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Abstract 

Modular approach of solving a complex 
problem can reduce the total complexity of 
the system while solving a difficult problem 
satisfactorily. To implement this idea, an 
EANN system is developed here for 
classifying data. The system evolved is 
speciated in such a manner that members of a 
particular species solve certain parts of the 
problem and complement each other in 
solving one big problem. Fitness sharing is 
used in evolving the group of ANNs to 
achieve the required speciation. Sharing was 
performed at phenotypic level using modified 
Kullback-Leibler entropy as the distance 
measure. Since the group as a unit solves the 
classification problem, outputs of all the 
ANNs are used in finding the final output. For 
the combination of ANN outputs 3 different 
methods – Voting, averaging and recursive 
least square are used. The evolved system is 
tested on two data classification problems 
(Heart Disease Dataset and Breast Cancer 
Dataset) taken from UCI machine learning 
benchmark repository. 

1 Introduction 

Designing a modular system, which can break the 
problem at hand into pieces and solve it, is difficult 
because it relies heavily on human experts and prior 
knowledge about the problem. In an attempt to 
achieve this modularisation without any human 
intervention, speciation in a Genetic Algorithm is 
used here. Different evolved individuals (ANNs) in 
the population solve a part of a complex problem and 
compliment each other in solving the big complex 
problem.  

There is major emphasis on following two points 
– (1) Automatic Modularisation using Fitness-
Sharing - Here multiple speciated neural networks 
are evolved using fitness sharing which helps in 
automatic modularisation (without human 
intervention). (2) Making Use of Population 
Information in Evolving Neural Networks - A  

 
population of ANNs contains more information than 
any single ANN in the population (Yao and Liu, 
1998b). Such information can be used to improve the 
performance and reliability. While evolving ANNs, 
Instead of choosing the best ANN in the last 
generation, the final result here is obtained by 
combining the outputs of individuals in the last 
generation. This will help us in utilizing all the 
information contained in the whole population. Three 
linear combination methods (voting, averaging and 
recursive least square) were used to combine the 
outputs of the individuals in the evolved population. 

The rest of the paper is organised as follows. 
Section 2 gives some background on the topic. 
Section 3 describes, in detail, how ANNs are evolved 
and the combination methods used to combine their 
outputs. Section 4 gives details on experimentation 
and the results obtained for the two benchmark 
problems (Heart Disease and Breast Cancer) taken 
from UCI datasets. Section 5 compares these results 
with the known results for the two problems and 
illustrates the effect of using full population instead 
of the best individual in the population. This section 
also gives a lower bound on the time complexity of 
the algorithm. Finally section 6 concludes with some 
suggested improvements and future work directions.  

2 Background 

Previous work has been done on automatic 
modularisation using speciation. Darwen and Yao 
(1996) used automatic modularisation in co-
evolutionary game learning. A speciated population, 
as a complete modular system, was used to learn 
playing Iterated Prisoners Dilemma. Significantly 
better results in terms of generalization were 
achieved.  

Yao and Liu (1998b) proposed the use of 
population information in evolutionary learning. In 
order to make use of information contained in the 
whole population, they combined the output of all the 
individuals (ANNs in this case) present in the final 
evolved population.  

More recently Ahn and Cho (2001) developed a 
system of speciated neural networks that were 
evolved using fitness sharing. Final population was 



analysed using single linkage clustering method to 
choose representatives of each species. The outputs 
of these representative individuals were then 
combined to produce the ensemble output. For the 
Breast Cancer problem they reported better 
recognition rate for EANNs which are non speciated 
than that of speciated EANNs.   
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benchmark problems used to implement such system 
are listed in section 3.1. The following sections give 
various steps involved in evolving ANNs. 

3.1 Benchmark Problems 

Two data classification problems have been used to 
judge the performance of evolved ANNs. Data for 
both of them is taken from UCI benchmark database. 
Both of these datasets have some attributes; based on 
these attributes, any given pattern has to be classified 
into one of two given classes. The two databases are 
– (1) Wisconsin Breast Cancer Database – which 
contains 699 instances, 2 classes (malignant and 
benign) and 9 integer-valued attributes. (2) Heart 
Disease Database which contains 270 instances, 2 
classes (presence and absence) and 13 attributes 
(chosen out of 75) are all continuously valued. The 
whole dataset is to be divided into - Training Data 
(1/2 of full dataset), Validation Data (1/4 th of full 
dataset) and Testing Data (Remaining 1/4 th). 

