], [34], [35], 
[45]).  This mimics a visual observation of someone 
holding a piece of paper against a strong light source.  

Paper is made of fibers together with other materials 
such as chemicals and fillers, etc.   A good paper 
production would generally mean that the 2D 
distribution of the solids in the finished paper, per 
reflected by the grey level image in fig. 4, can be made 
as uniform as possible.   
 

 
Figure 3. Flame distribution in combustion process 
 
This is again an output probability density function 
control problem where the inputs are the chemical and 
mechanical variables in the paper machines whilst the 
output is the probability density function of the grey 
level distribution.  In this regard, the target distribution 
should be characterized by a narrowly distributed 
Gaussian shape. 
 

 
 

Figure 4 The grey level image of 2D paper web 
 
The problem of controlling the output probability 
density function is long standing. However, the first 
practically implementable control strategy was 
developed at UMIST in 1996. Since then, fast 
developments have been seen and at present there are 
around 15 research groups in the world actively 
seeking solutions to the controller design and their 
applications. Special sessions have been seen in 
various international control conferences. In general, 
the so-far developed methods can be classified into the 
following three groups: 
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      1) output probability density function control using 

neural networks; 
     2) output probability density function control using 

system input-output models; 
     3)  output probability density function control using 

Ito differential equations. 
 
Since 1998, many methods have been developed in this 
new research area.  At present there are around 15 
research centres worldwide actively seeking solutions 
and applications in this field.  Invited sessions are seen 
in important international conferences and journals. 
 
This paper will give a brief overview of the above 
developments and will then be followed by some 
detailed issues on how iterative learning mechanism 
can be combined with the B-spline based output 
probability density function control, where system 
modelling,  controller design, basis function tuning, 
closed loop stability and learning convergence will be 
discussed. An application example will also be 
included. 
 

II. A BRIEF OVERVIEW 
The use of neural networks for the output PDF control 
is the first group of approaches, where once the 
structure of the network is selected the control of the 
PDF shape can be regarded as the control of the 
weights and biases of the considered network.  In this 
context, a dynamical relationship can be established so 
as to link the network weights with the control input.  
As such, many existing control methods can be directly 
used to formulate the required control laws.  In 
particular, when the dynamics is linear and the output 
PDF is approximated by a B-spline neural network, a 
compact solution can be generated which minimizes 
the following performance index 

RuudyyguyuJ T+−= ∫
Ω
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where ( , )y uγ is the output PDF, u is the control input 
and R is a weighting matrix.  The integration is 
calculated from a definition domain represented by Ω.  
Depending upon the dimensions of the system, the 
neural networks can be either MLP type ([48]) or even 
RBF types.  As the above performance index is instant 
in terms of time, cumulative performance function of 
the following form 
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can also be used so as to guarantee the desired tracking 
performance of the closed loop system, where k is the 
sample time and the integration defines the difference 
between the actual output PDF and its target PDF.  So 
far several B-spline based methods have been 
developed and examples are the square root B-splines 
PDF model and rational B-splines PDF model [22 - 
33]). 

However, the problem with this approach is that the 
model for the controller design does not have a direct 
physical meaning.  Also, the network size can be very 
large if the output PDF shape is complicated, leading to 
a high dimensional dynamics between the network 
weights and the control input. 

To solve this problem, a general input and output 
physical model of the system can be used.  In 
discrete-time domain the following equation is 
employed. 
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where is the system output, is the input, ky ku kω is a 
random process whose PDF is assumed known and 
f(…) characterizes the dynamics of the system.  Using 
such a model, the output PDF can be formulated as a 
function of the PDF of the random input and all the past 
input and output measurements.  As a result, a control 
input can be readily produced using a standard 
optimization routine for the performance function 
([36-40]). 

When a continuous time system is considered, the 
following Ito stochastic differential equation can be 
used to represent the system 

ωduygdtuyfdy ),(),( +=  

where y is the output, ω is a Brownian motion, f and g 
are nonlinear functions that represent the system 
dynamics and u is the control input.  In this case a FPK 
partial differential equation can be formulated which 
belongs to the class of systems as shown in equation (1). 
This partial differential equation characterizes the 
dynamical behavior of the output PDF.  As such, the 
control input can be designed so that the solution of the 
FPK equation can follow a target PDF.  However, the 
difficulties are that the system has to be subjected to a 
Brownian motion before the Ito equation can be of any 
meaning.  This limits the use of the method as only a 



 
 

 

Gaussian dω input system can be considered. 

