
Artificial Speciation of Neural Network Ensembles

Vineet R. Khare and Xin Yao
School of Computer Science,

The University of Birmingham,
Edgbaston, Birmingham B15 2TT, U.K.

{V.R.Khare, X.Yao}@cs.bham.ac.uk

Abstract

Modular approach of solving a complex
problem can reduce the total complexity of
the system while solving a difficult problem
satisfactorily. To implement this idea, an
EANN system is developed here for
classifying data. The system evolved is
speciated in such a manner that members of a
particular species solve certain parts of the
problem and complement each other in
solving one big problem. Fitness sharing is
used in evolving the group of ANNs to
achieve the required speciation. Sharing was
performed at phenotypic level using modified
Kullback-Leibler entropy as the distance
measure. Since the group as a unit solves the
classification problem, outputs of all the
ANNs are used in finding the final output. For
the combination of ANN outputs 3 different
methods – Voting, averaging and recursive
least square are used. The evolved system is
tested on two data classification problems
(Heart Disease Dataset and Breast Cancer
Dataset) taken from UCI machine learning
benchmark repository.

1 Introduction

Designing a modular system, which can break the
problem at hand into pieces and solve it, is difficult
because it relies heavily on human experts and prior
knowledge about the problem. In an attempt to
achieve this modularisation without any human
intervention, speciation in a Genetic Algorithm is
used here. Different evolved individuals (ANNs) in
the population solve a part of a complex problem and
compliment each other in solving the big complex
problem.

There is major emphasis on following two points
– (1) Automatic Modularisation using Fitness-
Sharing - Here multiple speciated neural networks
are evolved using fitness sharing which helps in
automatic modularisation (without human
intervention). (2) Making Use of Population
Information in Evolving Neural Networks - A

population of ANNs contains more information than
any single ANN in the population (Yao and Liu,
1998b). Such information can be used to improve the
performance and reliability. While evolving ANNs,
Instead of choosing the best ANN in the last
generation, the final result here is obtained by
combining the outputs of individuals in the last
generation. This will help us in utilizing all the
information contained in the whole population. Three
linear combination methods (voting, averaging and
recursive least square) were used to combine the
outputs of the individuals in the evolved population.

The rest of the paper is organised as follows.
Section 2 gives some background on the topic.
Section 3 describes, in detail, how ANNs are evolved
and the combination methods used to combine their
outputs. Section 4 gives details on experimentation
and the results obtained for the two benchmark
problems (Heart Disease and Breast Cancer) taken
from UCI datasets. Section 5 compares these results
with the known results for the two problems and
illustrates the effect of using full population instead
of the best individual in the population. This section
also gives a lower bound on the time complexity of
the algorithm. Finally section 6 concludes with some
suggested improvements and future work directions.

2 Background

Previous work has been done on automatic
modularisation using speciation. Darwen and Yao
(1996) used automatic modularisation in co-
evolutionary game learning. A speciated population,
as a complete modular system, was used to learn
playing Iterated Prisoners Dilemma. Significantly
better results in terms of generalization were
achieved.

Yao and Liu (1998b) proposed the use of
population information in evolutionary learning. In
order to make use of information contained in the
whole population, they combined the output of all the
individuals (ANNs in this case) present in the final
evolved population.

More recently Ahn and Cho (2001) developed a
system of speciated neural networks that were
evolved using fitness sharing. Final population was

analysed using single linkage clustering method to
choose representatives of each species. The outputs
of these representative individuals were then
combined to produce the ensemble output. For the
Breast Cancer problem they reported better
recognition rate for EANNs which are non speciated
than that of speciated EANNs.

3 Evolv

Task at ha
evolves a
and weigh
speciation
describes t
methodolog

benchmark problems used to implement such system
are listed in section 3.1. The following sections give
various steps involved in evolving ANNs.

3.1 Benchmark Problems

Two data classification problems have been used to
judge the performance of evolved ANNs. Data for
both of them is taken from UCI benchmark database.
Both of these datasets have some attributes; based on
these attributes, any given pattern has to be classified
into one of two given classes. The two databases are
– (1) Wisconsin Breast Cancer Database – which
contains 699 instances, 2 classes (malignant and
benign) and 9 integer-valued attributes. (2) Heart
Disease Database which contains 270 instances, 2
classes (presence and absence) and 13 attributes
(chosen out of 75) are all continuously valued. The
whole dataset is to be divided into - Training Data
(1/2 of full dataset), Validation Data (1/4 th of full
dataset) and Testing Data (Remaining 1/4 th).