Figure 1 shows the overview of the methodology, 
starting from population initialisation to the 
combination of multiple ANNs evolved by 
speciation. Neural Networks used here are all Feed 
Forward Neural Networks. The whole procedure can 
be described in following steps. 

3.2 Encoding of Neural Networks 

To evolve an ANN, it needs to be expressed in 
proper form. There are some methods to encode an 
ANN like binary representation, tree, linked list, and 
matrix. Representation used here to encode an ANN 
is matrix encoding (Ahn and Cho, 2001). If N is the 
total node number of an ANN including input, 
hidden, and output nodes, the matrix is NxN, and its 
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of an ANN that has one input node, two hidden 
nodes, and one output node. In the figure, I1 
describes one input node, H1 and H2 describes 
hidden nodes, O1 describes the output node. 

Important thing to note here is that there isn’t any 
notion of hidden layers. Any hidden node can be 
connected to any other hidden node that has a higher 
index (only feed forward connections). 

3.3 Ensemble Initialisation   

Each ANN in the ensemble is generated with random 
initial weights and full-connection. Initial weights 
and biases were assigned randomly between  [–1, 1] 
and [0, 1] respectively. 20 such ANNs were 
generated as initial population with 9 and 13 input 
nodes for breast cancer and heart disease datasets 
respectively. Hidden nodes were taken to be 5 and 6 
respectively. In each case there was 1 output unit, 
which had a binary output. 

3.4 Partial Training – Lamarckian Evolution  

Each ANN is trained partially (200 epochs) with 
training data, at each generation, to help the 
evolution search the optimal architecture of ANN 
and is tested with validation data to compute the 
fitness. Standard Backpropagation algorithm is used 
for training and transfer function for each hidden and 
output unit is Sigmoid Function. 

This local search, applied at each evolution step, 
decreases the time needed to find an acceptable 
solution or in other words it reduces the number of 
generations required. It can be viewed as lifetime 
learning of an individual in the evolutionary process. 
The adjustment of the genotype (weight updates in 
Backpropagation) to the locally optimised offspring 
makes it Lamarckian Evolution. 

3.5 Fitness Evaluation and Speciation 

The fitness of ANN is recognition rate of validation 
data and computed using speciation technique. Raw 
fitness of an individual p, fBraw,p B, is the inverse of 
Mean Square Error (MSE) calculated per pattern, per 
output unit. Hence raw fitness:  

 
fBraw,p B= 1 / MSEBpB                       (3.1) 

 
A constant can be added to the denominator to 
prevent fitness value going to infinity when an 
individual classifies all patterns correctly. For the 
purpose of speciation fitness sharing technique 
(Goldberg, 1989) is used here. Fitness sharing 
decreases the fitness of densely populated ANN sub-
space and shares the fitness with other sub-spaces. 
Therefore, it helps genetic algorithm search various 
sub-spaces and generate more diverse ANNs. 

Fitness sharing is done at the phenotypic rather 
than at genotypic level, i.e. distance between two 
individuals is judged on the basis of their behaviour 
(phenotypes), not on the basis of their architecture or 
weights (genotypes). This is required because there 
isn’t one to one mapping between the genotypic 
distance and the phenotypic distance between two 
individuals. E.g. two ANNs can have very similar 
matrix encoding (as discussed in section 3.2), but at 
the same time, behave quite differently for a given 
(say) classification task. 

To measure the distance between two individuals 
on the basis of their behaviour, the output values 
produced by these individuals for the validation set 
data points, have been used. The modified Kullback-
Leibler entropy is used to measure the difference of 
two ANNs. As discussed by Ahn and Cho (2001), 
the outputs of ANNs are not just likelihood or binary 
logical values near zero or one. Instead, they are 
estimates of Bayesian a posteriori probabilities of a 
classifier. Using this property, the difference between 
two ANNs is measured with modified Kullback-
Leilbler entropy (Kullback and Leibler, 1951), which 
is called relative entropy or cross-entropy.  

Symmetric relative entropy is used as the distance 
measure. If p and q are the output probability 
distributions of two ANNs that consist of 1 output 
node and are trained with n data points, then, the 
similarity of the two ANNs can be calculated by 
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where p BjB means the output value of the ANN with 
respect to the jth training data. Lower values of this 
entropy imply similar behaviour in the two networks. 

This distance measure is used to share the fitness 
of individuals in the population. Different values 
(0.5, 1, 2) for sharing radius (σ BsB) B Bwere tried, but most 
of the experimentation was done with σ BsB = 1, which 
was found to be the best one among the three values.  
Two individuals share the fitness, according to the 
standard fitness sharing technique (Goldberg, 1989), 
only if the distance between them is less than σ BsB.  