Associated problems with the stochastic distribution 
control are the fault detection and diagnosis and 
minimum entropy control.  These two aspects are also 
important in practice.  In terms of fault detection and 
diagnosis ([41-42]), the idea would be to use the input 
and measured output PDFs to formulate effective fault 
diagnosis algorithms.  As for the entropy control, the 
key feature is that the closed loop system should aim at 
minimizing its uncertainties (randomness) when a 
target PDF is not available.  This can be achieved by 
using the formulation of minimum entropy tracking 
error control or simply the minimum entropy control of 
the system output ([43-47]).   

III. ITERATIVE LEARNING IDEAS 
   

Direct use of the PDE model is difficult in practice in 
that either such a model is difficult to establish through 
first principle approaches due to the complicated nature 
of the process, or the obtained control algorithms are 
too complicated to be applied in the real-time situations. 
To solve this problem, the B-spline approximation to 

( )γ ⋅  has been proposed since 1998 as one of the main 
groups of methods to control the output PDFs for 
non-Gaussian stochastic systems [22-25]. The idea is 
to use a set of fixed basis functions together with a 
group of time-varying weights to approximate the 
output PDFs at each time instant. The control input can 
therefore be designed to simply control the weights in 
the time-domain.  This is equivalent to solving a PDE 
model by using the technique of separation variables 
with a fixed set of basis functions. That is, there are no 
space related differential equations in terms of the 
evolution of the shape of the basis functions.  Several 
B-spline models have been developed ever since and 
have been shown capable of controlling the output 
PDFs to a good accuracy [26-32], albeit the number of 
B-spline basis functions can be quite high for 
complicated output PDF shapes and the accuracy to the 
PDF tracking may not be guaranteed.  Since the PDF of 
a process can vary widely over operations, it may be 
difficult to capture the behaviour over an extended 
operating period with fixed basis functions. As a result, 
it would be ideal if the basis functions can be regularly 
updated according to the output PDF changes during 
the control process. 

In the rest of this paper, the periodic learning and 
repetitive control are combined to perform the tuning 

of the basis functions for the output PDF control.  In 
this context, the control horizon is divided into a 
number of intervals [ ]( -1)( ), ( )j T T j T T+ ∆ + ∆  
( 1, 2,j )= L with being the control interval length 
and

T
T∆ being the time period to tune the B-spline basis 

functions.  Within each interval 
[ ]( -1)( ), ( 1)j T T jT j T+ ∆ + − ∆ , the linear B-spline 
functions with FIXED basis functions are used to 
generate the required control inputs that control the 
output PDF shape. In the 
interval ( ) ( )-1 ,jT j T j T T+ ∆ + ∆⎡ ⎤⎣ ⎦ , the basis functions 
are updated to obtain a better approximation accuracy 
to the output PDFs. Such a set of updated basis 
functions will be used as the fixed basis functions for 
the next control interval.  This means that the basis 
functions are tuned periodically and the following 
figure shows such a tuning phase. 
                

 

 

 

 

 

Figure 5. Illustrative tuning principle 

To start with, in the period of [0,T]  the control inputs 
are designed with a set of FIXED B-spline functions, 
whereby the control is realized via the control of the 
weights in the B-spline approximation.  When the 
sample time reaches T, the tuning of the basis functions 
is activated.  This will last for a period of T∆ , during 
which the control law stays the same as that of [0, T].  
This enables the tuning to be focused on the basis 
functions and the parameters of the weights dynamics.  
Once the tuning is completed, the second control 
interval will start from the sample instant T+ T∆  by 
using the updated basis functions and the model 
parameters.  This process will repeat until the end of 
control horizon is reached.     Different from existing 
iterative learning control methods, the proposed 
algorithm use the periodic learning for the basis 
functions and then tune the models batch by batch, thus 
achieving an improved performance over the whole 
time horizon. 

IV. MODEL PRESENTATION 

Assume that the output PDF of the considered 
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stochastic systems in the jth tuning period is ( , )k y jγ , it 
is defined in a known interval denoted by [a, b] (i.e. 