Figure 1 shows the overview of the methodology,
starting from population initialisation to the
combination of multiple ANNs evolved by
speciation. Neural Networks used here are all Feed
Forward Neural Networks. The whole procedure can
be described in following steps.

3.2 Encoding of Neural Networks

To evolve an ANN, it needs to be expressed in
proper form. There are some methods to encode an
ANN like binary representation, tree, linked list, and
matrix. Representation used here to encode an ANN
is matrix encoding (Ahn and Cho, 2001). If N is the
total node number of an ANN including input,
hidden, and output nodes, the matrix is NxN, and its

Start

Initialise ANNs in the ensemble

Train the ANNs partially

Fitness evaluation (on Validation Set),
with sharing

Copy Elites + Reproduction

Crossover + Mutation

Fixed
Generations

No

s

Train the ANNs fully

Combine the outputs

Test the evolved population on the testing
dataset

Stop
Figure 1 Overview of the method
Ye
s

ing Artificial Neural Networks

nd here is, to implement a system that
group of neural networks (architectures
ts) using evolutionary algorithms with
(using fitness sharing). This section

he benchmark problems taken and the
y used for evolving ANNs. The

entries cons
weights.

In the m
connection
there exists
connection
weight va
information
Figure 2 Encoding of ANN
ist of connection links and corresponding

atrix, upper right triangle (Figure 2) has
link information, which describes 1 when
 connection link and 0 when there is no
link. Lower left triangle describes the
lue corresponding connection link
. Figure 2 shows an example of encoding

of an ANN that has one input node, two hidden
nodes, and one output node. In the figure, I1
describes one input node, H1 and H2 describes
hidden nodes, O1 describes the output node.

Important thing to note here is that there isn’t any
notion of hidden layers. Any hidden node can be
connected to any other hidden node that has a higher
index (only feed forward connections).

3.3 Ensemble Initialisation

Each ANN in the ensemble is generated with random
initial weights and full-connection. Initial weights
and biases were assigned randomly between [–1, 1]
and [0, 1] respectively. 20 such ANNs were
generated as initial population with 9 and 13 input
nodes for breast cancer and heart disease datasets
respectively. Hidden nodes were taken to be 5 and 6
respectively. In each case there was 1 output unit,
which had a binary output.

3.4 Partial Training – Lamarckian Evolution

Each ANN is trained partially (200 epochs) with
training data, at each generation, to help the
evolution search the optimal architecture of ANN
and is tested with validation data to compute the
fitness. Standard Backpropagation algorithm is used
for training and transfer function for each hidden and
output unit is Sigmoid Function.

This local search, applied at each evolution step,
decreases the time needed to find an acceptable
solution or in other words it reduces the number of
generations required. It can be viewed as lifetime
learning of an individual in the evolutionary process.
The adjustment of the genotype (weight updates in
Backpropagation) to the locally optimised offspring
makes it Lamarckian Evolution.

3.5 Fitness Evaluation and Speciation

The fitness of ANN is recognition rate of validation
data and computed using speciation technique. Raw
fitness of an individual p, fBraw,p B, is the inverse of
Mean Square Error (MSE) calculated per pattern, per
output unit. Hence raw fitness:

fBraw,p B= 1 / MSEBpB (3.1)

A constant can be added to the denominator to
prevent fitness value going to infinity when an
individual classifies all patterns correctly. For the
purpose of speciation fitness sharing technique
(Goldberg, 1989) is used here. Fitness sharing
decreases the fitness of densely populated ANN sub-
space and shares the fitness with other sub-spaces.
Therefore, it helps genetic algorithm search various
sub-spaces and generate more diverse ANNs.

Fitness sharing is done at the phenotypic rather
than at genotypic level, i.e. distance between two
individuals is judged on the basis of their behaviour
(phenotypes), not on the basis of their architecture or
weights (genotypes). This is required because there
isn’t one to one mapping between the genotypic
distance and the phenotypic distance between two
individuals. E.g. two ANNs can have very similar
matrix encoding (as discussed in section 3.2), but at
the same time, behave quite differently for a given
(say) classification task.