3.6 Evolutionary Process 

Generational GA with elitism is used here. Elitism 
performs two actions – (1) It makes a copy of the 
individual with best raw fitness in the old pool and 
places it in the new pool, thus ensuring the most fit 
chromosome survives. (2) Similarly one individual 
with the best shared fitness is copied to the new pool. 
To create the mating pool, on which the genetic 
operators will be applied, roulette wheel selection is 
used. Members of the mating pool are selected 
according to their shared fitness. The better the 



chromosomes are, the more copies they get in the 
mating pool.  
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swapping row and column entries corresponding to 
H2 and H3 of the two parents. 

The mutation operator changes a connection link 
and a corresponding weight of a randomly selected 
ANN from the population. Mutation operator 
performs one of the two operations, which are – (1) 
Connection Creation – Mutation operator selects an 
ANN from the population of ANNs randomly and 
chooses one connection link from it. If the 
connection link does not exist and the connection 
entry of the ANN matrix is 0, the connection link is 
added. It adds new connection link to the ANN with 
random weights. (2) Connection Deletion – If the 
connection link already exists, the connection is 
deleted. It deletes the connection link and weight 
information. 
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(b) Two children after crossover 
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the mean square error and minimising it. We omit the 
details for this method for space limitations; these 
can be found in Yao and Liu (1998b). RLS requires a 
parameter α to be set. In our experimentation, we 
tried 3 values of α - 0.1, 0.2 and 0.3. Best results, on 
an average were obtained for α = 0.3. 

4 Experimentation and Results 

Experiments were conducted for both the benchmark 
problems in two stages. Initially only training and 
testing sets were used to evolve ANNs. i.e. both 
training and fitness evaluation were done on same 
set. The results obtained with this setup were not 
satisfactory, though the error rate for training data 
was acceptable but the error rate for testing data was 
much bigger than the already known results for the 
benchmark problems. To improve this generalisation 
error, need for the use of validation set was felt. So 
another set of experiments were conducted in which 
for the fitness evaluation of ANNs, a separate data 
set was used. The total data set for each benchmark 
problem was divided into 3 parts – Training, 
validation and testing set (As discussed in section 
3.1). Various parameter settings for the experiments 
are given in Table 1.  

Table 2 lists the training, validation and testing 
error rates obtained by the group of evolved ANNs, 
for the breast cancer problem. These results are 
averaged over 30 runs. Similarly table 3 lists the 
training, validation and testing error rates obtained 
by the group of evolved ANNs, for the heart disease 
problem. These results are averaged over 24 runs. 
More runs couldn’t be done because of shortage of 
time, as we will see in section 5.3 running the 
algorithm is expensive. 

 
Parameter Breast 

Cancer 
Heart 

Disease 
Learning Rate 0.1 0.1 

Crossover Probability 0.3 0.3 
Mutation Probability 0.1 0.1 

Sharing RadiusTP

1
PT 1 1 

# of Generations 200 350 
# of runs 30 24 

Table 1 Parameter Settings 

In tables 2 and 3, Mean, SD, Min, and Max 
indicate the Mean Value, Standard Deviation, 
Minimum and Maximum values respectively. Results 
are given for all three combination methods used – 
Voting, RLS and Averaging. For RLS training and 
validation sets both were used to find optimal 
weights for the linear combination of outputs of 

                                                           
TP

1
PT Initially three values were tried, 0.5, 1 and 2. 

Sharing radius = 1 repeatedly gave better results. 

neural networks, hence combined error for both 
training and validation sets is given.  
 