[ , ]y a b∈ ). In this paper, the following linear B-spline 
function model [22] will be used to represent the 
dynamic relationship between the inputs and the output 
PDFs for each control instant k 
∈[ ]( -1)( ), ( 1)j T T jT j T+ ∆ + − ∆   

( ) ( ) ( )
1 1

, , ,

j j j j j
k k k

j
k k

V G V H u
y j C y j V L y jγ

− −= +⎧
⎨

= +⎩  
1,2, ; 1, 2,j k= =L L                    (3) 

where is the weights vector that groups all the 
independent weights in the B-spline model; n is the 
number of basis functions chosen for approximation; 

 is a scalar input to the system; 

1j n
kV R −∈

1
j

ku −
jG and jH  are the 

parameter matrices which represent the system 
dynamics for k ∈ [ ]( -1)( ), ( 1)j T T jT j T+ ∆ + − ∆ . As 
presented in [22], let  (i = 1, 2, …, n) stand for 
the fixed basis functions for the jth control interval  
satisfying 

( , )iB y j
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bj

i ia
b B y j dy i n j= =∫ =        (4) 

then in equation (3) 
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To simplify the following expression, denote 

 = ( ),kf y j ( ), ( ,k y j L y j)γ −                       (7) 

then the model in (3) can be further expressed in a 
one-step-ahead input and output form to read  

( ) ( ) ( ) ( )
( ) ( )

1 1 1 2

1 1 2 2
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, ,
0

j j j
k k n k n

j j j j
k n k n
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L
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j
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  (8) 
j

ia ( ) and 1, , 1i n= L − j
lD ( ) are the 

parameters and parameter vectors formulated from the 
state space model of equation (3) using information of 

0, , 2l n= L −

jG and jH   for k ∈ [ ]( -1)( ), ( 1)j T T jT j T+ ∆ + − ∆ . 
Similar to jG and jH , j

ia  and j
iD  are fixed within 

each control interval.  However, their values are 

updated simultaneously with the tuning of the basis 
functions.  The following performance function is used 
to measure the functional distance between the output 
PDF and the target PDF ( )g y (also defined on [a, b])  

( ) ( )( 2
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where ( )1 ,k y jγ + is the output PDF of the stochastic 
system at time instant 1k +  for the jth control interval. 
To minimize jJ , j

ku can be obtained by solving  

0
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to give the following feedback format  
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where 
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This control law can be used together with the 
measured output PDFs so as to formulate a set of 
necessary information for the update of the basis 
functions as well as  and  within the jth tuning 
period

j
ia j

lD

( ) ( )-1 ,jT j T j T T+ ∆ + ∆⎡ ⎤⎣ ⎦ .   

V.   BASIS FUNCTIONS AND { , } UPDATE j
ia j

lD

Assume that the control function (11) is applied to 
the system for k∈[ ]( -1)( ), ( 1)j T T jT j T+ ∆ + − ∆ , then 
according to Fig. 5 the update of the basis functions 
and { , } should take place in j

ia j
lD

( ) ( )-1 ,jT j T j T T+ ∆ + ∆⎡ ⎤⎣ ⎦ . For such an update, the 
information available should be  
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It is also important to note that in 
( ) ( )-1 ,jT j T j T T+ ∆ + ∆⎡ ⎤⎣ ⎦ , the control inputs are still 

calculated using (11) with the same set of basis 
functions and parameters  { , } for the jth control 
interval

j
ia j

lD

[ ]( -1)( ), ( 1)j T T jT j T+ ∆ + − ∆ , where Ω should 
satisfy equation (8). 
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where ( ) ( 0,1, , 2)j
lD i l n= L −  is the ith component of 

vector j
lD . Using the above notations and by fixing 

{ j
ia , j

lD }, equation (8) becomes 

( ) ( ) 1 1, , j
kT y j y j Rπ ×= Π ∈k

)

                             (19) 

This is a linear model where the update of 
( ,y jπ should take place by using the data collected 

during [(j-1) (T+ ), jT+ (j-1) ].  Similar to the 
scanning parameter estimation technique used in [15], 
a set of y

T∆ T∆

p are selected from the [a, b] interval for p = 1, 
2, …., M, so that the following equation hold for each 
yp  

( ) ( ), , , 1,2,....,j
k p p kT y j y j p Mπ= Π =            (20) 

where M is a pre-specified positive integer. As 
and ( ,k pT y j ) j

kΠ  are available at jth interval, 
for the (j+1)th control interval can be 

directly updated by using a standard least square 
identification, leading to the following recursive least 
square algorithm:  
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1, ,k N= L ;  1, 2,p M= L

where N is the number of sampling points along the 
time axis 
[ ,( )1 ( )j T T− + ∆ ( -1)jT j T+ ∆ ]; is the 

updated value of at sample instant k . The 
initial value of  is evaluated from the most 
recent fixed basis functions and .   