To measure the distance between two individuals
on the basis of their behaviour, the output values
produced by these individuals for the validation set
data points, have been used. The modified Kullback-
Leibler entropy is used to measure the difference of
two ANNs. As discussed by Ahn and Cho (2001),
the outputs of ANNs are not just likelihood or binary
logical values near zero or one. Instead, they are
estimates of Bayesian a posteriori probabilities of a
classifier. Using this property, the difference between
two ANNs is measured with modified Kullback-
Leilbler entropy (Kullback and Leibler, 1951), which
is called relative entropy or cross-entropy.

Symmetric relative entropy is used as the distance
measure. If p and q are the output probability
distributions of two ANNs that consist of 1 output
node and are trained with n data points, then, the
similarity of the two ANNs can be calculated by

)2.3(loglog
2
1),(

1
∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

n

j j

j
j

j

j
j p

q
q

q
p

pqpD

where p BjB means the output value of the ANN with
respect to the jth training data. Lower values of this
entropy imply similar behaviour in the two networks.

This distance measure is used to share the fitness
of individuals in the population. Different values
(0.5, 1, 2) for sharing radius (σ BsB) B Bwere tried, but most
of the experimentation was done with σ BsB = 1, which
was found to be the best one among the three values.
Two individuals share the fitness, according to the
standard fitness sharing technique (Goldberg, 1989),
only if the distance between them is less than σ BsB.

3.6 Evolutionary Process

Generational GA with elitism is used here. Elitism
performs two actions – (1) It makes a copy of the
individual with best raw fitness in the old pool and
places it in the new pool, thus ensuring the most fit
chromosome survives. (2) Similarly one individual
with the best shared fitness is copied to the new pool.
To create the mating pool, on which the genetic
operators will be applied, roulette wheel selection is
used. Members of the mating pool are selected
according to their shared fitness. The better the

chromosomes are, the more copies they get in the
mating pool.

Both
The cros
graphs in
sub-grap
the popu
two disti
node fro
should b
encoding
If the se
two AN
and endi
informat
graph (co
is search
done by
was chos
two pare
crossove

swapping row and column entries corresponding to
H2 and H3 of the two parents.

The mutation operator changes a connection link
and a corresponding weight of a randomly selected
ANN from the population. Mutation operator
performs one of the two operations, which are – (1)
Connection Creation – Mutation operator selects an
ANN from the population of ANNs randomly and
chooses one connection link from it. If the
connection link does not exist and the connection
entry of the ANN matrix is 0, the connection link is
added. It adds new connection link to the ANN with
random weights. (2) Connection Deletion – If the
connection link already exists, the connection is
deleted. It deletes the connection link and weight
information.

(a) Two parents before crossover

(b) Two children after crossover

3.7 Full Training and Combination of
s

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

01.06.07.05.0
10002.0
10000
10008.0
11110

07.02.07.01.0
101.008.0
11005.0
10004.0
11110

01321113211 HHHIOHHHI

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

07.02.07.05.0
101.008.0
11005.0
10008.0
11110

01.06.07.01.0
10002.0
10000
10004.0
11110

01321113211 HHHIOHHHI

Figure 3 Crossover - Exchanging sub-graph
crossover and mutation operators are used.
sover operator here searches for similar sub-
 the two parents and swaps the two smaller

hs to create two children (see figure 3). In
lation of ANNs, crossover operator selects
nct ANNs randomly and chooses one hidden
m each selected ANN. These two nodes
e in the same entry of each ANN matrix
 of the ANN to exchange the architectures.
lected nodes have similar connections, the
Ns exchange the connection links (starting
ng at that node) and corresponding weights
ion of the node. Else smallest similar sub-
ntaining the chosen node) in the two ANNs

ed (as in figure 3) and swapped. This can be
recursively adding nodes to the node that
en first. Figure 4 shows the genotypes of the
nts and two offsprings, corresponding to the
r of figure 3. Offsprings can be obtained by

Outputs

After fixed n
population are
the weights. T
population a
methods – (1)
the most num
output. In ca
(among those
the validation
Averaging – t
the outputs o
population. (3
method was u
ensemble outp
are assigned t
weighted aver
These weights
Figure 4 Crossover – Example

umber of generations, ANNs in the
 trained for 1000 epochs to fine-tune
he outputs of evolved and fully trained
re then combined using following
 Majority Voting - Here the output of
ber of ANNs will be the combined

se of a tie, the output of the ANN
in the tie) with the lowest error rate on
 set is selected as combined output. (2)
he combined output is the average of
f all individuals present in the final
) Recursive Least Square (RLS) - This
sed by Yao and Liu (1998b) to find the
ut of EANNs. In this method weights

o different ANN in the population and
age was calculated for the population.
 are obtained by recursively updating

the mean square error and minimising it. We omit the
details for this method for space limitations; these
can be found in Yao and Liu (1998b). RLS requires a
parameter α to be set. In our experimentation, we
tried 3 values of α - 0.1, 0.2 and 0.3. Best results, on
an average were obtained for α = 0.3.