  Voting 
 Training Validation Testing 
Mean 0.0378 0.0189 0.0231 

SD 0.0100 0.0153 0.0176 
Min 0.0074 0.0000 0.0000 
Max 0.0544 0.0514 0.0514 

 Averaging 
 Training Validation Testing 
Mean 0.0374 0.0235 0.0229 

SD 0.0102 0.0151 0.0137 
Min 0.0078 0.0114 0.0000 
Max 0.0544 0.0571 0.0514 

 RLS 
 Training + Validation Testing 
Mean 0.0237 0.0167 

SD 0.0152 0.0122 
Min 0.0016 0.0000 
Max 0.0267 0.0343 

Table 2 Error Rates (averaged over 30 runs) for Breast Cancer 
Problem 

  Voting 
 Training Validation Testing 
Mean 0.1960 0.1623 0.1642 

SD 0.0282 0.0265 0.0404 
Min 0.1333 0.1194 0.1176 
Max 0.2667 0.2388 0.2794 

 Averaging 
 Training Validation Testing 
Mean 0.1733 0.1828 0.1612 

SD 0.0231 0.0293 0.0323 
Min 0.1333 0.1194 0.1029 
Max 0.2370 0.2388 0.2353 

 RLS 
 Training + Validation Testing 
Mean 0.1462 0.1612 

SD 0.0243 0.0337 
Min 0.1188 0.1176 
Max 0.2129 0.2500 

Table 3 Error Rates (averaged over 24 runs) for Heart Disease 
Problem 

5 Discussion 

Training error rates achieved are comparable to stage 
1 experiments but there is a significant improvement 
in the generalisation ability of evolved group of 
ANNs in both the problems. The best results were 
obtained using RLS method for combining the 
outputs on an average. Though RLS always produced 
best results on training data but there were runs in 
which voting or averaging method produced better 



results in terms of testing errors. In general we have 
achieved lesser error rates on validation sets than on 
training set, this is because our GA is trying to 
optimise the fitness which was calculated over the 
validation set. 

Also better results were achieved when all the 
networks in the initial population were fully 
connected, in comparison to the case where there 
were random initial connections. Another point 
worth mentioning here is the relative degree of 
difficulty of classification in the two datasets. In 
heart disease, even after 350 generations, error rates 
are pretty big in comparison to the breast cancer 
problem. So heart disease dataset proves to be much 
harder to classify. 

5.1 Comparison With Known Results  

For the Breast Cancer problem, Ahn and Cho (2001) 
obtained 1.71% test error rate as their best result 
using single linkage clustering and voting and 
averaging combination methods. The best result here 
was achieved by using RLS. On an average over 30 
runs RLS combination method produced 1.67% error 
rate on test set, which is better than Ahn and Cho’s 
result. But voting and averaging methods produced 
2.31 and 2.29% error rates respectively, which are 
higher.  

Yao and Liu (1998b) obtained 5.8% and 15.1% 
error rates, for training and testing datasets, as their 
best results for the heart disease problem. The best 
results achieved here are 14.62% and 16.12% 
respectively for the two sets. Though the testing error 
rate is comparable the training error rate is much 
higher. 

5.2 Comparing Best Individual Performance 
With Combination Methods  

To see how useful these combination methods are in 
comparison to the best individual present in the 
population, their performance (on training set2) is 
plotted with the performance of best individual 
present in the population for the two problems. 
Figures 5 and 6 give error rates versus the number of 
generations for the best individual and for all 3 
combination methods used here (for a particular run).  

For the Breast cancer problem (figure 5) all 
combination methods except the RLS prove to be 
worse than the best individual present in the 
population. Few observations can be made from this 
plot – (1) It took around 125 generations for voting 
and averaging to reach the performance comparable 
to RLS or of the best individual. One possible reason 
for the bad performance of voting and averaging can 
be – their performance is measured on training set 

                                                           
2 For RLS both training and validation sets are used. 

while the fitness evaluation is done on the validation 
set. On the other hand error rates for the RLS method 
is based on both training and validation sets. (2) The 
best individual is almost as good as the best 
combination method (RLS). Good performance of 
the best individual was also observed by Ahn and 
Cho (2001), this can be attributed to the classification 
problem being easy – these methods aren’t exploited 
to their full extent. We will see in a moment that for 
a much harder problem these methods turn out to be 
useful and perform much better than the best 

individual.  
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Figure 5 Comparing combination methods with best
individual in the population (Breast Cancer). 
For the Heart Disease problem (figure 6), it turns 
 that the combination methods perform much 
er than the best individual present in the 
ulation. Few observations can be made from this 
t – (1) RLS again gives the best performance, 
ugh averaging also performs quite well. Voting on 

other hand performs no better than the best 
ividual. (2) In this problem the difference between 
sing the best individual and using the full 
ulation is visible. (3) This difference becomes 



more prominent when we look at the performance on 
test set. For the same run (for which the plot has been 
provided) the best individual produced 17 wrong 
classifications out of 68 patterns in test set, i.e. 25% 
error rate while voting, averaging and RLS produced 
– 17.65%, 19.12 and 17.65% error rates. 

5.3 Complexity of Algorithm 

One run of the programme took approx. 3 hours for 
heart disease problem (350 generations) and 2 hours 
30 minutes for breast cancer problem (200 
generations) to run. The algorithm consists of partial 
training at each evolution step and the standard 
fitness sharing. Combination of outputs was carried 
out using a separate code. Here we will look at the 
algorithm that evolves the ANNs. 