( ), 1 |T
py jπ + k

)
)

( , 1 T
py jπ +

( , 1py jπ +

( ) 3 60 10 nP I−=

The procedures for the update of the B-spline 
functions (namely in the form of ( ), 1py jπ + ) is 
therefore given by:- 

1. At sample time k , collect and( ,kT y j ) j
kΠ  at the 

th control interval; j

2. Use equations (21)-(23) to calculate ( ), 1py jπ +  
with 1,2,...p M= ; 

3. Increase by 1 and go back to step 1 untilk k N= . 
Here N is the number of data pairs sampled at each 
control interval. 

Once the basis functions are updated, the next scan 
for the jth interval should be implemented to update the 
model parameters { j

ia , j
lD }.  This can also be realized 

by the recursive least square algorithm.  For this 
purpose, denote 
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where ( ), ,y j kφ  is composed of the updated basis 
functions. As a result, the modification of jθ  is 
carried out using the following algorithm: 
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where ( ) ( )

3 6
10 10pP I−

n n× −= , the initial value of 1jθ + is the 
value of θ used in the th control interval. j

The procedures used to update the parameter vector 
1jθ + can be summarized as follows: 

1. At sample instant (=1, 2,L , N ), formulate k
( )1 ,k pf y j+ and ( ), ,py j kφ ; 

2. Calculate ( )1j kθ +  for  with 
equations (26)-(28); 

1, 2,...,p M=

3. Increase  by 1 and go back to step 1 untilk k N= . 

The control and tuning of basis functions and 
parameters can be illustrated in figure 6. 



 
 

 

 
Figure 6. The control and parameters modification time 
series 

The complete updating algorithm can be 
summarized as follows: 

Step1: During [0, T], the closed-loop system uses a set 
of fixed basis functions and parameter vector θ to 
realize the control action as described in (11), where 
the data (namely andku ( )1kf y+ ) are stored for the 
updating operation of the basis functions; 

Step2: From the time instant T to T+ , the saved data 
are used to calculate the B-spline basis functions with 
equations (21)-(23). 

T∆

Step3. Using the updated B-spline basis functions in 
step 2, the saved data of [0, T] are used again to tune 
the model parameters via equations (26)-(28).  

During step 2 and step 3, the system is controlled with 
the same model parameters and B-spline functions as 
those in [0, T];

The procedure will carry on until the pre-specified 
control horizon ends.  This constitutes a periodic 
learning process, which regularly updates the basis 
functions and the model parameters for the weight 
dynamics. 

VI. A SIMUATION STUDY OF MWD CONTROL 
The proposed algorithm is applied to a simulation 

example of an MWD control system. The process of 
interest is a styrene bulk polymerization reaction in a 
pilot-plant continuous stirred tank reactor (CSTR) as 
shown in Fig. 7, in which styrene is the monomer for 
polymerization and azobisisobutyronitrile is used as 
the initiator. These two flows are injected into the 
CSTR with the ratio adjusted by a pump. The energy 
for the reaction is provided by the heated oil in the 
CSTR’s jacket and the oil temperature is controlled to 
be constant. The total flow rate to the system, F , is 
composed of the flow of monomer, mF , and the flow of 
initiator, iF , i.e., imF F F= + . The monomer input ratio 

is defined as mFC
F

= . In this work, adjustment of C is 

considered to be the means to control the MWD of the 
polymer. The model of this system can be seen in [33]. 

 
Figure 7. Styrene polymerization system in a pilot 

CSTR  

 

For the above polymerization process, seven 
third-order polynomial B-spline functions are chosen 
for the MWD approximation. The B-spline model is 
established based on the data provided by a previously 
developed first-principle MWD model. The control 
input is designed so that the output MWD will follow a 
desired MWD. The periodic learning of the B-spline 
functions is carried out as illustrated in the previous 
section. Simulation results are shown in Fig. 8 to Fig. 
11. 