4 Experimentation and Results

Experiments were conducted for both the benchmark
problems in two stages. Initially only training and
testing sets were used to evolve ANNs. i.e. both
training and fitness evaluation were done on same
set. The results obtained with this setup were not
satisfactory, though the error rate for training data
was acceptable but the error rate for testing data was
much bigger than the already known results for the
benchmark problems. To improve this generalisation
error, need for the use of validation set was felt. So
another set of experiments were conducted in which
for the fitness evaluation of ANNs, a separate data
set was used. The total data set for each benchmark
problem was divided into 3 parts – Training,
validation and testing set (As discussed in section
3.1). Various parameter settings for the experiments
are given in Table 1.

Table 2 lists the training, validation and testing
error rates obtained by the group of evolved ANNs,
for the breast cancer problem. These results are
averaged over 30 runs. Similarly table 3 lists the
training, validation and testing error rates obtained
by the group of evolved ANNs, for the heart disease
problem. These results are averaged over 24 runs.
More runs couldn’t be done because of shortage of
time, as we will see in section 5.3 running the
algorithm is expensive.

Parameter Breast

Cancer
Heart

Disease
Learning Rate 0.1 0.1

Crossover Probability 0.3 0.3
Mutation Probability 0.1 0.1

Sharing RadiusTP

1
PT 1 1

of Generations 200 350
of runs 30 24

Table 1 Parameter Settings

In tables 2 and 3, Mean, SD, Min, and Max
indicate the Mean Value, Standard Deviation,
Minimum and Maximum values respectively. Results
are given for all three combination methods used –
Voting, RLS and Averaging. For RLS training and
validation sets both were used to find optimal
weights for the linear combination of outputs of

TP

1
PT Initially three values were tried, 0.5, 1 and 2.

Sharing radius = 1 repeatedly gave better results.

neural networks, hence combined error for both
training and validation sets is given.

 Voting
 Training Validation Testing
Mean 0.0378 0.0189 0.0231

SD 0.0100 0.0153 0.0176
Min 0.0074 0.0000 0.0000
Max 0.0544 0.0514 0.0514

 Averaging
 Training Validation Testing
Mean 0.0374 0.0235 0.0229

SD 0.0102 0.0151 0.0137
Min 0.0078 0.0114 0.0000
Max 0.0544 0.0571 0.0514

 RLS
 Training + Validation Testing
Mean 0.0237 0.0167

SD 0.0152 0.0122
Min 0.0016 0.0000
Max 0.0267 0.0343

Table 2 Error Rates (averaged over 30 runs) for Breast Cancer
Problem

 Voting
 Training Validation Testing
Mean 0.1960 0.1623 0.1642

SD 0.0282 0.0265 0.0404
Min 0.1333 0.1194 0.1176
Max 0.2667 0.2388 0.2794

 Averaging
 Training Validation Testing
Mean 0.1733 0.1828 0.1612

SD 0.0231 0.0293 0.0323
Min 0.1333 0.1194 0.1029
Max 0.2370 0.2388 0.2353

 RLS
 Training + Validation Testing
Mean 0.1462 0.1612

SD 0.0243 0.0337
Min 0.1188 0.1176
Max 0.2129 0.2500

Table 3 Error Rates (averaged over 24 runs) for Heart Disease
Problem

5 Discussion

Training error rates achieved are comparable to stage
1 experiments but there is a significant improvement
in the generalisation ability of evolved group of
ANNs in both the problems. The best results were
obtained using RLS method for combining the
outputs on an average. Though RLS always produced
best results on training data but there were runs in
which voting or averaging method produced better

results in terms of testing errors. In general we have
achieved lesser error rates on validation sets than on
training set, this is because our GA is trying to
optimise the fitness which was calculated over the
validation set.

Also better results were achieved when all the
networks in the initial population were fully
connected, in comparison to the case where there
were random initial connections. Another point
worth mentioning here is the relative degree of
difficulty of classification in the two datasets. In
heart disease, even after 350 generations, error rates
are pretty big in comparison to the breast cancer
problem. So heart disease dataset proves to be much
harder to classify.