Training of an ANN consists of two major 
phases, the first of which is the feed forward of the 
training input. Essentially, this phase consists of 
multiplying each input vector element by the weight 
residing on its connection to a node in the hidden 
layer. Then, a sum is taken over all connections to 

that hidden layer node to obtain the hidden unit's net 
input. This process is then repeated for passage of the 
signal from the hidden layer to the output layer. 
Now, if there are 'n' input units, 'm' hidden units, and 
'k' output units, the dot products will require 
 

m(n+logn) + k(m+logm) 
 
operations. Now neglecting logn with respect to n, 
we get O(nm+km) as a lower bound for the time 
complexity of the feedforward phase. Roughly 
speaking training algorithm as whole will take just 
the double time of feed forward phase. So, even for 
full training phase we get O(nm+km) as the lower 
bound for time complexity. In every generation this 
has to be done N number of times, where N is the 
population size. And this process will continue the 
given number of generations, say G. Standard fitness 
sharing requires O(N2) computations, where N is the 
population size. So an estimate of lower bound of 
time complexity of full algorithm will be: 
 

O((m(n+k) * N + N2) * G) 

6 Conclusion 

Speciated EANN system was evolved using fitness 
sharing. Sharing was performed at phenotypic level 
using modified Kullback-Leibler entropy as the 
distance measure. To make use of population 
information present in the final generation of GA, the 
final result was obtained by combining the output of 
all the individuals present in the final population 
using various linear combination techniques – 
voting, averaging and RLS. The developed system 
was tested on two benchmark datasets from UCI 
benchmark datasets, namely Wisconsin Breast 
Cancer Dataset and Heart Disease Dataset. It was 
observed that the breast cancer dataset was much 
easier to classify than the heart disease dataset. 

Significantly better results were achieved by 
using a validation set. Out of the three combination 
methods RLS produced the best results. Combination 
of outputs produced much better results than the best 
individual in the harder problem (heart disease 
problem). Results achieved for Breast Cancer 
problem were better than known results available. 
Comparable results were also achieved in Heart 
Disease problem. Figure 6 Comparing combination methods with best 

individual in the population (Heart Disease). Though the evolved system performed quite well 
on the two benchmark problems taken, still there are 
some criticisms too. First one obviously is that it is 
too expensive and should not be applied to relatively 
easier problems like the breast cancer problem, 
where it cannot be exploited to its full extent. Also, 
fitness sharing (as described by Goldberg and 
Richardson, 1987) is expensive because of distance 
calculations. Another drawback of the system is the 



choice of sharing radius, which was chosen 
empirically. Standard fitness sharing used here, 
makes two assumptions – (1) The first is the number 
of peaks in the space. (2) The second is that those 
peaks are uniformly distributed throughout the space. 
However, we don’t usually know about the problem 
beforehand. Hence setting a suitable value for 
sharing radius is difficult. In the earlier stages of 
experimentation only three values were tried and the 
best one was chosen for the rest of experiments. 
More experimentation couldn’t be done, as running 
the code was quite expensive. More experiments 
with different values of sharing radius could have 
produced better results. Requirement of priori 
knowledge about the fitness landscape (in our case 
the sharing radius) is one of the limitations of 
standard fitness sharing technique. We will also face 
problems when the peaks have basins of different 
sizes. Thus an obvious modification to the system 
can be – the use of another niching or speciation 
technique, which doesn’t require empirically setting 
the sharing radius and/or doesn’t involve expensive 
distance calculations.  

There are some niching techniques available in 
literature that require lesser amount of prior 
knowledge about the fitness landscape. Multi-
national EA (Ursem, 1999) and DNC with fuzzy 
variable niching (Gan and Warwick, 2001) can be 
two possible candidates here. Both of these schemes 
use hill-valley fitness topology function which 
allows the local analysis of the fitness landscape and 
thus help them in making more informed decisions, 
based on this analysis, about merging and splitting or 
merging and migrating two species in the two 
schemes respectively. On the other hand there are 
techniques like Simple Subpopulation Scheme 
(Spears, 1994) that can be used to make the system 
less expensive.  Simple Subpopulation Scheme 
replaces the concept of distance between individuals 
with tag bits that identify the subpopulation to which 
an individual belongs. It also does not make the 
equal spacing assumption. One interesting extension 
to this work would be, to incorporate some of these 
niching techniques in the system.  
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