Fig. 8 shows the target MWD, the initial MWD and 
the output MWD of the system at the end of the control 
horizon, where it is clear that the output MWD can 
follow the shape of the target MWD.  Fig. 9 displays 
the responses of the MWD in terms of a 3D mesh 
format, showing the periodic learning and 
batch-to-batch process. In this figure there are four 
control intervals, each consists of eighty MWD 
responses. In Fig. 10, the responses of the control input 
calculated from equation (11) are given, from which 
the periodic learning operation can be observed. For 
this system, the real control input to the process is 
limited in a range from 0.2 to 0.8.  In Fig. 11, the 
closed-loop performance, namely jJs

( ) ( )( )
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( ) 2
1( 1)

, ,
j T T b

j k tj T T a
Js y j g yγ

+∆

+− +∆
= −∫ ∫ dydt  

is displayed, indicating the consecutive improvement 
of the control results. 
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Figure 8. Initial, target MWDs and the output 

MWD at the end of control 
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Figure 9. The output MWDs during the whole control 

process 

 
Figure 10. The control input during the control process 
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Figure 11. The integral error performance during 

iterations 

As such, it can be seen from these figures that when 
applying the periodic learning algorithm to the MWD 
control of the polymerization system, the process has 
an improvement in terms of batch-to-batch operation.  

VII. ALTERNATIVE ITERATIVE LEARNING FOR MODEL 
AND CONTROL STRUCTURE REDUCTION 

To further explore the iterative learning ideas on the 
output PDF control, one can consider to use the 
following standard Radial Basis Functions (RBFs) 
neural network to model the instant output PDF as 
follows: 

   )
||||

()(),(
1 i

i
N

i
i

yy
uwuy

σ
φγ

−
= ∑

=

                   (29) 

where  are the weights that are linked dynamically 
with the control input u(t) as they were before, y

iw
i and σI 

are the parameters of the basis functions which 
represent the center and the width of each basis 
function φ(.). N is the number of basis functions used.  
 
Between each batch, the iterative learning can be used 
to update the centre and width of the basis functions.  
For this purpose one can define the following 
parameter vector for the jth batch as that groups all the 
centers and the width as 
        (30) NT

NNj Ryyy 2
2121 ],...,,,,...,,[ ∈= σσσθ

Define the closed loop control performance in the jth 
batch as follows: 

2( ) ( ( , ) ( )) T
j k

k

J u y u g y dy u Ruγ
Ω

= − + k k∑∫     

(31) 



 
 

 

then the following iterative learning rule can be 
generally obtained: 

            jjj Jλθθ +=+1                                       (32) 

where λ is a learning rate which can be either positive 
or negative as Jj is always positive here.  This learning 
rate should guarantee convergence of the iterative 
leaning phase which is decided by the following 
condition 

                                                         (33) jj JJ <+1

which means that the tracking performance is 
improved along with the increase of the sub-interval 
index j.  The advantage of this rule is that it can be used 
to minimize the model structure and thus have an 
impact on the control structure reduction.  Indeed, if 
during the iterative learning phase one of the widths of 
the basis functions goes to a very small number, then 
this basis function can be removed from the output 
PDF approximation in (29).  As a result, the weight 
dynamics can be reduced by at least 1 dimension.  This 
will of course simplify the control structure, leading to 
a minimized controller structure for the closed loop 
system. 
 
Another iterative learning rule can also be formulated 
using the standard control input updates.  In this 
context, the control input is updated by the following 
rule 
                                            (34) j

j
k

j
k Juu λ+=+1

In this case the learning rate should again be selected so 
that condition (33) is guaranteed.  Different from the 
existing iterative learning control, this learning rate can 
be either positive or negative in the control horizon. 

  VIII. CONCLUSIONS 

This paper presents an overview of the recently 
developed stochastic distribution control, where the 
B-spline based models are firstly discussed.  This is 
then followed by the discussions on input and output 
based output PDF control and the Ito differential 
equation based algorithms. 

In details, a periodic learning algorithm is proposed 
for the output PDF control based on the B-spline 
approximation model.   With this control strategy, the 
output PDF model not only relates to time but also 
relates to space. With the update of the B-spline 
functions, the variation of PDF during operation can be 
considered and therefore the model accuracy of the 
PDF approximation can be improved. This algorithm is 
applied to the simulation study of a batch-to-batch 

MWD control system. Simulation results show the 
convergence and effectiveness of the algorithm.  

The current method is only a periodic learning 
algorithm, in which the basis functions are updated by 
a least square identification rule. For a more effective 
update of the basis functions, certain iterative learning 
rules should be considered to modify the width and 
height of the basis functions. In the future work, the 
modification of the basis functions and the model 
parameters will be studied further to form a general 
expression for the output PDF control. 
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