5.1 Comparison With Known Results

For the Breast Cancer problem, Ahn and Cho (2001)
obtained 1.71% test error rate as their best result
using single linkage clustering and voting and
averaging combination methods. The best result here
was achieved by using RLS. On an average over 30
runs RLS combination method produced 1.67% error
rate on test set, which is better than Ahn and Cho’s
result. But voting and averaging methods produced
2.31 and 2.29% error rates respectively, which are
higher.

Yao and Liu (1998b) obtained 5.8% and 15.1%
error rates, for training and testing datasets, as their
best results for the heart disease problem. The best
results achieved here are 14.62% and 16.12%
respectively for the two sets. Though the testing error
rate is comparable the training error rate is much
higher.

5.2 Comparing Best Individual Performance
With Combination Methods

To see how useful these combination methods are in
comparison to the best individual present in the
population, their performance (on training set2) is
plotted with the performance of best individual
present in the population for the two problems.
Figures 5 and 6 give error rates versus the number of
generations for the best individual and for all 3
combination methods used here (for a particular run).

For the Breast cancer problem (figure 5) all
combination methods except the RLS prove to be
worse than the best individual present in the
population. Few observations can be made from this
plot – (1) It took around 125 generations for voting
and averaging to reach the performance comparable
to RLS or of the best individual. One possible reason
for the bad performance of voting and averaging can
be – their performance is measured on training set

2 For RLS both training and validation sets are used.

while the fitness evaluation is done on the validation
set. On the other hand error rates for the RLS method
is based on both training and validation sets. (2) The
best individual is almost as good as the best
combination method (RLS). Good performance of
the best individual was also observed by Ahn and
Cho (2001), this can be attributed to the classification
problem being easy – these methods aren’t exploited
to their full extent. We will see in a moment that for
a much harder problem these methods turn out to be
useful and perform much better than the best

individual.

out
bett
pop
plo
tho
the
ind
– u
pop

Figure 5 Comparing combination methods with best
individual in the population (Breast Cancer).
For the Heart Disease problem (figure 6), it turns
 that the combination methods perform much
er than the best individual present in the
ulation. Few observations can be made from this
t – (1) RLS again gives the best performance,
ugh averaging also performs quite well. Voting on

other hand performs no better than the best
ividual. (2) In this problem the difference between
sing the best individual and using the full
ulation is visible. (3) This difference becomes

more prominent when we look at the performance on
test set. For the same run (for which the plot has been
provided) the best individual produced 17 wrong
classifications out of 68 patterns in test set, i.e. 25%
error rate while voting, averaging and RLS produced
– 17.65%, 19.12 and 17.65% error rates.

5.3 Complexity of Algorithm

One run of the programme took approx. 3 hours for
heart disease problem (350 generations) and 2 hours
30 minutes for breast cancer problem (200
generations) to run. The algorithm consists of partial
training at each evolution step and the standard
fitness sharing. Combination of outputs was carried
out using a separate code. Here we will look at the
algorithm that evolves the ANNs.

Training of an ANN consists of two major
phases, the first of which is the feed forward of the
training input. Essentially, this phase consists of
multiplying each input vector element by the weight
residing on its connection to a node in the hidden
layer. Then, a sum is taken over all connections to

that hidden layer node to obtain the hidden unit's net
input. This process is then repeated for passage of the
signal from the hidden layer to the output layer.
Now, if there are 'n' input units, 'm' hidden units, and
'k' output units, the dot products will require

m(n+logn) + k(m+logm)

operations. Now neglecting logn with respect to n,
we get O(nm+km) as a lower bound for the time
complexity of the feedforward phase. Roughly
speaking training algorithm as whole will take just
the double time of feed forward phase. So, even for
full training phase we get O(nm+km) as the lower
bound for time complexity. In every generation this
has to be done N number of times, where N is the
population size. And this process will continue the
given number of generations, say G. Standard fitness
sharing requires O(N2) computations, where N is the
population size. So an estimate of lower bound of
time complexity of full algorithm will be:

O((m(n+k) * N + N2) * G)

6 Conclusion

Speciated EANN system was evolved using fitness
sharing. Sharing was performed at phenotypic level
using modified Kullback-Leibler entropy as the
distance measure. To make use of population
information present in the final generation of GA, the
final result was obtained by combining the output of
all the individuals present in the final population
using various linear combination techniques –
voting, averaging and RLS. The developed system
was tested on two benchmark datasets from UCI
benchmark datasets, namely Wisconsin Breast
Cancer Dataset and Heart Disease Dataset. It was
observed that the breast cancer dataset was much
easier to classify than the heart disease dataset.

Significantly better results were achieved by
using a validation set. Out of the three combination
methods RLS produced the best results. Combination
of outputs produced much better results than the best
individual in the harder problem (heart disease
problem). Results achieved for Breast Cancer
problem were better than known results available.
Comparable results were also achieved in Heart
Disease problem. Figure 6 Comparing combination methods with best

individual in the population (Heart Disease). Though the evolved system performed quite well
on the two benchmark problems taken, still there are
some criticisms too. First one obviously is that it is
too expensive and should not be applied to relatively
easier problems like the breast cancer problem,
where it cannot be exploited to its full extent. Also,
fitness sharing (as described by Goldberg and
Richardson, 1987) is expensive because of distance
calculations. Another drawback of the system is the

choice of sharing radius, which was chosen
empirically. Standard fitness sharing used here,
makes two assumptions – (1) The first is the number
of peaks in the space. (2) The second is that those
peaks are uniformly distributed throughout the space.
However, we don’t usually know about the problem
beforehand. Hence setting a suitable value for
sharing radius is difficult. In the earlier stages of
experimentation only three values were tried and the
best one was chosen for the rest of experiments.
More experimentation couldn’t be done, as running
the code was quite expensive. More experiments
with different values of sharing radius could have
produced better results. Requirement of priori
knowledge about the fitness landscape (in our case
the sharing radius) is one of the limitations of
standard fitness sharing technique. We will also face
problems when the peaks have basins of different
sizes. Thus an obvious modification to the system
can be – the use of another niching or speciation
technique, which doesn’t require empirically setting
the sharing radius and/or doesn’t involve expensive
distance calculations.

There are some niching techniques available in
literature that require lesser amount of prior
knowledge about the fitness landscape. Multi-
national EA (Ursem, 1999) and DNC with fuzzy
variable niching (Gan and Warwick, 2001) can be
two possible candidates here. Both of these schemes
use hill-valley fitness topology function which
allows the local analysis of the fitness landscape and
thus help them in making more informed decisions,
based on this analysis, about merging and splitting or
merging and migrating two species in the two
schemes respectively. On the other hand there are
techniques like Simple Subpopulation Scheme
(Spears, 1994) that can be used to make the system
less expensive. Simple Subpopulation Scheme
replaces the concept of distance between individuals
with tag bits that identify the subpopulation to which
an individual belongs. It also does not make the
equal spacing assumption. One interesting extension
to this work would be, to incorporate some of these
niching techniques in the system.

References

Ahn, J. H. & Cho, S. B. (2001). Speciated Neural
Networks Evolved with Fitness Sharing
Technique, Proceedings of the 2001 Congress on
Evolutionary Computation, 390-396, Seoul,
Korea.

Darwen, P. & Yao, X. (1996). Automatic
Modularization by Speciation, Proceedings of the
1996 IEEE International Conference on
Evolutionary Computation (ICEC '96), 88-93,
Nagoya, Japan: IEEE Computer Society Press.

Gan, J. & Warwick, K. (2001). Dynamic Niche
Clustering: A Fuzzy Variable Radius Niching
Technique for Multimodal Optimisation in GAs,
In proc. of the 2001 Congress on Evolutionary
Computation CEC2001, 215-222, Seoul, Korea.

Goldberg, D. (1989), Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, Reading Massachusetts.

Goldberg, D. & Richardson, J, (1987). Genetic
Algorithms with Sharing for Multimodal
Function Optimization, Proceedings of the 2nd
Inter. Conf. on Genetic Algorithms, 41-49.

Kullback, S., & Leibler, R. A. (1951). On
Information and Sufficiency, Ann. Math. Stat.,
22, 79-86.

Spears, W. M. (1994). Simple Subpopulation
Schemes, Proceedings of 3rd Annual conf. on
Evolutionary Programming, 296-307, World
Scientific.

Ursem, R. (1999). Multinational Evolutionary
Algorithms, Proceedings of Congress of
Evolutionary Computation, 3, 1633-1640.

Yao, X. & Liu, Y. (1998a). A New Evolutionary
System for Evolving Artificial Neural Networks,
IEEE Trans. Neural Networks, 8(3), 694-713.

Yao, X. & Liu, Y. (1998b). Making Use of
Population Information in Evolutionary Artificial
Neural Networks, IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, 28(3),
417-425.

